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The Hippo signalling pathway maintains quiescence
in Drosophila neural stem cells

Rouven Ding!, Kevin Weynans'®, Torsten Bossing?, Claudia S. Barros3 & Christian Berger!

Stem cells control their mitotic activity to decide whether to proliferate or to stay in quies-
cence. Drosophila neural stem cells (NSCs) are quiescent at early larval stages, when they are
reactivated in response to metabolic changes. Here we report that cell-contact inhibition of
growth through the canonical Hippo signalling pathway maintains NSC quiescence. Loss of
the core kinases hippo or warts leads to premature nuclear localization of the transcriptional
co-activator Yorkie and initiation of growth and proliferation in NSCs. Yorkie is necessary and
sufficient for NSC reactivation, growth and proliferation. The Hippo pathway activity is
modulated via inter-cellular transmembrane proteins Crumbs and Echinoid that are both
expressed in a nutrient-dependent way in niche glial cells and NSCs. Loss of crumbs or
echinoid in the niche only is sufficient to reactivate NSCs. Finally, we provide evidence that the
Hippo pathway activity discriminates quiescent from non-quiescent NSCs in the Drosophila
nervous system.
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tem cells are undifferentiated cells that have the unique

ability to produce differentiating daughter cells and retain

their identity by a process called self-renewal. Stem cells can
exhibit a remarkable proliferative capacity, for example, during
development or regenerative processes?. Deregulation of stem
cell proliferation can lead to tumour formation or to a premature
depletion of the progenitor pool®. Thus, stem cell proliferation
has to be tightly regulated according to the cellular or organismal
context. When proliferation is not required, stem cells are
maintained in a state of quiescence in the GO-phase and need to
be activated by systemic or local signals®*. In Drosophila, neural
stem cells (NSCs) proliferate in two phasess. The embryonic
phase generates all cells of a functional larval central nervous
system (CNS), while in the second proliferative phase cells
forming the adult CNS are produced. In late embryonic stages
NSCs enter quiescence, which requires intrinsic transcription
factors®”’.

Changes in the physiological condition of the animal in
response to feeding at early larval stages causes reactivation of
NSCs®. The amino-acid sensing fat body releases sglstemic signals
in response to the increase in dietary amino acids®® and CNS glial
cells translate these signals into a local activating signal. They
produce and secrete insulin-like peptides that activate the insulin/
insulin-like growth factor signalling pathway in NSCs'®!l, An
initial step during reactivation is the drastic increase in NSC cell
size from 4-5pm during quiescence to 10-15 pm depending on
the type of NSC>!2. Thus, growth in preparation for cell division
is one of the initial hallmarks of NSC reactivation. The
mechanisms regulating quiescence are less well understood.
Glial cells secrete a glycoprotein (anachronism) that keeps NSCs
in quiescence, but the precise molecular mechanism remains
unknown!3,

One of the major pathways that controls organ growth and cell
proliferation in Drosophila and vertebrates is the conserved
Salvador/Hippo/Warts signalling pathway (SHW)!4~16. The
SHW consists of a growth-repressive kinase cascade that
modulates the activity of the transcriptional co-activator Yorkie
(YAP/TAZ in vertebrates). The Hippo kinase activates the Warts
kinase, which in turn directly phosphorylates Yorkie, creating a
14-3-3 binding site that restricts nuclear import and inactivates
Yorkie!”!8, If Hippo/Warts are inactive, non-phosphorylated
Yorkie enters the nucleus and binds to transcription factors like
Scalloped!®?® and activates its transcriptional ~program
promoting cell growth and proliferation?>?2. Numerous
upstream regulators of the SHW have been identified, including
cell-cell contact, the actin cytoskeleton, G—grotein coupled
receptors or planar and apico-basal cell polarity?3.

In the vertebrate skin or the liver, de-repression of YAP has
been shown to promote stem cell proliferation®*. However,
whether this is true in NSCs and whether changes in Yorkie/YAP
activity are causative for altering growth and proliferation during
normal CNS development remains unclear. In Drosophila, the
SHW has been implicated in CNS development of the
neuroepithelium and of glial cells in the optic lobe, and in cell
growth of a specific population of glial cells (subperineural glial
cells)?>-27_ However, for central brain NSCs, no function has been
attributed to the SHW.

Here, we show that the SHW maintains quiescence of NSCs at
the transition from embryo to larval life in Drosophila. Loss of the
core kinases hippo/warts, or upstream regulators kibra/Merlin/
expanded, leads to a premature initiation of cell growth and
proliferation and thus reactivation from quiescence. Yorkie is
inactive in quiescent NSCs and is necessary and sufficient for the
reactivation and proliferation of NSCs. Cell-cell contact proteins
Crumbs and Echinoid are expressed in both glial cells and NSCs
and regulate the activity of Hippo and Warts, possibly via
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homophilic interactions in trans. The expression of Crumbs and
Echinoid in glial cells and NSCs is nutrition-dependent, and their
premature loss in glial cells is sufficient to initiate reactivation of
NSCs. Moreover, the Yorkie activity discriminates between
quiescent and non-quiescent NSCs, placing the SHW as a major
regulator of growth in cellular quiescence in Drosophila NSCs.

Results

Loss of Hippo signalling causes premature NSCs reactivation.
To identify novel regulators of quiescence in NSCs, we depleted
known growth regulators using RNAi-mediated gene knockdown
in the insc-GAL4 pattern®®. We scored NSCs (Deadpan-positive
cells) cell size and proliferation rate (phosphohistone H3 (pH3)-
positive NSCs) 4 h after larval hatching (ALH), when all NSCs are
quiescent—small in cell size (~4-5pum) and non-proliferative
(Fig. 1a,g,h)>1%12, Exceptions are four NSCs of the mushroom
body (MBNBs) and one ventrolateral NSC (INSC) that do not
enter quiescence, have a large cell diameter and constantly
proliferate (Fig. 1a)?°. These ‘non-quiescent NSCs’ are quantified
independently from all quiescent NSCs. First, we describe the fate
of quiescent NSCs.

Knockdown of the core kinases of the SHW hippo or warts
induces a marked premature increase in NSC cell size (Fig. 1b,c)
from 4.5 pum (median, maximum 6.5 pum) in control brains 4 h
ALH to 7pum (median, maximum 13 um; Fig. 1g). Since this
suggests an early exit from quiescence, we tested for entry into
S-phase using antibody staining for the S-phase cyclin CycE. We
observed an increase in CycE-positive NSCs upon warts-RNAi
(Supplementary Fig. lab). Consequently, the number of
pH3-positive mitotic NSCs was also significantly increased
(Fig. 1h). Next, we examined the known upstream regulators of
the SHW expanded, kibra or Merlin for their function in NSCs.
Indeed, RNAi showed similar albeit less-pronounced effects and
caused premature cell growth at 4h ALH (Fig. 1d-g).

To ensure that this phenotype is not because of an
impaired entry into quiescence, we analysed trans-heterozygous
hpo™1/hpoKC202 mutants3®3! at hatching (0-2h ALH) and 4h
ALH (Supplementary Fig. 1¢,d), and stage-17 embryonic brains of
wts-RNAi (Supplementary Fig. le,f). In both situations NSCs did
not show increased cell sizes or mitotic activity revealing a normal
phase of quiescence (stage-17 at 0-2h ALH). Interestingly, hpo
mutant larvae exhibited a mild but significant increase in cell size
at 4h ALH mimicking the reactivation phenotype in wts-RNAi
(Fig. 1i). Finally, we used the temperature-sensitive GAL4
repressor system GAL8Ots to restrict the RNAi expression to
only larval stages. Indeed, upon larval stage-restricted wis- or
hpo-RNAi in NSCs we could monitor a similar increase in NSC
diameter at 4h ALH (Fig. 1j).

Thus, the SHW acts in Drosophila NSCs to maintain
quiescence and cell-autonomous loss of pathway components
leads to premature exit from quiescence.

Yorkie relocates to the nucleus during reactivation. If the SHW
maintains quiescence, the main effector Yorkie’? should be
inactive and excluded from the nucleus in quiescent NSCs!7!8,
whereas we should observe nuclear localization in reactivated
NSCs (24h ALH). Antibody staining revealed no nuclear
localization of Yorkie in quiescent NSCs (Fig. 2a,d and
Supplementary Fig. 2). In contrast, at 24h ALH a clear nuclear
localization of Yorkie in reactivated NSCs can be detected
(Fig. 2b,d and Supplementary Fig. 2). Since wts-RNAi caused
premature reactivation 4h ALH, we tested for premature nuclear
localization of Yorkie and could monitor an increase in Yorkie
protein levels and nuclear localization in NSCs that display
a clear increase in cell diameter (Fig. 2c). Moreover, since
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Figure 1 | The SHW signalling pathway maintains quiescence in larval NSCs. (a) Wild-type larval brain lobe (inscG4 > UAS-CD8::GFP, Control) 4 h ALH.
Quiescent NSCs are small in cell size. NSCs of the mushroom body (MBNB) are big in cell size. No pH3-positive NSCs can be observed. (b-f) NSC-specific
RNAI (inscG4 > UAS-CD8::GFP and respective construct) of hippo (hpo)(b), warts (wts)(c), expanded (ex) (d), kibra (kib) (e) or Merlin (Mer) (f) leads to
premature cell growth and cell division (observed in hpo and wts-RNAi) of NSCs. Arrows depict examples of NSCs. (g h) Quantification of NSC cell

diameters (g) and proliferation (h) in RNAI for Hippo pathway components. (g) ***P<0.001. Wilcoxon rank sum test. Median and s.d. were calculated
from two biological replicates. Control n=2355 NSCs (7 brain lobes); inscG4 > hpo-RNAi, n=575 NSCs (11 brain lobes); inscG4 > wts-RNAIi, n =236 NSCs
(5 brain lobes); inscG4 > expanded-RNAi, n=400 NSCs (8 brain lobes); inscG4 > kibra-RNAi, n=266 NSCs (5 brain lobes); inscG4 > Mer-RNAi, n=506
NSCs (10 brain lobes); all 4 h ALH. (h) Number of NSCs in mitosis (pH3-positive) at 4 h ALH per brain lobe in wild-type (7 brain lobes) and hpo- and wts-
RNAi (11 or 5 brain lobes). (i) Quantification of NSC cell diameters in hpo'M?/hpoKC292 (hpo in figure) trans-heterozygous mutants at 0-2h ALH and 4 h
ALH. ***P<0.001. Wilcoxon rank sum test. Median and s.d. were calculated from two biological replicates. Control 4 h ALH, n=150 NSCs (3 brain lobes);
hpoJM7/hpoKC202 0-2hmin ALH, n=65 NSCs (2 brain lobes); hpojW/hpchzoz 4h ALH, n=121 NSCs (3 brain lobes). (j) Quantification of NSC diameter of
larval-restricted RNAi of hpo (n =120 NSCs in 8 brain lobes) and wts (n =172 NSCs in 10 brain lobes) in NSCs using the GAL80ts system. For comparison
hpo- and wts-RNAi measurements without GAL80ts are added. All images are single focal planes, anterior up; Scale bar, 10 pm. NSC in red (Deadpan),
CD8::GFP in green and phosphohistone H3 in blue (pH3). Pictograms denote the area of the brain shown in the picture. See also Supplementary Fig. 1.
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Figure 2 | Yorkie is cytoplasmic during quiescence and re-localizes to the nucleus during reactivation of NSCs. (a-c) Subcellular localization of Yorkie in
quiescent NSC at 4h ALH (a, cyan circles, yellow circles show non-quiescent MBNBs), in reactivated NSCs at 24 h ALH (b, white circles) and in
prematurely reactivated NSCs of wts-RNAi at 4h ALH (¢, white circles). Lower panels show only the Yorkie channel in monochrome. Circles depict
examples of NSCs. (d) Quantification of the nuclear versus cytoplasmic localization of Yorkie in NSCs at 0-2h (green, n=20, 5 brains from different
animals) and 24 h (red, n=20, 5 brains from different animals) ALH. ***P<0.001. Wilcoxon rank sum test. (e) NSC-specific RNAi of 14-3-3zeta leads to
premature growth of NSCs at 4 h ALH. (f) Quantification of NSC cell diameters in wild-type and 14-3-3zeta-RNAi at 4 h ALH. ***P<0.001. Wilcoxon rank
sum test. Median and s.d. were calculated from two biological replicates. Control n=347 NSCs (7 brain lobes); inscG4 > 14-3-3zeta-RNAi, n =250 NSCs
(5 brain lobes). All images are single focal planes, anterior up. Scale bar, 10 um. See also Supplementary Fig. 2.

phosphorylated Yorkie binds to 14-3-3 and stays inactive, we
tested the loss of 14-3-3-zeta with RNAi and observed premature
growth of NSCs at 4h ALH (Fig. 2e,f), presumably owing to early
activity of Yorkie. Thus, Yorkie is inactive in NSCs during
quiescence, and is activated and localizes to the nucleus during
reactivation or upon wts-RNAI.

Yorkie is necessary and sufficient for growth and proliferation.
To determine whether Yorkie is also necessary for NSC growth
and proliferation, we analysed yki®> null mutants®2. Homozygous
ykiB> mutants are embryonically semi-lethal and most larvae die
at approximately 48h ALH. Whereas, wild-type NSCs at 48h
ALH have been reactivated and are highly proliferative
(Fig. 3a,c,d), no reactivation of quiescent NSCs can be observed
in the yki®> mutants (no cell growth and no pH3-positive NSCs;
Fig. 3b-d). Moreover, NSCs cell size and their mitotic index at
48h ALH revealed that yki®>-mutant NSCs resemble quiescent
NSCs (Fig. 3c,d). Next, we tested whether early expression of a
constitutively active form of Yorkie (UAS-ykiS1984)7 is sufficient
to reactivate NSCs. Indeed, at 4h ALH we observed a significant
increase in NSCs cell diameter, which was also present when

4

restricting the expression to only larval stages using the GAL80ts
system (Fig. 3e,f). We conclude that Yorkie function is necessary
and sufficient for NSCs reactivation and initiation of growth and
proliferation.

Yorkie activates the bantam microRNA during reactivation.
Next we tested if the expression of the Yorkie target genes
four-jointed (fi-lacZ)®3, expanded®* and the microRNA bantam>>
correlates with the subcellular translocation of Yorkie during
reactivation. Fj-lacZ and expanded showed only weak expression
in quiescent NSCs (4h ALH) but clear upregulation at 48h ALH
(Supplementary Fig. 3a,b). We analysed the expression and
activity of bantam that is known to regulate proliferation and
growth3>~38 by using a GFP-sensor system®®. The loss of GFP
expression and thus the activity of bantam coincides with the
activation of Yorkie, as quiescent NSCs (4h ALH) show strong
GFP staining (Fig. 4a, upper panels) and reactivated NSCs
(24h ALH) have markedly reduced GFP signals monitoring
bantam activity (Fig. 4a, lower panels). We combined the bantam
sensor with wts-RNAi and examined an early activity of bantam
at 4h ALH (Fig. 4b), suggesting that premature reactivation by
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Figure 3 | Yorkie is necessary and sufficient for NSCs growth and proliferation. (a,b) NSC growth and proliferation is impaired in yki?> deletion mutants
(b) compared with wild-type NSCs at 48 h ALH (a). (¢) Average number of NSCs in mitosis (pH3-positive) at 48 h ALH in wild-type and yki3> deletion
mutants. (d) Quantification of NSC cell diameters ykiB5 deletion mutants at 48 h ALH. ***P<0.001. Wilcoxon rank sum test. Median and s.d. were
calculated from two biological replicates. Control n =240 NSCs (5 brain lobes); ykif>, n= 459 NSCs (10 brain lobes). (e) Expression of ykiST68A in NSCs is
sufficient to reactivate NSCs 4h ALH. (f) Quantification of NSC cell diameters in ectopic expression of inscG4 > ykiS168A (blue) or larval-restricted
expression using the GAL80ts system (blue with white lines) at 4 h ALH. ***P<0.001. Wilcoxon rank sum test. Median and s.d. were calculated from two
biological replicates. Control n =150 NSCs (3 brain lobes); inscG4 > ykiS168A, n =200 NSCs (4 brain lobes); inscG4 > ykiST68A; tubPGAL80ts, n =62 NSCs
(4 brain lobes). All images are single focal planes, anterior up. Scale bar, 10 um.

wts-RNAi expression causes early activation of the Yorkie
downstream target bantam. To test if bantam is also necessary
for NSC reactivation, we analysed bantamA1 deletion mutants at
24h ALH and observed NSC reactivation in the brain, but
markedly reduced cell size and proliferative capacity (Fig. 4c-f).
This effect seemed stronger in NSCs of the ventral nerve cord
(VNC) at 24h ALH, which in bantamAl mutants were
indistinguishable from quiescent NSCs in control VNCs at 4h
ALH, with severely reduced cell sizes and nearly no pH3-positive
NSCs (Fig. 4e,f). The difference between brain and VNC NSCs
can be attributed to the spatiotemporal progression of NSC
reactivation from anterior to posterior, which is also reflected in
the size distribution of the wild-type control (Fig. 4e). Thus, we
conclude that bantam is an important target of Yorkie during
reactivation of NSCs, yet other unknown targets are likely
involved in growth and proliferation of NSCs.

SHW regulates reactivation depending on nutritional status.
Because reactivation of NSCs is dependent on a nutritional
stimulus and insulin signalling from CNS glia®1®1!, we tested if
premature reactivation upon wts-RNAi depends on nutrition.
Gene knockdown of wts in starved larvae resulted in a minor but
still significant increase in cell size compared with wts knockdown
in well-fed larvae (Supplementary Fig. 3c,d and Fig. 1c,g) but we
could not detect pH3-positive NSCs. Thus, the SHW might
regulate growth initiation of NSCs in parallel to the nutritional
response model. This shows, that sensing of new nutritional
resources occurs within the first 4h ALH and SHW can initiate
cell growth, but reactivation even in loss of the SHW depends on
the nutritional status of the organism.

Crumbs and Echinoid activate SHW during NSC quiescence.
We sought to investigate how external signals regulated the
cell-intrinsic, growth-repressing activity of the SHW during

reactivation. Since a number of inter- and extracellular SHW
regulators are known, we tested the transmembrane proteins
Crumbs®*~*2 and Echinoid*>** for their role in NSCs quiescence.
When targeting crb or ed by RNAi in NSCs, a significant increase
in NSCs cell size can be measured (Fig. 5a and Supplementary
Fig. 4a,b) and in response to crb/ed-RNAi reactivated NSCs
showed nuclear localization of Yorkie (Fig. 5b). For ed
we analysed a embryonic/larval non-lethal hypomorphic allele
(ed™?) that also exhibited premature reactivation revealed by
increased NSC cell diameters (Fig. 5a) and incorporation of EdU
monitoring S-phases (Supplementary Fig. 4c).

Since NSC reactivation involves niche glia cells we
explored the role of niche signalling during quiescence. Using
repo-GALA4 for glial-RNAIi, we targeted crb or ed in glial cells only,
which was sufficient to observe a similar significant but less-
pronounced increase in NSC cell size compared with knockdown
of ¢rb or ed in NSCs (Fig. 5c and Supplementary Fig. 4d.e).
To exclude that this is a consequence of altered SHW in glial cells,
we analysed NSCs behaviour in glial wts-RNAi. In contrast to
crb- or ed-RNAi we could observe a premature growth initiation
in subperineural glial cells as described before (Supplementary
Fig. 4f)?’. The effect on reactivation of NSCs was stronger
compared with glial crb or ed RNAi (Supplementary Fig. 4g). To
test whether wts-RNAi and therefore premature glial growth can
bypass the nutritional stimulus, we analysed the effect of
nutritional deprivation. Similar to wts-RNAi in NSCs in
nutrition-deprived conditions, wts-RNAi in glial cells in starved
larvae leads to a minor reactivation phenotype and a less
pronounced but still significant increase in NSCs cell diameter
(Supplementary Fig. 4g). Thus, premature glial growth in
wts-RNAI can initiate growth in NSCs but full reactivation is
dependent on nutrition. Knockdown of crb or ed in glial cells did
not result in a premature growth initiation in glial cells (compare
Supplementary Fig. 4d,e with f). To show that the premature
growth initiation in NSCs upon glial-RNAi of ¢rb and/or ed is
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Figure 4 | The microRNA bantam is active during reactivation and necessary for NSC growth and proliferation. (a) bantam (ban)-activity sensor in brain
lobes at 0-2 h (upper panels) and 24 h (lower panels) ALH. No GFP signal monitors ban activity. Quiescent NSCs (cyan circles) do not have active bantam
(GFP-positive), whereas reactivated NSCs (white circles) or the MBNB (yellow circles) have active ban. Right panels show GFP channel in monochrome.
(b) NSC-specific wts-RNAi leads to premature ban activity (loss of GFP) at 4h ALH. (¢,d) NSC growth and proliferation is decreased in banA’ mutants
(d) compared with control (¢, white circles marks NSC in division) at 24 h ALH. Phalloidin in green. (e, f) Quantification of NSC cell diameters (e) and

proliferation (F) in banA’ mutants at 24 h ALH. (e) ***P<0.001. Wilcoxon rank sum test. Median and s.d. were calculated from two biological replicates.
Control brain n=109 NSCs (3 brain lobes); banA brain n=319 NSCs (7 brain lobes); control VNC n=109 NSCs (3 VNC); ban4’ VNC n=253 NSCs

(4 VNC). (F) Average number of NSCs in mitosis (pH3-positive) at 24 h ALH in wild-type of 3 brain lobes and 3 VNCs and banA' 7 brain lobes and 4 VNCs.
All images are single focal planes, anterior up. Scale bar, 10 um. See also Supplementary Fig. 3.

through altering the SHW pathway in NSCs, we made use of the
bantam activity sensor. Indeed, we could monitor a premature
activation of bantam (loss of GFP) in NSCs upon glial crb/ed
RNAi (Fig. 5d). Therefore, knockdown of crb or ed in niche glial
cells leads to premature reactivation of NSCs through altering
Hippo activity in trans.

To test potential homophilic interactions of Crumbs*’, we
targeted crb simultaneously in both NSCs and glial cells by
RNAi (insc-GAL4/ repo-GAL4) and observed an increase in the
strength of premature reactivation of NSCs compared with

6

glial knockdown alone (Fig. 5¢,e and Supplementary Fig. 4h,i).
Since the phenotype was similar to the NSC-specific RNAi
of crb or ed alone we conclude that c¢rb and ed act both
in trans and in cis. Knockdown in glial cells removes the
interaction in trans (between glial cells and NSCs) but
leaves the interaction in cis (on NSCs), which causes a
less-pronounced phenotype. Conversely, knockdown of crb or
ed in NSC or in NSC and glial cells simultaneously interrupts
both interactions in cis and in trans and causes stronger
phenotypes.
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Figure 5 | Crumbs and Echinoid are required in NSCs and glial cells in cis and in trans to activate SHW during quiescence. (a) Quantification of NSC cell
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(¢) Quantification of NSC cell diameters in Glia-specific RNAi (repoG4) of crb or ed at 4 h ALH. ***P<0.001. Wilcoxon rank sum test. Median and s.d. were
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panel shows GFP (ban-sensor, monochrome) signal alone. (e) Quantification of NSC cell diameters in Glia- and NSC-specific RNAi (inscG4; repoG4) of crb
or Crumbs/ed at 4 h ALH. ***P<0.001. Wilcoxon rank sum test. Median and s.d. were calculated from two biological replicates. Control brain n =145 NSCs
(3 brain lobes); inscG4; repoG4 > crb-RNAI, n =125 NSCs (3 brain lobes); inscG4; repoG4 > crb/ed-RNAi, n=84 NSCs (2 brain lobes). All images are single

focal planes, anterior up. Scale bar, 10 um. See also Supplementary Fig. 4.

Simultaneous glial- and NSC-specific knockdown of crb caused
Yorkie nuclear localization in reactivated NSCs (Supplementary
Fig. 4h) connecting crb function to the SHW. Finally, we assessed
redundancy and performed double RNAi gene knockdowns
of crb and ed simultaneously with the double driver GAL4 line
(NSCs and glial cells concurrently), which caused NSC reactiva-
tion in the same degree as knockdown of ed alone (Fig. 5c,e and
Supplementary Fig. 4i). Thus, other factors might compensate or
influence the Hippo activity in NSCs along with crb or ed.

In conclusion, cell-contact inhibition of growth by niche glial
cells through the SHW maintains quiescence in Drosophila NSCs.
Interestingly, loss of Hippo signalling in the niche alone is able to
initiate cell growth in NSC even during starvation.

Glial Crumbs and Echinoid expression depends on nutrition.
Both Crumbs*® and Echinoid*’ are expressed in epithelial cells
and their role in glial cells and NSCs was surprising. Using a
functional Crumbs:GFP fusion protein®, crb-mRNA in situ
(Supplementary Fig. 5b) or antibody staining for Echinoid we
observed expression of both in glial cells and NSCs during
quiescence (Fig. 6a,b and Supplementary Fig. 5a-c). Since our
data so far suggests a cell-contact inhibition of growth by niche
glial cells we analysed whether Crumbs::GFP localizes to contact
sites of glial cells and NSCs. Indeed, we could observe a slight
accumulation in NSCs towards the contact site with glial cells

(Supplementary Fig. 5d). To prove that NSC and glial cells
indeed form cell-cell contacts, we stained for E-Cadherin
and could monitor adherens junctions between glial
cells and NSCs (Supplementary Fig. 5e). Crumbs:GFP
expression in glial cells and NSCs was lost over time (8 and
24h ALH, respectively) whereas Echinoid was downregulated
mainly in glial cells (24 h, Fig. 6a,b and Supplementary Fig. 5a,c).
Nutritional deprivation prolongs quiescence and Crumbs:GFP,
crb-mRNA or Echinoid expression was maintained in glial cells
and NSCs at 24h ALH (Fig. 6a,b and Supplementary Fig. 5a,c,f),
whereas early activation of the Insulin-like receptor signalling
leads to premature loss of Crumbs::GFP in NSCs (Supplementary
Fig. 5g). Thus, Crumbs and Echinoid are expressed in non-
epithelial niche glial cells and NSCs during the phase of
quiescence and are developmentally downregulated in response
to nutrition.

Ectopic crb causes decreased NSC growth and proliferation.
Next we assessed whether ectopic expression of crb or ed would
prolong quiescence. Expression of crb in glial cells leads to
embryonic lethality, and its expression in brain NSCs results in
cell clustering and an increase in NSCs of the MBNB
(Supplementary Fig. 5h) complicating the analysis. These
phenotypes were not apparent in NSCs of the VNC and
we were able to analyse their growth behaviour and their
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Figure 6 | Crumbs and Echinoid are temporally expressed in glial cells and NSCs during quiescence and prolonged expression suppresses NSCs
growth and proliferation. (a) Expression of Crumbs::GFP at 4, 24 and 24 h in nutrition-deprived (ND) ALH. Right side of each panel shows the GFP channel
in monochrome. Crumbs expression is lost in both glial and NSCs after reactivation but persists in ND. (b) Expression of Echinoid at 4, 24 and 24 h in
nutrition-deprived (ND) ALH. Right side of each panel shows the Echinoid channel in monochrome. Echinoid expression is lost in glial cells at 24 h ALH,
while NSCs still express Echinoid, but persists in ND. (c-e) In comparison with wild type (¢) prolonged expression in NSCs of crb (d) or crb/ed (e) leads to
suppression of NSCs cell growth and division in ventral nerve cord NSCs at 24 h ALH. (fg) Quantification of NSC cell diameters and mitosis upon NSC-
specific prolonged expression of crb or crb/ed at 24 h ALH. (f) ***P<0.001. Wilcoxon rank sum test. Median and s.d. were calculated from two biological
replicates. Control VNCs n=129 NSCs (3 VNCs); inscG4>UAS-crb, n=144 NSCs (3 VNCs); inscG4 >UAS-crb/ed, n=165 NSCs (3 VNCs). (g) Ratio of
NSCs in mitosis (pH3-positive) per counted VNCs at 24 h ALH in wild type of 3 VNC and inscG4 > UAS-crb of 3 VNCs and inscG4 > UAS-crb/ed of 3 VNCs.
All images are single focal planes, anterior up. Scale bar, 10 um. See also Supplementary Fig. 5.

mitotic index. Expression of crb was not able to suppress
reactivation, but was sufficient to strongly reduce growth and
proliferation at 24 h ALH (Fig. 6¢c-g). Co-expression of crb and
ed had no additive effect on growth suppression, but the
mitotic index was further reduced (Fig. 6e-g). Thus, although
we observed a strong reduction in growth and proliferation,
ectopic crb and ed did not extend quiescence, which might
be owing to the nutritional reactivatory signal overcoming
crb input.

8

SHW discriminates between quiescent and non-quiescent NSCs.
Next we sought to investigate whether the SHW discriminates
quiescent from non-quiescent NSCs in Drosophila. Analysing the
growth behaviour and mitotic index of non-quiescent NSCs of the
mushroom bodies (MBNBs) at 4, 24 and 48h ALH and in nutri-
tional deprivation unravelled that their growth and proliferation
depends on nutrition and requires active regulation (Fig. 7ab).
Testing the SHW we observed constant nuclear Yorkie levels in
MBNB:s (Fig. 7¢) and expression of Fj-lacZ, expanded and activity
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of bantam (Fig. 4a and Supplementary Fi§. 3a,b) confirming a
continuous Yorkie activity. Indeed, in yki®® mutants we could
observe a lack of MBNBs growth and a marked reduction in the
proliferative capacity of MBNBs at 48h ALH (Fig. 7ab,d)
compared with wild-type MBNBs (Fig. 7e). We conclude that
continuous Yorkie activity is necessary for MBNBs growth and
proliferation and Yorkie activity discriminates between quiescent
and non-quiescent NSCs in Drosophila.

Discussion
NSCs need to tightly control the balance between proliferation
and quiescence, since deregulation can lead to tumour formation
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or premature depletion of the progenitor pool’*. In order to
orchestrate their behaviour according to the status of the
organism they need to communicate with their surrounding
microenvironment. Similar to the neurogenic niche in
vertebrates*®, processes of glial cells in insects enwrap NSCs to
form an enclosed chamber known as the trophospongium®®, It is
still debated whether Drosophila NSCs are independent of niche
signalling and indeed NSCs in culture undergo asymmetric cell
division to self-renew and produce differentiating progeny>>2,
exhibiting very similar behaviour as their counterparts in vivo,
like progressing through an intrinsically regulated series of
transcription factors (temporal transcription factor cascade)
and generating diverse cell types and lineages in vitro resembling
the in vivo lineages in cell number and identity>*. Conversely, loss
of contact to the surrounding epithelium leads to a
randomization of the mitotic spindle in isolated embryonic
NSCs>> and compromising Drosophila E-Cadherin function in
niche glial cells impairs the mitotic activity of NSCs®°. During
quiescence and reactivation NSCs show a strong dependency on
extrinsic signals from glial cells. Glial cells express and secrete
quiescence promoting factors'®, or in response to nutrition,
activating factors'®!!. We now show that niche glial cells express
transmembrane proteins Crumbs and Echinoid that act in trans
to activate the SHW in NSCs to maintain quiescence and
suppress cell growth. Thus, like vertebrate adult NSCs, Drosophila
NSCs show different degrees of dependency on niche signalling.
During quiescence both NSC populations need extrinsic cues
from the niche to maintain quiescence (for example, this
work!®11:57:58) - ywhereas during the active-phase lineage
progression maybe more cell-intrinsic, pre-programed and to a
less degree depending on the niche>*>.

The SHW and its effector Yorkie/YAP have been widely
implicated in stem cell biology and organ size restriction. In the
vertebrate liver progenitors, the hepatocytes, the SHW controls
quiescence of these stem cells®. Combined loss of Mst1/2
(homologues of Drosophila Hippo) resulted in loss of YAP
phosphorylation, leading to a massive overgrowth and
hepatocellular carcinoma. Other regenerative tissues, like the
skin or the intestine, also harbour stem cells and an involvement
of the SHW was likewise shown®!=6>. Our data now show that the
SHW is also important for the regulation of quiescence in NSCs.
The SHW is active during quiescence and suppresses

Figure 7 | Yorkie activity discriminates between quiescent and
non-quiescent NSCs. (a) Quantification of the cell diameter of NSCs of the
mushroom bodies (MBNB) at 4, 24, 48 h in nutrition-deprived (ND) or ykiBS
mutants at 48h ALH. ***P<0.001. Wilcoxon rank sum test. Median and
s.d. were calculated from two biological replicates. Control at 4h n=28
NSCs (7 brain lobes); 24h n=20 NSCs (5 brain lobes); 48h ND n=19
NSCs (5 brain lobes); ykiBS at 48h n=40 NSCs (10 brain lobes).

(b) Quantification of MBNB in mitosis. Number of pH3-positive NSCs per
brain lobes counted in 7 control brain lobes, 5 brain lobes in ND and 10
brain lobes in yki®> mutants. (c) Yorkie is constantly nuclear in non-
quiescent NSCs (yellow circles) and not nuclear in quiescent NSCs

(cyan circles) at 4h ALH. (d,e) NSCs of the MBNB in yki°> (d) are smaller
and have less Prospero-positive (Pros, blue encircled in magenta) progeny
than compared with the control (e) at 48 h ALH. (f) Schematic of Crumbs-
and Echinoid-mediated cell-contact inhibition of growth through the Hippo
signalling pathway (upper panel). Homophilic interaction of Crumbs and
Echinoid in trans on the glial niche and on the NSC inhibits Yorkie. During
reactivation Crumbs and Echinoid are downregulated in response to
nutrition in the niche, which inactivates the Hippo pathway and activates
Yorkie. Yorkie is necessary and sufficient for reactivation, growth and
proliferation. Non-quiescent NSCs have constant Yorkie activity (lower
panel). All images are single focal planes, anterior up. Scale bar, 10 pm.
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inappropriate growth and proliferation of NSC in the Drosophila
larvae. Similar to Drosophila, mouse adult quiescent NSCs
(aNSCs) also show a ?rominent cell growth before the
initiation of proliferation®>®, Thus, a similar mechanism of
promoting quiescence by growth restriction might exist in adult
vertebrate NSCs. Indeed, a recent molecular study on NSC
quiescence showed that multiple SHW members like Lats2
(Warts homologue) or WWC2 (Kibra homologue) are
upregulated in aNSCs, which after BMP4 exposure enter into a
quiescence-like status in cell culture®’. Moreover, our study
demonstrates that a crosstalk between the niche glial cells and the
stem cells via Crumbs and Echinoid activates the SHW to repress
growth during quiescence. This might also be conserved in mouse
aNSCs since Martynoga et al.>” showed that upon BMP4-induced
quiescence expression of crumbs2 (CRB2, Drosophila crumbs
homologue) is also upregulated in aNSCs. Whether CRB2 is
expressed in the vertebrate niche and activates the SHW in NSCs
during quiescence still has to be shown. Nevertheless, given these
similarities it is attractive to speculate that the Hippo pathway
might act as a general regulator of NSC quiescence in vertebrates
and invertebrates.

In Drosophila two different populations of NSCs can be
discriminated: NSCs that become significantly smaller and enter
quiescence at the end of embryonic stages, and NSCs that
constantly proliferate and do not go into quiescence. How this
difference is established is not known up to now. Here we show
that the activity of the transcriptional regulator Yorkie seems to
be a major difference between these two populations of NSCs.
Although quiescent NSCs have active Hippo signalling and thus
no active Yorkie, the non-quiescent NSCs show constant nuclear
Yorkie and constant expression of the known Yorkie-targets
bantam and Four-jointed. We did not observe failure to enter into
quiescence upon wts-RNAIi or in trans-heterozygous spo mutants
and thus it seems less likely that SHW activation is needed to
initiate quiescence.

Non-quiescent NSCs increase in size upon larval hatching and
like in quiescent NSCs, this growth depends on nutrition and on
Yorkie function. This also influences the proliferative capacity,
since both populations of NSCs either showed no proliferation or
exited proliferation prematurely. A similar function of YAP was
described during vertebrate neurogenesis in the developing chick
neural tube. YAP is highly expressed in NSCs and co-localizes
with Sox2 a neural progenitor marker. Loss of YAP leads to
premature differentiation, whereas overexpression leads to an
increase in the progenitor pool and accelerated cell cycle
progression®”. More recently YAP expression was also found in
the mouse ventricular zone in Sox2-positive progenitors®® and,
importantly, simultaneous depletion of YAP and FAT4 or Dachsl
rescued a prolonged neuroprogenitor cell proliferation phenotype
in a mouse model for Van Maldergem syndrome®®. Therefore,
Yorkie/YAP emerges as an important regulator of NSC biology
and it is therefore of great importance to identify the precise
molecular mechanisms and target genes by which Yorkie/YAP
promote growth, proliferation and stem cell identity in NSCs.
Interestingly, in Drosophila we could uncover an essential
difference between NSCs in the brain and the VNC. In both
populations of stem cells Yorkie activates its well-established
target bantam. Yet, loss of bantam severely impaired growth and
proliferation of the VNC NSCs, whereas the effects were milder in
brain NSCs. Thus, to fully understand the function of Yorkie in
NSCs it will be important in the future to unravel the stem
cell-specific target genes that are regulated by Yorkie in NSCs.

Methods
Genetics. The RNA!I fly strains obtained from the Vienna Drosophila RNAi Center
(VDRC) are: expanded-RNAi (Stock number: 22994), kibra-RNAi (100765),
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Merlin-RNAI (7161), crumbs-RNAi (39177), echinoid-RNAi (104279), hippo-RNAi
(104196), warts-RNAi (106174). The RNAI fly strains obtained from the
Bloomington Drosophila Stock Center (BSC) are: hippo-RNAIi (Stock number:
33614), warts-RNAi (34064), crumbs-RNAi (38373), 14-3-3zeta-RNAi (31498).
NSC-specific RNAi was performed with insc-GAL4 (w18, P{GawB}inscMZ1407),
glial-specific RNAi was performed with repo-GAL4 (w!!18; P{GAL4}repo/TMé6b,
iab-lacZ). Both GAL4 driver lines carried UAS-CD8::gfp or UAS-CD4td::gfp and
UAS-dicer2. For larval-restricted RNAi we combined the insc-GAL4, UAS-CD8::gfp
with the tubP-GAL8O[ts] (Bloomington Stock 7108) and embryonic phases were
cultured at 18 °C before shifting to 29 °C just ALH. All other RNAi experiments
were conducted at 29 °C during larval life—embryonic phases were cultured at
25°C. Mutants alleles used were, ed"”2, hpoM1, hpoKC?02, ykiB3> and bana!
balanced over CyO, Pw[ + mC] = Dfd-EYFP2, CyO, P(GAL4-twi.G)2.2,
P(UAS-2xEGFP)AH2.2 or TM6B, Pw[ + mC] = Dfd-EYFP3, Sb! Tb! cal.
UAS-ykiSIs‘gA (Stock number: 28818), UAS-crb (5544) and fj-LacZ (6370) were
obtained from the BSC. The fly stock carrying the crumbs-extracellular domain
tagged with GFP (Crumbs::GFP-A/TM3) was a kind gift from Yang Hong*®. For
nutritional deprivation egg collection were made on and hatched larvae transferred
to agar plates prepared with 11 PBS, 10g agar, 50 g sucrose. For well-fed larvae
collection, flies were reared on standard Drosophila fly food and egg collections
were made on and hatched larvae transferred to agar plates prepared with 11 apple
juice, 27 g agar supplemented with dry yeast.

Antibodies, in situ probes and immunohistochemistry. Immunohistochemistry
experiments were performed as previously described’’. In brief, larval CNSs were
dissected in PBS, fixed in 4% formaldehyde. Washing steps were performed using
PBS with 0.3% Triton X-100 (3 x 5min) and primary antibodies were incubated
overnight at 4 °C. Antibodies used were guinea pig anti-Deadpan (1:1,000, kind gift
from Jiirgen Knoblich), mouse anti-Pros (1:100, MR1A, Developmental Studies
Hybridoma Bank, DSHB), mouse anti-Repo (1:100, 8D12, DSHB), mouse
anti-Dlg (1:20, DSHB), mouse anti-pH3 (1:1,000, Cell Signaling Technology),
mouse anti-B-Gal (1:375, Promega), mouse anti-Dig (1:1,000, Roche), anti-
Echinoid (1:1,000, kind gift from Laura Nilson), rabbit anti-Yorkie (1:400, kind
gift from Kenneth Irvine), rabbit anti-Expanded (1:1,000, kind gift from

Richard Fehon).

In situ probe for crumbs was PCR-generated using the following forward
primers: 5'-CGTTGGTGGCCAGAAATTGG-3' and 5'-CACAGTGCTGACCCT
CGAAT-3' (5-TAATACGACTCACTATAGGAGACCAC-3') as reverse primer
((XX) ="T7 sequence). After purification of the PCR product the in vitro
transcription using T7 and the Dig RNA Labelling Mix (Roche) was used to
generate the RNA in situ probe.

EdU incorporation assay. To detect mitotic activity using EdU incorporation we
dissected larval CNS at appropriate time points and incubated them for 1h in
10 mM EdU/PBS. CNSs were fixed for 15 min in 4% formaldehyde/PBS and
Alexa Fluor azide was detected according to the manufacturer’s instructions
(Click-iT EdU Imaging Kit, Invitrogen).

Image acquisition and processing. Confocal images were acquired on a Leica SP5
confocal laser-scanning microscope using x 63 glycine immersion objective lens or
a Leica SP8 confocal laser-scanning microscope using x 40 objective lens. All

images represent single confocal sections except for images of EdU incorporation
in ed’”? mutants that are projections of z-stacks. Images were processed using the
Leica LAS, Adobe Photoshop and assembled in Adobe Illustrator. Cell size mea-
surements and pH3-cell counts were done using the Leica LAS, statistical analysis
were conducted using SigmaPlot. The medial cell body of NSCs were measured for
cell diameter evaluation excluding the longest and the shortest axis of the cell.

Intensity measurements for Yorkie localization. The Leica LAS AF software was
used to determine the pixel intensities of each channel across a cell. The values for
each channel were exported to Excel and the whole cell and nuclear areas were
determined by the signal intensity of the Deadpan staining (nucleus) and the
Phalloidin staining (outer cell membrane). The intersection was defined as
cytoplasm. According to this definition the Yorkie signal intensity values were
separated into nuclear and cytoplasmic fraction and pixel intensities were averaged
for each fraction. The ratio between the means was calculated as a measure for the
relative amount of protein per sub-compartment. SigmaPlot was used for statistical
analysis.
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