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Abstract

Based on its marked overexpression in multiple malignancies and its roles in promoting cell 

survival and proliferation, survivin is an attractive candidate for targeted therapy. Towards this end, 

a detailed understanding of the mechanisms regulating survivin expression in different cancer cells 

will be critical. We have previously shown that the RNA-binding protein (RBP) CUG-BP1 is 

overexpressed in esophageal cancer cells and post-transcriptionally regulates survivin in these 

cells. The objective of this study was to investigate the role of microRNAs (miRs) in regulating 

survivin expression in esophageal cancer cells. Using miR expression profiling analysis, we found 

that miR-214-3p is one of the most markedly downregulated miRs in two esophageal squamous 

cancer cell lines compared to esophageal epithelial cells. Interestingly, using miR target prediction 

programs, both survivin and CUG-BP1 mRNA were found to contain potential binding sites for 

miR-214-3p. Forced expression of miR-214-3p in esophageal cancer cells leads to a decrease in 

the mRNA and protein levels of both survivin and CUG-BP1. This effect is due to decreased 

mRNA stability of both targets. By contrast, silencing miR-214-3p in esophageal epithelial cells 

leads to an increase in both survivin and CUG-BP1 mRNA and protein. To determine whether the 

observed effect of miR-214-3p on survivin expression was direct, mediated through CUG-BP1, or 

both, binding studies utilizing biotin pull-down assays and heterologous luciferase reporter 

constructs were performed. These demonstrated that the mRNA of survivin and CUG-BP1 each 

contain two functional miR-214-3p binding sites as confirmed by mutational analysis. Finally, 

forced expression of miR-214-3p enhances the sensitivity of esophageal cancer cells to Cisplatin-

induced apoptosis. This effect is abrogated with rescue expression of survivin or CUG-BP1. These 
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findings suggest that miR-214-3p acts as a tumor suppressor and that its downregulation 

contributes to chemoresistance in esophageal cancer cells by targeting both survivin and CUG-

BP1.
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Introduction

Resistance to chemotherapy-induced apoptosis is a crucial mechanism for tumor cell 

survival [1]. Survivin, a member of the Inhibitor of Apoptosis Protein (IAP) family, has been 

shown to be overexpressed in multiple malignancies, including esophageal cancer [2, 3]. In 

esophageal cancer cell lines, downregulation of survivin significantly enhances the 

sensitivity of these cells to chemotherapy-induced apoptosis [4]. Furthermore, failure to 

downregulate survivin following neo-adjuvant chemoradiotherapy has been correlated with 

decreased survival in esophageal cancer patients [5]. Coupled with the fact that it is not 

expressed in most normal tissues, survivin is an enticing candidate for targeted therapy in 

esophageal cancer.

A thorough understanding of the mechanisms regulating survivin overexpression in 

esophageal cancer cells will be essential for optimizing therapeutic strategies. Post-

transcriptional regulatory processes mediated by trans-acting factors such as RBPs, miRs, 

and long non-coding RNAs, play important roles in the control of gene expression in cancer 

cells [6-8]. These factors interact with multiple gene products, some of which may be 

involved in coordinated networks [9]. Identifying important regulators of survivin may 

reveal crucial nodal agents that modulate the expression of multiple targets involved in 

esophageal carcinogenesis.

We have previously shown that the RBP CUG-BP1 plays an important role in regulating the 

overexpression of survivin in esophageal cancer cells by stabilizing its mRNA [10]. 

Although additional data on the relationship between other RBPs and survivin is scarce, 

several reports exist regarding the regulation of survivin by various miRs, although none 

exist in esophageal cancer cells. miR-34a has been shown to be downregulated in both 

gastric cancer and laryngeal squamous cell cancer [11-12]. Overexpression of miR-34a in 

these cell lines resulted in decreased survivin expression, which led to decreased 

proliferation and increased apoptosis. Expression of miR-203 has been shown to be 

markedly attenuated in prostate, pancreas, and hepatocellular cancer (HCC) cell lines 

[13-15]. Ectopic expression of miR-203 in these cells leads to decreased survivin expression 

with an associated reduction in cellular proliferation and enhancement in sensitivity to 

chemotherapy-induced apoptosis. Given the cell type-specific nature of the interaction 

between survivin and miRs, the goal of this study was to assess global miR expression in 

two esophageal squamous cancer cell lines compared to esophageal epithelial cells. miR 

target prediction models were employed to determine whether any of the most markedly 
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downregulated miRs could interact with survivin mRNA. Functional, binding, and 

phenotypic assays were performed to characterize this interaction.

Results

miR-214-3p expression is markedly decreased in esophageal cancer cell lines

Global miR expression in human esophageal epithelial (hESO) cells and the human 

esophageal squamous cell cancer lines TE7 and TE10 was determined by array analysis 

using the 7th generation miR Array (Exiqon, Denmark). Expression levels of approximately 

2,000 distinct human miRs were examined. Four hundred twenty-four miRs were found to 

be differentially expressed above the threshold level and formed the basis for the subsequent 

analysis. When the 30 miRs with the greatest magnitude of differential expression between 

the cancer cells and epithelial cells were analyzed, 18 were found to share similar expression 

patterns in both TE7 and TE10 cells. A heat map depicting the two-way hierarchical 

clustering analysis of these 18 miRs is depicted in Figure 1A. In Table 1, these 18 miRs are 

grouped into the 11 whose expression is most markedly downregulated in the cancer cells 

lines (a) and the 7 whose expression is most upregulated compared to the hESO cells (b).

Based on bioinformatics analysis, mir-214-3p is predicted to bind with strong affinity to 

both survivin and CUG-BP1 mRNA. As seen in Table 1a, miR-214-3p is dramatically 

downregulated in both TE7 and TE 10 cells compared to hESO cells, with a log fold change 

of approximately −3 in each cell line. In order to confirm these findings, total RNA was 

harvested from all three cell lines and real-time PCR (q-PCR) analysis was performed to 

measure miR-214-3p levels. As seen in Figure 1B, these results confirm that miR-214-3p 

levels are significantly decreased in TE7 and TE10 cells compared to hESO cells.

Modulating miR-214-3p levels leads to alterations in both survivin and CUG-BP1 protein 
expression

Because basal levels of miR-214-3p are low in TE7 and TE10 cells, transfection of 

premiR-214-3p into these cells was performed in order to assess the effects on survivin and 

CUGBP1 protein expression. In reciprocal experiments, anti-miR-214-3p was employed to 

reduce miR-214-3p levels in hESO cells. As shown in Figure 2A, transfection efficiency of 

pre-miR-214-3p was robust in both TE7 and TE10 cells (a). Similarly, transfection of anti-

miR-214-3p was very effective in reducing miR-214-3p levels in hESO cells (b). Following 

successful transfection of pre-miR-214-3p, both survivin and CUG-BP1 protein levels are 

markedly decreased in TE7 and TE10 cells (Figure 2B a,b). Of note, there was no effect on 

protein levels of the RBP HuR, which has also been shown to regulate survivin expression 

[16]. Conversely, both survivin and CUG-BP1 protein levels were increased in hESO cells 

following transfection of anti-miR-214-3p (Figure 2B c). There was no change in HuR 

expression following silencing of miR-214-3p in hESO cells.

miR-214-3p reduces both survivin and CUG-BP1 mRNA stability

To further investigate the mechanism by which miR-214-3p affects survivin and CUGBP1 

protein expression, levels of survivin and CUG-BP1 mRNA were assessed following 

overexpression of pre-miR-214-3p in TE7 and TE10 cells, as well as following transfection 
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of anti-miR-214-3p in hESO cells. As seen in Figure 3A, transfection of pre-miR-214-3p 

was associated with a decrease in both survivin and CUG-BP1 mRNA levels in both TE7 

and TE10 cells. In hESO cells, reduction of miR-214-3p expression led to an increase in 

both survivin and CUG-BP1 mRNA levels (Figure 3B).

Figure 3C depicts stability of both survivin and CUG-BP1 mRNA following transfection of 

pre-miR-214-3p in TE7 cells. In these experiments, 24 hours following transfection, cells 

are exposed to 0.2 μM of Actinomycin D to prevent further transcription. Total cellular RNA 

is harvested at specified time points and levels of target mRNA are measured by q-PCR. As 

seen in these curves, both survivin and CUG-BP1 mRNAs are destabilized following pre-

miR-214-3p transfection. The stability curves in Figure 3D demonstrate enhanced stability 

of both survivin and CUG-BP1 mRNA following silencing of miR-214-3p in hESO cells.

miR 214-3p binds to both survivin and CUG-BP1 mRNA

As it was not clear whether the observed effect of miR-214-3p on survivin mRNA and 

protein expression resulted from a direct interaction with survivin mRNA, indirectly through 

an interaction with CUG-BP1 mRNA, or both, we next sought to determine whether 

miR-214-3p bound to both survivin and CUG-BP1 mRNA. As seen in Figure 4A, there are 3 

predicted miR-214-3p binding sites in the 3’ untranslated region (UTR) of survivin mRNA. 

For CUG-BP1 mRNA, there are 5 predicted binding sites for miR-214-3p. Two are located 

in the coding region (CR) and 3 are found in the 3’ UTR. As a first step in the binding 

analysis, following transfection of biotin-labeled miR-214-3p into TE7 cells, cell lysates 

were exposed to avidin-coated beads. RNA was harvested from the pull-down material and 

amplified with survivin, CUG-BP1 and HuR probes by q-PCR. A biotin-labelled scrambled 

miR served as a control in these experiments. The levels of survivin mRNA and CUG-BP1 

mRNA were markedly elevated in the pull-down material isolated from TE7 cells following 

transfection with biotin-labeled miR-214-3p compared to control (Figure 4B). There was no 

difference in the levels of HuR mRNA.

In order to determine which potential binding sites in survivin mRNA were being utilized 

for binding with miR-214-3p, 5 fragments were PCR amplified and separately sub-cloned 

into luciferase reporter vectors (Figure 5A). One fragment (FL 3’UTR) contained the entire 

full-length 3’UTR. Fragment 1 encompassed the CR, which does not contain a binding site, 

while the remaining 3 fragments of the 3’UTR each contained an individual binding site. 

Following co-transfection with pre-miR-214-3p or control miR, there was an approximately 

50% reduction in luciferase activity with FL 3’ UTR. Co-transfection with either Fragment 2 

or 4 with premiR-214-3p resulted in an approximately 25% decrease in luciferase activity. 

There was no decrement in luciferase activity following transfection with either Fragment 1 

containing the CR or Fragment 3 in the 3’ UTR (Figure 5B). Following mutation of 4 bases 

in the seed sequence binding region of the predicted miR-214-3p binding sites in Fragment 2 

(Figure 5C) and Fragment 4 (Figure 5D), no decrement in luciferase activity was observed 

following cotransfection with either mutated fragment and pre-miR-214-3p. Finally, 

mutating both binding sites in FL 3’UTR resulted in complete abrogation of the 50% 

decrement in luciferase activity seen with the wild type full-length construct (Figure 5E).
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A similar set of experiments was performed to analyze the relative contributions of the 5 

predicted binding sites for miR-214-3p in CUG-BP1 mRNA. Five fragments of CUG-BP1 

mRNA, each containing a unique potential binding site, were PCR amplified (Figure 6A). 

Fragments 1 and 2 contained binding sites located within the CR, while Fragments 3-5 

contained binding sites located in the 3’ UTR. Each fragment was then separately sub-

cloned into a luciferase reporter vector. Following co-transfection of pre-miR-214-3p or 

control miR with each construct, luciferase activity was measured. As seen in Figure 6B 

luciferase activity was decreased by approximately 50% following transfection with the 

construct containing the binding site in Fragment 1 in the CR and by approximately 40% 

following transfection with the construct containing the binding site in Fragment 4 in the 3’ 

UTR. There were no significant changes in luciferase activity following transfection with the 

constructs containing the other 3 potential binding sites. Finally, site directed mutagenesis 

was performed to alter 3 bases in the seed sequence binding region of the predicted 

miR-214-3p binding sites in Fragment 1 and Fragment 4. These mutated fragments were 

then cloned into luciferase reporter vectors. As seen in Figures 6C and 6D, co-transfection of 

the mutated constructs and pre-miR-214-3p abrogated the decrement in luciferase activity 

seen with the wild-type constructs.

Overexpression of miR 214-3p enhances susceptibility of TE7 cells to Cisplatin-induced 
apoptosis

Based on our previous findings that silencing either survivin or CUG-BP1 enhanced the 

sensitivity of TE7 cells to chemotherapy-induced apoptosis, we predicted similar results 

following forced expression of miR-214-3p in these cells. In the time course experiment 

depicted in Figure 7A, TE7 cells were transfected with pre-miR-214-3p or control miR for 

48 hours. At that time, cells were exposed to 15 μM Cisplatin and cell lysates harvested at 

various time points. Western blot analysis of lysates harvested 24 hours following Cisplatin 

exposure revealed a marked increase in caspase-3 protein levels in cells transfected with pre-

miR-214-3p compared to control. In order to determine whether the observed enhancement 

in apoptosis following overexpression of miR-214-3p was due to its reduction in survivin 

and/or CUG-BP1 levels, rescue experiments were performed. As seen in Figure 7B, 

overexpression of either survivin or CUG-BP1 following transfection of miR-214-3p 

restores expression of these proteins. Following restoration of either survivin or CUG-BP1 

expression, TE7 cells exposed to Cisplatin following transfection with pre-miR-214-3p no 

longer demonstrate release of caspase-3 (Figure 7C).

To ensure that the observed caspase-3 seen following miR-214-3p overexpression was 

functional, a caspase-3 ELISA assay was performed under the same conditions. This 

revealed a two-fold increase in caspse-3 enzyme activity following 24 hours of exposure to 

Cisplatin in TE7 cells transfected with pre-miR-214-3p relative to control (Figure 7D). To 

further confirm this increased sensitivity to Cisplatin-induced apoptosis, TE7 cells 

underwent flow cytometry analysis for Annexin-V expression. Treatment with pre-

miR-214-3p alone or control miR plus Cisplatin resulted in approximately 5-10% of cells 

staining positive for Annexin-V expression, whereas over 50% of TE7 cells transfected with 

pre-miR-214-3p and exposed to Cisplatin stained positive for Annexin-5 (Figures 7E and 

7F).
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Discussion

Our findings indicate that miR-214-3p is markedly downregulated in esophageal squamous 

cancer cell lines compared to esophageal epithelial cells. We also demonstrate that 

miR-214-3p regulates survivin expression in these esophageal cancer cells, by both a direct 

interaction with survivin mRNA, as well as indirectly through an interaction with CUG-BP1 

mRNA. Forced expression of miR-214-3p in esophageal cancer cells leads to a decrease in 

both mRNA and protein levels of survivin and CUG-BP1, associated with decreased mRNA 

stability of both targets. Finally, overexpression of miR-214-3p results in markedly enhanced 

sensitivity of esophageal cancer cells to Cisplatin, which is abrogated following rescue 

expression of either survivin or CUG-BP1.

The analysis of global miR expression in both TE7 and TE10 cells compared to hESO cells 

is in agreement with a study from Matsushima and colleagues who compared miR 

expression between the esophageal squamous cancer cell lines TE10 and OE-21 and the 

immortalized esophageal epithelial line Het-1A [17]. All five of the miRs (miRs-141, 200c, 

203, 205, 429) found to be most upregulated in their study were also upregulated by at least 

2 log-fold in both cancer cell lines in our analysis. Seven of the nine miRs (miRs-10a, 99a, 

100-5p, 125b, 146b, 376a, 379) found to be most downregulated in the cancer cell lines were 

also downregulated by 1 to 2 log-fold in the TE7 and TE10 cell lines used in our study. The 

relative expression of miR-214-3p was not detailed in their report. However, in a study 

comparing miR expression in 40 esophageal squamous cell cancer specimens and matched 

normal tissues, miR-214-3p was found to be significantly downregulated in 77.5% of 

samples [18].

The data presented here not only demonstrate a new role for miR-214-3p as an important 

post-transcriptional regulator of survivin in esophageal squamous cancer cells, but, by also 

describing its interaction with CUG-BP1, enhance the understanding of the complex 

regulatory relationships that exist between miRs and RBPs [19]. In the only other study 

describing post-transcriptional regulation of CUG-BP1, miR-503 was shown to negatively 

influence the translational efficiency of CUG-BP1 mRNA in intestinal epithelial cells [20]. 

In that report, similar to our results with miR-214-3p, altering expression of miR-503 

profoundly affected the anti-apoptotic effect promoted by CUG-BP1. Silencing miR-503 

resulted in increased levels of CUG-BP1, which protected cells from TNFα -induced 

apoptosis. Intriguingly, the upregulated targets of CUG-BP1 responsible for this 

phenomenon, c-IAP1 and c-IAP2, are members of the same IAP family as survivin. 

Furthermore, simultaneous silencing of miR-503 and CUG-BP1 abolished this increase in c-

IAP1 and c-IAP2 levels, providing additional evidence that CUG-BP1 enhances the 

expression of these anti-apoptotic proteins.

Our findings indicate that the pro-apoptotic effect observed following forced expression of 

miR-214-3p, is related at least in part, to the reduction in survivin expression. It is certainly 

possible, however, that additional targets of both miR-214-3p and CUG-BP1 may also be 

reduced. Alterations in levels of both miR-214-3p and CUG-BP1 have been shown to affect 

sensitivity to chemotherapy-induced apoptosis in cancer cells, although their expression and 

targets vary considerably across different malignancies. In ovarian cancer cells, where 
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miR-214-3p is overexpressed compared to normal tissues, miR-214-3p was shown to 

downregulate PTEN [21]. PTEN downregulation led to activation of the Akt pathway, 

thereby promoting cell survival and resistance to Cisplatin. Similarly, in nasopharyngeal 

cancer, the upregulation of miR-214-3p led to decreased levels of the pro-apoptotic protein 

Bim [22]. Conversely, miR-214-3p has been shown to be downregulated relative to normal 

cells in HCC and cervical cancer. In each case, miR-214-3p was found to target an anti-

apoptotic gene; XBP-1 in HCC and Bcl2l2 in cervical cancer, such that the loss of 

miR-214-3p in these cells resulted in the increased expression of its anti-apoptotic targets 

[23-24]. Additionally, forced expression of miR-214-3p in the esophageal squamous cancer 

cell line Eca109 inhibited expression of the enhancer of zeste homolog 2 (EZH2) [18]. Of 

note, EZH2 was also found to be a target of miR-214-3p in HCC [25]. In both reports, 

overexpression of miR-214-3p led to decreased proliferation and invasion capacity of the 

transfected cancer cells.

In addition to our previous description of its role in regulating survivin expression in 

esophageal cancer cells, other evidence supports an important role for CUG-BP1 in 

promoting an anti-apoptotic phenotype in cancer cells. CUG-BP1 has been shown to be 

overexpressed in both oral squamous cancer cell lines and human tumors [26]. In these cells, 

CUG-BP1 bound to the 3’UTRs of the mRNAs encoding the pro-apoptotic proteins BAD 

and BAX, and facilitated their degradation. Silencing CUG-BP1 therefore resulted in 

increased levels of BAD and BAX and enhanced sensitivity to chemotherapy-induced 

apoptosis. Gareau and colleagues described the ability of CUG-BP1 to mediate resistance to 

the proteasome inhibitor bortezomid in HeLa cells by stabilizing p21 mRNA [27]. Together 

with our findings, these data regarding targets of miR-214-3p and CUG-BP1 in cancer cells 

raise the intriguing possibility that miR-214-3p and/or CUG-BP1 could serve as important 

regulators of multiple anti-apoptotic effectors in esophageal cancer cells. This suggests a 

model in which loss of these post-transcriptional regulators could be important events in 

esophageal carcinogenesis.

Materials and Methods

Cell culture and reagents

The human esophageal squamous cancer cell lines TE7 and TE10 are kind gifts from Dr. 

Nishihira (Tohoku University, Sendai Japan). These cell lines were cultured in RPMI media 

(Mediatech Inc, Herndon, VA) supplemented with 10% heat-inactivated FBS. hESO is a 

spontaneously immortalized esophageal epithelial cell line derived from esophageal 

specimens harvested at the time of donor lung procurement. These cells were cultured in 

BEBM media (Lonza Corp, Walkersville, MD) supplemented with 20% heat-inactivated 

FBS and the BEGM bullet kit. All cells were maintained in a 37°C incubator with 5% CO2 

humidified air.

Transfection

Cells were seeded in 6 cm plates at a density of 0.5-1 × 106, a day prior to transfection. For 

miR transfections, pre-miR-214-3p (12 nM), anti-miR-214-3p (25 nM), or control miR 

(Ambion, Austin, TX) was diluted in 500μl Opti-MEM I (Invitrogen, Carlsbad, CA) 
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containing 5 μl Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA). After 15 min 

incubation at room temperature (RT), the complex was added to the cells in a final volume 

of 5 ml of fresh medium. In order to transiently over-express CUG-BP1 and survivin, TE7 

cells were transfected with 2 μg of pCMV6-XL5 plasmid containing CUG-BP1 or survivin 

cDNA (OriGene, Rockville, MD) diluted in 500μl Opti-MEM I containing 5 μl 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA).

Global miRNA expression Profiling

hESO, TE7 and TE10 cells (two replicates each) were seeded in 6 cm plates at passage 5. 

Total RNA was isolated using miRNeasy Mini Kit (Qiagen, Valencia, CA) according to 

manufacturer's manual. All the experiments for miR array were conducted at Exiqon 

Services, Denmark. Briefly, RNA quality was verified by an Agilent 2100 Bioanalyzer 

profile. Total RNA (750 ng) of each sample and common reference was labeled with Hy3 

and Hy5 fluorescent label using the miRCURY LNA microRNA Hi-Power labeling kit 

(Exiqon). RNA samples were mixed pairwise and hybridized to the miRCURY LNA 

microRNA array 7th generation which contains capture probes targeting all miRs for human 

listed in miRBASE 18.0. Hybridization was performed using a Tecan HA4800 hybridization 

station. Slides were then scanned using Agilent G2565BA Microarray Scanner system and 

image analysis was carried out using ImaGene9 microRNA Array analysis software. The 

quantified signals were background corrected (Normexp with offset value10) and 

normalized using the global Lowess (Locally Weighted Scatterplot Smoothing) regression 

algorithm [28]. For each comparison the fold change is listed as log2 transformed values. 

The fold change is calculated as 2^logFC. All calculations have been done with R/

Bioconductor software using mainly the limma package [29]. All microarray data are 

deposited in the Gene Expression Omnibus (GEO data base accession No: GSE67016).

Reverse transcription (RT) and quantitative real-time PCR (q-PCR) analyses

For all the RT and q-PCR experiments, total RNA was isolated from each sample using 

miRNeasy Mini Kit (Qiagen, Valencia, CA) according to manufacturer's manual and 

quantitated using NanoDrop1000 spectrometry (Thermo Scientific, Wilmington, DE). Equal 

amounts (1μg) of total RNA were reverse transcribed using Oligo dt primer and AMV 

reverse transcriptase (Reverse Transcription System, Promega, Madison, WI). 10 ng of total 

RNA per 15 μl reaction was reverse transcribed using TaqMan miR reverse transcription kit 

with specific miR primers (Applied Biosystems, Foster City, CA). Q-PCR was performed in 

triplicate with specific (Survivin, CUG-BP1, HuR, miR-214-3p, U6 and GAPDH) TaqMan 

primers and probes (Applied Biosystems, Foster City, CA). Two μl cDNA were used in total 

20 μl volume per reaction. Reactions were run on a STEP-ONE Plus Real–Time PCR 

System (Applied Biosystems, Foster City, CA) and cycling conditions were as follows: 2 

min at 50°C, 10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. The 

threshold limit was set so that it intersected all the samples during the log-liner phase of 

amplification. The levels of GAPDH were used to normalize levels of survivin, CUG-BP1, 

and HuR in q-PCR samples. For miR experiments, normalization was accomplished using 

small nuclear RNA U6.
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Immunoblotting

30 μg of protein from whole cell lysates was resolved on 10% SDS-PAGE gels (Bio-Rad 

Laboratories, Hercules, CA) and transferred onto PVDF membranes (GE Healthcare, 

Piscataway, NJ). After transfer, membranes were blocked in 5% nonfat milk in TBST and 

membranes were incubated with specific antibodies (overnight at 4°C) followed by 

horseradish peroxidaseconjugated anti-mouse or anti-rabbit (Santa Cruz, Dallas, TX) 

immunoglobulin for 1 hour at RT. Signal was detected by Chemiluminescence Reagent 

(PerkinElmer, Waltham, MA) and visualized by autoradiography. Anti-human survivin 

antibody was purchased from R&D Systems (Minneapolis, MN). Anti-CUG-BP1, anti-HuR, 

and anti-GAPDH antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX). 

All primary anti-bodies were used at a dilution of 1:2000 and all secondary antibodies were 

used at a dilution of 1:4000. Signal intensity was quantified using Image Lab quantification 

software (Bio-Rad, Hercules, CA).

Bioinformatics

Two software programs, RegRNA 2.0 [regrna.mbc.nctu.edu.tw] and Weizmann Institute of 

Science [http://genie.weizmann.ac.il/index.html] were used to predict the potential target 

genes of miR-214-3p.

mRNA stability

mRNA stability assays were performed as previously reported [30]. Twenty-four hours 

following transfection as described above, medium containing Actinomycin D (Sigma–

Aldrich, St. Louis, MO) at a final concentration of 0.2μM was added for specified time 

points. Total RNA was isolated from each sample and qRT-PCR was performed in triplicate 

as described above.

Biotin-labeled pull-down assays

Biotinylated miR-214-3p (Dharmacon, Lafayette, CO) pull-down assay with target mRNAs 

was performed as described earlier [31-32]. Briefly, 1 × 106 TE7 cells were seeded in 10 cm 

plate in duplicate a day before transfection. Next day, control miR or 3’ biotin-labeled 

miR-214-3p (5’ACAGCAGGCACAGACAGGCAGU 3’Bi) was transfected at a final 

concentration of 50 nM. After 48 hours, whole cell lysates were harvested. Simultaneously, 

Streptavidin-Dyna beads (Dyna beads M-280 Streptavidin, #11205D, Invitrogen, 50 μl each 

sample) were coated with 10 μl per sample yeast tRNA (stock 10 mg/ml Ambion, Austin, 

TX) and incubated with rotation at 4°C for 2 hrs. Then beads were washed with 500 μl lysis 

buffer and resuspended in 50 μl lysis buffer. Sample lysates were mixed with pre-coated 

beads (50 μl per sample) and incubated overnight at 4°C on a rotator. Beads were then pellet 

down next day to remove unbound materials at 4°C for 1 minute, 5K rpm and washed five 

times with 500 μl ice cold lysis buffer. To isolate the RNA, 750 μl of TRIzol (Invitrogen, 

Carlsbad, CA) and 250 μl nuclease free water was added to both input and pulldown 

samples. Tubes were mixed well and kept in −20°C for 2 hrs. RNA was then precipitated 

using standard chloroform-isopropanol method and then subjected to q-PCR as explained 

above.
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Apoptosis studies

After transfection with pre-miR-214-3p (12 nM) for 48 hours, TE7 cells were treated with 

Cisplatin (15 μM) (clinical grade) for 24 hours and stained with fluorescein-labeled 

Annexin-V (FITC) and Propidium Iodide (PI) (TACS Annexin V FITC Apoptosis Detection 

kit, Trevigen Inc, Gaithersburg, MD). Briefly, cells were washed twice with cold PBS and 

spun at 300g for 5 min at RT. 106 cells were resuspended in 100μl Annexin V incubation 

reagent (10 μl 10× binding buffer, 2 μl PI, 1 μl Annexin V FITC and 87 μl deionized water 

per sample) and incubated in the dark for 15 minutes at RT. At the end of incubation, 400 μl 

of 1× binding buffer was added (per 100 μl reaction). Samples were then analyzed for FITC 

Annexin-V positive, PI negative or FITC Annexin-V positive, PI positive by flow cytometry 

(BD Accuri C6). For caspase activation assays, cells were exposed to Cisplatin following 

transfection with pre-miR-214-3p for 24 hours and cleaved caspase was measured by 

Western blot using rabbit anti-caspase-3 (Cell Signaling, Danvers, MA). Caspase enzyme 

activity was measured in triplicate for each experiment, using instant ELISA kit 

(eBioscience Inc., San Diego, CA), following the manufacturer's instructions.

Luciferase Reporter Assay

Luciferase reporter constructs were prepared as previously described [33]. For survivin 

(Variant 1 NM_001168.2), individual luciferase reporter constructs were generated that 

contained either the CR, full-length 3’ UTR, or one of 3 separate 3’UTR fragments. For 

CUG-BP1 (Variant 5 NM_ 001172640), the constructs contained either one of 2 CR 

fragments or one of 3 separate 3’ UTR fragments. The inserts were amplified by PCR and 

individual fragments were subcloned into a NheI and SalI or SacI and Xba1 (New England 

Bio Labs, Ipswich, MA) digested pmirGLO Dual-Luciferase miRNA target expression 

vector (Promega, Madison, WI). The constructs containing mutations at the seed sequence 

binding region of potential binding sites were generated using site directed mutagenesis kit 

(Agilent Technologies, Santa Clara, CA). All primer sequences used to create these 

constructs are listed in Tables 2 and 3. Restriction enzyme digestion and DNA sequencing 

confirmed the orientation and sequence of the constructs. For luciferase activity assay, 1 × 

105 TE7 cells/well were plated onto 12-well cell culture plates and co-transfected as 

described above with luciferase reporter constructs (10ng) and pre-miR-214-3p (50 nM) for 

36 hours. Luciferase activity was measured using Dual Luciferase Reporter Assay kit 

(Promega, Madison, WI), as per manufacturer's protocol. Levels of firefly luciferase activity 

were normalized to Renilla luciferase activity

Statistical Analysis

Results are expressed as the means ± S.D from three independent experiments with 

minimum three replicates for each set of experiment. Data derived from multiple 

determinations were subjected to two-tailed Student's t test and p values < 0.05 were 

considered statistically significant.
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Figure 0001

Figure 0002
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Figure 1. 
Baseline miR levels in human esophageal cell lines. A. Representative heat map depiction of 

miRs most differentially expressed in both TE7 and TE10 cells compared to hESO cells. 

Each row represents a miR and each column represents a cell line. The color scale illustrates 

the relative expression level of miRs. Red color represents an expression level below the 

reference channel, and green color represents expression higher than reference. B. Validation 

of miR-214-3p expression levels in hESO, TE7 and TE10 cells by q-PCR. Representative 

experiment of three independent experiments. Error bars represents ± S.D. and statistical 

significance based on a two-tailed Student's t test is indicated by * (p < 0.05).
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Figure 0003

Figure 0004

Figure 2. 
miR-214-3p negatively regulates survivin and CUG-BP1 expression in human esophageal 

cell lines. A. Cells were transfected with control miR or (a) with 12 nM pre-miR-214-3p 

(TE7 & TE10) or (b) with 25 nM anti-miR-214-3p (hESO). Forty eight hours post-

transfection, levels of miR-214-3p and U6 RNA (c, d) were measured by q-PCR. Values are 

mean ± SD from three independent sets of experiment in triplicate. B. In similar 

experiments, whole cell lysates were isolated and subjected to western blot analysis with 
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indicated antibodies. (a) Changes in survivin, CUG-BP1, and HuR protein expression after 

pre-miR-214-3p transfection in (a) TE7 and (b) TE10 cells. (c) Changes in above mentioned 

protein expression after silencing miR-214-3p in hESO cells. Representative immunoblots of 

three independent experiments in all the cell lines. The adjacent bar diagrams for relative 

protein signal intensity are the mean signal intensity of three separate immunoblots shown in 

a, b and c. Signal intensity of target protein is determined and is normalized by signal 

intensity of GAPDH. Relative signal intensity is calculated compare to control and is shown 

as bar diagram. Mean ± SD from three independent experiments. Asterisk, statistical 

significance based on two-tailed Student's t test. Signal intensity is determined using Bio-

RAD image lab quantification software.
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Figure 0005

Figure 0006

Figure 3. 
Effect of miR-214-3p modulation on survivin and CUG-BP1 mRNA levels. A. Changes in 

levels of (a) survivin and (b) CUG-BP1 mRNAs in TE7 and TE10 cells following 
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transfection of pre-miR-214-3p. B. Levels of (a) survivin and (b) CUG-BP1 mRNA in 

hESO cells after transfection of anti-miR-214-3p. In these experiments, 48 hours post-

transfection, total RNA was extracted and levels of survivin and CUG-BP1 were measured 

by q-PCR. Mean of three biological and technical replicates, asterisk, statistical significance 

(p< 0.05) based on a two-tailed Student's t test. C. Stability of (a) survivin and (b) CUG-

BP1 mRNAs in TE7 cells following transfection of pre-miR-214-3p. D. Stability of (a) 

survivin and (b) CUG-BP1 mRNA in hESO cells after silencing miR-214-3p. Total RNA 

was isolated at indicated time points after administration of Actinomycin D (0.2μM) and the 

remaining levels of survivin and CUG-BP1 mRNAs were measured by q-PCR. Levels were 

normalized with GAPDH. The half-life was calculated from the first order equation t1/2 = 

ln2/k. Each point is the mean ± S.D. of three separate experiments.
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Figure 4. 
Association of miR-214-3p with survivin and CUG-BP1 mRNA. A. Schematic 

representation of survivin and CUG-BP1 mRNA. (BS) indicates predicted binding sites for 

miR-214-3p. B. Levels of miR-214-3p (Top panel, left) and U6 RNA (Top panel, right) 48 

hours following transfection of 50 nM biotinylated-miR-214-3p as measured by q-PCR 

analysis. Levels of survivin, CUG-BP1, and HuR mRNA in the materials pulled down by 

biotin-miR-214-3p (Bottom panel, left) and levels of total input mRNAs (Bottom panel, 

right) measured by q-PCR. The enrichment of miR was calculated as follows: miR pull-

down/control pull-down (X), miR input/control input (Y), Fold binding = X/Y. 

Representative bar diagram from three independent experiments, each set of experiment was 

done in triplicates. Error bars represent mean ±S.D. and * stands for statistically significant 

based on two-tailed Student's t test where p < 0.05.
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Figure 0008

Figure 0009
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Figure 0010

Figure 5. 
miR-214-3p associates with survivin mRNA. A. Schematic representation for constructs of 

different survivin luciferase reporters containing the full length 3’UTR (FL-3’UTR), CR 

(F1), or 3’UTR fragments with individual predicted miR-214-3p binding sites (F2-F4). B. 

Luciferase activity in the different survivin reporter constructs following co-transfection 

with pre-miR-214-3p (50nM) or control miR in TE7 cells for 36 hours. Firefly luciferase 

activities were normalized to Renilla luciferase activities and expressed as the mean of three 

independent experiments, where all experiments were carried out in triplicate. Error bars 

represent mean ± S.D. and * represents statistically significant p < 0.05, p values based on 

two-tailed Student's t test. C & D. The binding sequence of the miR-214-3p potential 

binding site in survivin 3’UTR fragments F2 (C) and F4 (D) were mutated (schematic, left 

top and bottom) by substituting 4 bases (underlined). Luciferase activity was measured and 

compared with its WT fragment. E. Binding sequences of both the specific binding sites in 

survivin full length 3’UTR were mutated (schematic left) and luciferase activity was 

measured and compared with WT.
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Figure 0011

Figure 0012

Figure 6. 
miR-214-3p associates with CUG-BP1 mRNA. A. Schematic diagram for constructs of 

different CUG-BP1 luciferase reporters containing predicted miR-214-3p binding sites in 

either the CR (F1 and F2) or 3’UTR (F3-F5). B. Luciferase activity in theses reporter 

constructs following cotransfection with pre-miR-214-3p (50 nM) or control miR in TE7 

cells for 36 hours. Firefly luciferase activities were normalized to Renilla luciferase 

activities and expressed as the mean of three independent experiments in triplicates. Error 

bars represent ± S.D. (n=3 in each set of experiment) and * represents statistically significant 

value, p < 0.05, based on a two-tailed Student's t test. C. The binding sequences of the 
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miR-214-3p potential binding site in CUG-BP1 CR (F1) reporter construct was mutated 

(schematic, left) by substituting 3 bases (underlined). Luciferase activity was measured and 

compared with WT luciferase construct. D. The binding sequences of the miR-214-3p 

potential binding site in CUG-BP1 3’UTR (F4) reporter construct was mutated (schematic, 

left) by substituting 3 bases (underlined). Luciferase activity was measured and compared 

with WT luciferase construct. Representative experiment of three separate experiments. All 

experiments were carried out in triplicate. Asterisk, statistical significance based on a two-

tailed Student's t test
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Figure 0013

Figure 0014

Figure 0015

Figure 7. 
miR-214-3p overexpression sensitizes cells to Cisplatin (CDDP) -induced apoptosis. A. An 

immunoblot of cleaved caspase in TE7 cells exposed to Cisplatin following pre-miR-214-3p 

transfection. Cells were transfected with pre-miR-214-3p or control miR for 48 hours then 

treated with Cisplatin (15 μM) for indicated time points. Representative western blot of three 
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independent experiments. B. Following overexpression of pre-miR-214-3p in TE7 cells 

(middle & last lane), cells were transfected with 2μg (a) survivin or (c) CUG-BP1 plasmid 

(last lane) and level of survivin and CUG-BP-1 was measured respectively by Western blot. 

(b). Relative signal intensity of survivin expression as shown in a. (d). Relative CUG-BP1 

signal intensity as shown in c. Mean ± S.D. of three independent experiment is shown. and 

statistical significance is indicated by asterisk (p<0.05). * represents significance between 

control-miR and empty vector (first lane) and pre-miR-214-3p (middle lane) transfected 

samples and ** stands for statistical significance between ectopic expression of pre-

miR-214-3p alone (middle lane) and both pre-miR-214-3p and plasmid DNA samples (last 

lane). C. TE7 cells were transfected with control miR and empty vector (lane 1, 5), pre-

miR-214-3p alone (lane 2, 6), pre-miR-214-3p and CUG-BP-1 plasmid (lane 3, 7) and pre-

miR-214-3p and survivin plasmid (lane 4, 8). After 48 hours of the transfection, cells were 

exposed to cisplatin (15μM, lane 5-8) and immunoblot was performed for cleaved caspase. 

Representative immunoblot of three independent experiments. D. Caspase activity was 

measured by caspase-3 colorimetric instant ELISA assay in cell lysates as described in C. 

Mean ± S.D. of three independent experiment is shown and statistical significance is 

indicated by asterisk (p<0.05). E. TE7 cells were transfected for 48 hours with pre-

miR-214-3p or control miR, subjected to 15 μM Cisplatin for 24 hours and labelled with 

Annexin-V. Apoptosis was evaluated by flow cytometry. Representative experiment of three 

independent experiments. F. Bar diagram of percentage apoptotic cells measured in E. Mean 

± S.D. of three independent experiments is shown. * p< 0.05, statistically significant based 

on two-tailed Student's t test.
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