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Abstract

Rationale—Caveolin-1 negatively regulates eNOS derived NO production and this has been 

mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial 

expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships 

between caveolae structure and intracellular signaling.

Objective—This study was designed to separate caveolae formation from its downstream 

signaling effects.

Methods and Results—An endothelial-specific doxycycline-regulated mouse model for the 

expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide 

bioavailability by electron paramagnetic resonance and phosphorylation of VASP were 

determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of 

Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, 

echocardiography and signaling were performed.

Conclusions—This study shows that mutant Cav-1-F92A forms caveolae structures similar to 

WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae 

formation and downstream signaling events occur through independent mechanisms.
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INTRODUCTION

Caveolae organelles are flask shaped invaginations of the plasma membrane implicated in a 

variety of biological processes including endocytosis, transcytosis, mechano-sensing and 

signaling.1–3 Caveolin-1 (Cav-1) is the main coat protein of caveolae in endothelial cells and 

is essential for the formation of caveolae4. Despite the critical role of Cav-1 in caveolae 

assembly, Cav-1 KO mice are viable and fertile, but show several cardiovascular and 

pulmonary phenotypes. Cav-1 KO mice exhibit impaired mechanosignaling and remodeling, 

myocardial hypertrophy, metabolic imbalances with elevated plasma lipids, pulmonary 

fibrosis and hypertension and are protected from atherosclerosis.5–10 The precise 

mechanisms of how Cav-1 regulates these diverse phenotypes are unknown and most data 

are rationalized based on the critical role of Cav-1 in caveolae formation and 

mechanosignaling or via Cav-1 serving as a scaffolding protein integrating extracellular 

signaling pathways to intracellular effectors such as protein kinase A11, G protein-coupled 

receptors2, 12, Rab513 and endothelial nitric oxide synthase (eNOS)14.

eNOS derived nitric oxide (NO) in the vascular system, is a major regulator of vascular tone 

and therefore blood pressure. eNOS is post-translationally palmitoylated and trafficked to 

caveolae15, where its activity is decreased due to the binding to Cav-1.14, 16 Domain 

mapping studies, revealed the aa 82 – 101 of Cav-1 are critical for Cav-1 interacting with 

eNOS14, 16, whereas the aa T90, T91 and in particular F92 play a crucial role in the 

inhibitory action of this binding. After activation, eNOS is thought to be released from the 

inhibitory clamp of Cav-1 and phosphorylated by kinases including Akt17. Hsp90 and 

calmodulin binding leads to a fully activated eNOS18, resulting in increased NO release. A 

hallmark of many vascular and pulmonary diseases is a decrease in the NO biogenesis or 

bioavailability via uncoupling. Therefore, understanding how to selectively activate eNOS 

could be beneficial.

Here, we report that inducible expression of a single point mutant of Cav-1 (Cav-1-F92A) in 

endothelium decreases systolic blood pressure. The reduction in blood pressure occurs 

contemporaneously with enhanced levels of NO bioactivity. Moreover, Cav-1-F92A does 

not interfere with the formation of caveolae or promote pulmonary fibrosis, myocardial 

dysfunction or hypertrophy, as seen in global Cav-1 KO mice. These data suggest that it is 

feasible to uncouple caveolae formation from its intracellular partners and disrupting the 

inhibitory interaction between Cav-1 and eNOS could be a potential therapeutic approach.

METHODS

Because of space limitations, a detailed description of the Materials and Methods is 

presented in the Online Data Supplement.

RESULTS

Endothelial specific expression of Cav-1-F92A

Previous studies have shown that Cav-1-F92A expression in endothelial cells (EC) leads to 

an increased nitric oxide (NO) release19, 20. To further investigate this Cav-1 point mutation 
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in EC in vivo, we generated an endothelial specific, doxycycline-controlled F92A Cav-1 

transgenic mouse using a Cdh5-tTA driver line21 bred to a tetracycline responsive element 

(TRE) driven F92A Cav-1 construct tagged with the HA epitope on its C terminus (Figure 

IA). The HA-tag was necessary to distinguish endogenous Cav-1 from transgenic Cav-1 as 

the Cav-1 antibody does not discriminate between human and murine proteins. The 

expression of Cav-1-F92A was confirmed in whole lung lysates by immunoblotting (Figure 

1A). The endothelial specific expression was shown by isolating mouse lung endothelial 

cells (MLECs) using CD31 beads. The fractions bound to the beads (CD31+) and the non-

bound fraction (CD31−) were separated and analyzed by immunoblotting (Figure 1B). 

Immunofluorescence of cross sections of the thoracic aorta with anti-αSMA and anti-HA 

and of en face images of the mesenteric artery stained with anti-PECAM1 and anti-HA show 

the EC specific expression of Cav-1-F92A (Figure 1C). Based on en face images, we 

estimate Cav-1-F92A is expressed in approximately 30% of EC in a mosaic pattern. 

Moreover, breeding of the Cdh5-tTA driver line21 to a TetO7-GFP reporter mouse22 (The 

Jackson Laboratory, #018913) documents the mosaic activation of GFP in a population of 

EC (Figure IB).

Blood pressure is lower in Cav-1-F92A transgenic animals and reversed by doxycycline 
treatment

Treatment of double transgenic animals with doxycycline (DOX; 2 mg/ml) in the drinking 

water leads to time dependent suppression of Cav-1-F92A expression at 3 and 7 days 

(Figure 2A) demonstrating DOX regulation of the transgene. Thus, single transgenic 

(control) and double transgenic (Cav-1-F92A) mice were implanted with telemetry devices 

for continuous monitoring of blood pressure. All mice were initially placed on water (“- 

DOX”) and then switched to DOX drinking water (“+ DOX”). As seen in Fig. 2B, the 

systolic blood pressure of Cav-1-F92A mice increases significantly after 7 days treatment 

with DOX by shutting off the transgene (Figure 2A). Blood pressure increases at a rate of 

0.028 mm Hg/hr upon switching the drinking water to DOX (Table I). The absence or 

presence of DOX had no effect on systolic pressures in control mice (Figure 2B). Although 

diastolic pressure changes were not significantly different, the trends were towards an 

increase (Figure IIA). These differences may relate to the mosaic nature of the transgene 

expression or the dominant effects of Cav-1 on systolic pressure23. Heart rates did not differ 

between the strains (Figure IIA). Treatment with L-NAME (1 mg/ml) leads to significantly 

increase of the systolic blood pressure of control and Cav-1-F92A mice (Figure 2C). The 

diastolic blood pressure changes in control and Cav-1-F92A mice significantly after 7 days 

treatment with L-NAME (Figure IIB). Heart rate decreases in control and Cav-1-F92A 

animals significantly after 7 days of L-NAME (Figure IIB).

Nitric oxide bioavailability is higher in Cav-1-F92A transgenic animals

The NO levels in whole blood were measured to assess if the Cav-1-F92A transgene 

influenced blood pressure through eNOS derived NO in vivo. Nitrosyl-hemoglobin (NO-Hb) 

was determined in venous blood by electron paramagnetic resonance (EPR). The three-line 

hyperfine spectrum at g = 2.01 with a splitting constant of ~ 17 G is specific for the 5-

cordinated complex of NO• with hemoglobin as reported before24 and can be used as a 

readout for eNOS derived NO as neither iNOS nor nNOS contribute to the formation of NO-
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Hb under normal conditions25. Mice expressing the Cav-1-F92A mutant show a significant 

increase (165 %) of NO-Hb in their whole blood compared to WT (Figure 2D; 

representative traces in Figure III). As controls, venous blood from eNOS KO26, eNOS 

S1176A (inactive) and eNOS S1176D (constitutively active) mice27 (Figure IV) was 

measured. Isolated blood from eNOS KO (66 %) and the eNOS S1176A (41 %) mutant 

show significantly reduced NO-Hb levels, whereas eNOS S1176D have significantly higher 

(178 %) NO-Hb levels compared to the WT. NO activates soluble guanylate cyclase, the 

main NO receptor, and increases intracellular cGMP. cGMP activates protein kinase G 

(PKG) and the subsequent phosphorylation of vasodilator stimulated phosphoprotein 

(VASP) at Ser-23928. Analysis of the p-VASP/t-VASP ratio in aorta lysates reveal that mice 

expressing Cav-1-F92A have a significantly higher (131 %) phosphorylation status of 

Ser-239 of VASP compared to the WT controls (Figure 2E), thus indicating enhanced NO 

bioavailability.

Expression of Cav-1-F92A stabilizes endogenous Cav-2 and does not affect caveolae 
properties

Previous studies have shown that the genetic loss of Cav-1 destabilizes caveolin-2 (Cav-2) 

and to a lesser extent destabilizes the caveolin adaptor, Cavin-17, 9, 29. Interestingly, Cav-1-

F92A expression in EC enhances Cav-2 and Cavin-1 levels in whole lung lysates from 

transgenic mice (Figure 3A) demonstrating that Cav-1-F92A does not impair caveolae 

integrity, but likely stabilizes the protein complex. Additionally, Cav-2 stabilization as a 

readout of Cav-1 function was examined in immortalized Cav-1 KO MLEC transduced with 

adenoviral WT Cav-1 (AdCav-1 myc) or Cav-1-F92A (AdCav-1-F92A HA). Expression of 

similar levels of WT and Cav-1-F92A increased Cav-2 protein levels compared to AdGFP 

transduced cells (Figure 3B). To further assess the integrity of the Cav-1 enriched domains, 

the flotation of Cav-1 and Cav-1-F92A on sucrose gradients was performed. Both WT and 

Cav-1-F92A fractionated into buoyant membrane domains similarly (Figure 3C). Finally, 

transmission electron microscopy of WT and Cav-1 KO mouse embryonic fibroblasts 

(MEFs) infected with Ad Cav-1 or AdCav-1-F92A were examined and the morphology and 

numbers of caveolae/ length of plasma membrane were indistinguishable (Figure 3D) 

demonstrating that Cav-1 F92A can generate caveolae de novo.

Cav-1-F92A does not recapitulate the Cav-1 KO phenotypes

In addition to enhanced NO levels and systolic hypotension Cav-1 KO mice have mild 

pulmonary hypertension, fibrosis, and septal thickening30, 31, and cardiac hypertrophy and 

dysfunction that worsens with age7. To examine if Cav-1-F92A mice exhibit any of these 

phenotypes, the lungs and hearts were histologically examined in aged mice (20 – 22 wk; 

Figure 4A). Cav-1-F92A mice did not show histological evidence of pulmonary or cardiac 

abnormalities or cardiac function differences as assessed by echocardiography in aged mice 

(Figure 4B and Table V). Echocardiographic analysis showed no differences between the 

two groups in left ventricle dimensions in diastole (LVD,d) or systole (LVD,s) thickness of 

the intraventricular septum wall (IVWS) or posterior wall (PW), parameters that were 

impaired in Cav-1 KO mice32. Due to persistent eNOS activation, Cav-1 KO mice exhibit 

increased tyrosine nitration of proteins that contributes to their pulmonary hypertension 31 

however, tyrosine nitration of proteins was not different between the two strains of mice in 
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lungs and hearts (Figure VI). Finally, it is well described that Cav-1 KO mice show an 

increased phosphorylation of several downstream signaling pathways such as Akt and 

ERK1/2. Densitometric analysis of p-Akt/t-Akt and p-ERK/t-ERK ratios from shows no 

significant increase of either of these pathways (Figure 4C). Thus, the presence of Cav-1 

F92A in endothelial cells containing endogenous Cav-1 is sufficient to lower SBP and 

increase circulating NO levels, however, Cav-1 F92A mice are phenotypically distinct from 

mice lacking Cav-1 globally.

DISCUSSION

This study was designed to answer three questions: (1) Is it possible to separate the 

formation of caveolae from downstream signaling in EC?; (2) Can a single point mutation in 

Cav-1 (F92A) disinhibit eNOS in-vivo?, and (3) Would the persistent expression of Cav-1-

F92A lead to Cav-1 KO phenotypes? The Cdh5-driven, DOX-regulated expression of 

Cav-1-F92A was advantageous to a global knock-in strategy as it allows titration of Cav-1-

F92A in the endothelium. Here we demonstrate that Cav-1-F92A uncouples the intracellular 

function of Cav-1 as a negative regulator of eNOS function from Cav-1 regulation of 

caveolae assembly. Prior work in Cav-1 KO mice could not distinguish between phenotypes 

due to flattening of caveolae versus phenotypes associated with altered intracellular 

signaling. Our results lend credence to the idea that the intracellular role of Cav-1 is 

separable from its role in caveolae biogenesis.

In our mouse model, the expression of the F92A Cav-1 transgene is suppressed within 7 

days and during this period, the transgenic mice become normotensive again compared to 

the littermate single transgenic controls (i.e. there are no significant differences between 

control and Cav-1-F92A mice). In comparison to blood pressure measurements in Cav-1 KO 

animals, we did not detect an increase of the diastolic blood pressure23, which is most likely 

to vascular and myocardial fibrosis and increased in vessel stiffness in the Cav-1 KO 

animals.

Double transgenic mice show significantly higher levels of both circulating NO-Hb in-vivo 

and phosphorylation of VASP-Ser-239 consistent with eNOS activation due to loss of 

endogenous Cav-1 suppression of eNOS (i.e. removal of inhibition). Despite the higher 

concentrations of nitric oxide in these animals, neither lungs, nor hearts displayed signs of 

fibrosis or hypertrophy akin to that seen in Cav-1 KO mice. Former studies have argued3031 

that excess nitric oxide can lead to S-nitrosylation of protein kinase-G, thereby facilitating 

pulmonary fibrosis. However, our study indicates that increased nitric oxide levels are not 

sufficient for the development of fibrosis in the heart and lungs, but could contribute to this 

detrimental effect if other Cav-1 functions have been dysregulated in mice lacking Cav-1.

Previous work in Cav-1 KO mice23 found that these mice had lower systolic blood 

compared to controls and the heart rate was significantly higher. These changes were 

associated with increased NO bioavailability (measured by EPR and VASP 

phosphorylation). Despite these findings, it is well known, that Cav-1 KO animals exhibit 

both pulmonary and cardiac fibrosis7, 30, 31 and altered signaling7. A robust readout of 

caveolae formation and function is measuring the Cav-2 protein level and to a lower extent 
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Cavin-1, as both proteins are in a stable protein complex with Cav-1, and the loss of Cav-1 

genetically destabilizes endogenous Cav-2 and Cavin-17, 9, 29. Whole lung or cardiac lysates 

show that EC expression of Cav-1-F92A indeed increased Cav-2 protein levels, suggesting 

that the point mutant F92A isoform did not disrupt the integrity of caveolae. Furthermore re-

expression of either Cav-1 WT or Cav-1-F92A into Cav-1 KO MLECs led to a stabilization 

of Cav-2 protein similar to WT levels. Cav-1 or Cav-1-F92A proteins were distributed 

similarly on sucrose gradients and formed caveolae to the same extent indicating that the 

F92A point mutant of Cav-1 integrates into the plasma membrane caveolae in manner 

similar to the WT protein. Recent biophysical data shows that aa 102 – 134 are necessary to 

form the hairpin membrane domain of Cav-133, 34, and phenylalanine at position 92 is in a 

juxtamembrane cytoplasmic residue that will not affect the integration of aa 102–134 into 

the membrane.

In summary, our study shows that the expression of Cav-1-F92A leads to increases in NO 

release, without interfering with the formation of caveolae, indicating, that signaling and 

caveolae formation are independent functions of Cav-1 (Figure VII). These data 

complement data on the peptide cavnoxin (a cell penetrating caveolin peptide with contains 

3 point mutations atT90A, T91A and F92A 20, 35) and highlights the significance of F92 for 

the inhibitory action of Cav-1 on eNOS function. As neither the histological analysis nor the 

echocardiography showed any signs of cardiac hypertrophy or fibrosis in heart and lung, we 

surmise that prolonged therapeutic treatment with cavnoxin or similar acting small molecule 

could lead to a new class of therapeutics to improve endothelial dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

Cav-1 caveolin-1

Cav-2 caveolin-2

Cav-3 caveolin-3

eNOS endothelial nitric oxide synthase

EPR electron paramagnetic resonance

Kraehling et al. Page 6

Circ Res. Author manuscript; available in PMC 2017 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HA hemagglutinin tag

Hb hemoglobin

IVSW intraventricular septum wall

LVD d, left ventricle dimension in diastole

LVD s, left ventricle dimension in systole

NO nitric oxide

PW posterior wall

Tg transgene

tTA tetracycline controlled transactivator

VASP vasodilator-stimulated phosphoprotein
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Novelty and Significance

What Is Known?

• Caveolae are enriched in endothelial cells and serve as reservoirs for membrane 

expansion and mechanosignaling.

• Caveolin-1 (Cav-1), a coat protein for caveolae, is essential for caveolae 

formation and suppression of nitric oxide (NO) release.

What New Information Does This Article Contribute?

• A mutant of Cav-1 promotes hypotension.

• Hypotension is linked to increases in NO levels in blood and tissue.

Here we show that mutant Cav-1 leads to increases in NO bioavailability in vivo 

supporting the idea that antagonizing the Cav-1/endothelial nitric oxide synthase 

interaction can improve endothelial function.
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Figure 1. Expression of the Cav-1-F92A-HA transgene
A, Whole lung protein from control and Cav-1-F92A mice was analyzed for the expression 

of the transgene. B, MLECs were isolated with CD31-dynabeads. The fraction bound 

(CD31+) and the non-bound fraction (CD31−) was separated and immunoblotted for HA. 

The endothelial specific protein VECAD was used as a marker for the enrichment of 

endothelial cells by using the CD31-beads. C, Top panel, Cross sections of the thoracic 

aorta. Sections were stained for the nucleus (blue), α-SMA (red) and HA (green) [L, lumen]. 

Bottom panel, Whole-mount staining of mesenteric artery. En-face preparations were 

stained for the nucleus (blue), PECAM-1 (red) and HA (green). Scale bars are 50 μm.
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Figure 2. Effects of suppression of Cav-1-F92A-HA expression and nitric oxide measurements
A, Left panel, Whole lung protein from double transgenic mice was analyzed for the 

expression of the transgene at day 0, day 3 and day 7 after treatment with doxycycline (2 

mg/ml) with 5 % sucrose in the drinking water. Each time point was repeated in three 

animals. Right panel, Densitometry analysis of the HA intensity and the HSP90 loading 

control. B, Left panels, Averaged systolic blood pressure from 8 control and 8 Cav-1-F92A 

animals. The first two days baseline was recorded, before drinking water was switched to 

doxycycline (2 mg/ml) with 5 % sucrose. Dotted lines show the changes of the systolic 

blood pressure (slopes of the curves are listed in Table I). Right panels, bar graph 

presentation of the same results. The bars present the average systolic blood pressure 

without and with doxycycline. C, Left panels, Averaged systolic blood pressure from 3 

control and 3 Cav-1-F92A animals. The first two days baseline was recorded, before 

drinking water was switched to L-NAME (1 mg/ml). Dotted lines show the changes of the 

systolic blood pressure (slopes of the curves are listed in Table II). Right panels, bar graph 

presentation of the same results. The bars present the average systolic blood pressure 

without and with L-NAME. D, EPR-quantification of the peak to trough length of 4 mice 

each (representative traces are shown in Figure IV). E, Quantification of the p-VASP/t-

VASP ratio (immunoblot is shown in Figure V).
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Figure 3. Stability of caveolae in the presence of Cav-1-F92A mutant
A, Left panel, Whole lung protein from single and double transgenic mice was analyzed for 

the expression of Cav-2 and Cavin-1. Cav-1 and HA immunoblotting as a control for the 

expression of the transgene. HSP90 was used as loading control. Right panel, Quantification 

of the relative intensity of Cav-2 and Cavin-1 normalized to HSP90. B, Adenoviral 

reconstitution of immortalized Cav-1 KO MLECs with either GFP, Cav-1 WT or Cav-1-

F92A mutant. Immortalized WT cells are loaded as control for the expected expression level 

of Cav-1 and Cav-2. Cav-2 immunoblotting as a readout for the stability of caveolae. C, Top 

panel, Immunoblot analysis of Cav-1 (WT, endogenous) and (HA, transgene) of the sucrose 
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gradient fractions. HSP90 was used as marker for bulk fractions. Lower panel, 

Quantification of the immunoblot represented as % band intensity per fraction. D, TEM 

images for Cav-1 KO MEFs adenoviral reconstituted with WT or Cav-1-F92A mutant. Scale 

bar is 500 nm. At least 35 individual images were analyzed per group for the quantification 

of caveolae/μm of plasma membrane.
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Figure 4. Histology, Echocardiography and Signaling
A, Histology of single (WT) and double transgenic (WT + Tg) mice. First panel, gross 

morphology of heart cross section through the ventricles. Second panel, Wall thickness of 

main coronary arteries. Third panel, Lung alveolar area. Fourth panel, Lung large 

bronchioles (B) and arteries (A). Scale bars: first panel: 1 mm, second to fourth panel: 200 

μm. B, Echocardiography. Top panel, Representative M-mode images. Bottom panel, 

Quantification of the left ventricle diameter in diastole (LVD,d) and systole (LVD,s), the 

thickness of the intraventricular septum wall (IVSW) and the posterior wall (PW). Bar graph 

present the mean and the SEM for 5 WT and 5 WT + Tg animals. C, Signaling in heart and 

lung. Top panel shows representative immunoblots. Bottom panel shows the quantification 

for Akt and ERK activation by measuring the phospho/total ratio.
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