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Summary

In many observational longitudinal studies, the outcome of interest presents a skewed distribution, 

is subject to censoring due to detection limit or other reasons, and is observed at irregular times 

that may follow a outcome-dependent pattern. In this work, we consider quantile regression 

modeling of such longitudinal data, because quantile regression is generally robust in handling 

skewed and censored outcomes and is flexible to accommodate dynamic covariate-outcome 

relationships. Specifically, we study a longitudinal quantile regression model that specifies 

covariate effects on the marginal quantiles of the longitudinal outcome. Such a model is easy to 

interpret and can accommodate dynamic outcome profile changes over time. We propose 

estimation and inference procedures that can appropriately account for censoring and irregular 

outcome-dependent follow-up. Our proposals can be readily implemented based on existing 

software for quantile regression. We establish the asymptotic properties of the proposed estimator, 

including uniform consistency and weak convergence. Extensive simulations suggest good finite-

sample performance of the new method. We also present an analysis of data from a long-term 

study of a population exposed to Polybrominated Biphenyls (PBB), which uncovers an 

inhomogeneous PBB elimination pattern that would not be detected by traditional longitudinal 

data analysis.
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1. Introduction

Epidemiological follow-up studies often present various features that can complicate 

statistical analysis, such as censoring, skewness, and irregular outcome-dependent follow-
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up. Our motivating example is the Michigan Long-Term Polybrominated Biphenyls (PBBs) 

Study, which was established following the PBB exposures of residents of Michigan farms 

and neighboring communities after their consumption of PBB contaminated food products in 

the early 1970s. With over 20 years of follow-up, PBB study provides a rich database for 

investigating the elimination of PBB from the human body. However, there exist several 

challenges with the analysis of the PBB data. First, due to laboratory assay detection limit, 

PBB concentration was not detectable when it was less than 1 part per billion (p.p.b.). This 

caused some left censored PBB measurements. Secondly, the distribution of PBB 

concentration is highly skewed, as evidenced by the histogram of log-transformed PBB 

measurements; see Figure 1. Thirdly, serum samples from each subject were not taken at a 

set of common time points or intervals. Furthermore, visit/sample-taking times may be 

outcome dependent. In Figure 2, we present the box-plots of log PBB levels measured at 

study entry by the number of visits. It is shown that subjects with high initial PBB levels 

contributed more serum samples, or equivalently speaking, made more follow-up visits, than 

those with low initial PBB levels. Similar data situations are encountered in many other 

epidemiological studies.

Many standard longitudinal methods (Diggle et al., 2002) assumed the follow-up visit times 

to be pre-determined or outcome-independent given covariates. When the follow-up visit 

times are irregular and are correlated with outcomes, one intuitive approach is to group 

irregular visit times into a common set of time intervals and formulate the data as 

longitudinal data with informative intermittent missing. Methods, such as Robins et al. 

(1995), can be applied; however they may be sensitive to arbitrary divisions of time 

intervals. Without involving discretizing the visit time scale, Lipsitz et al. (2002) developed 

a likelihood-based approach assuming the outcome process follows a Gaussian process with 

mean and covariance parametrically specified. Under reasonable conditions on the 

dependency between visit times and outcomes, they showed that the likelihood for the 

longitudinal outcomes is separable from that for the follow-up times, and thus the estimation 

of the outcome process parameters can be carried out without modeling the follow-up times. 

Fitzmaurice et al. (2006) extended Lipsitz et al. (2002)'s method to longitudinal binary data. 

Ryu et al. (2007) presented a Bayesian regression method, which jointly modeled the 

follow-up time process and the longitudinal outcome process through introducing a subject-

specific latent variable.

Marginal semiparametric regression has also been studied for longitudinal data with 

irregular outcome-dependent follow-up. This type of approach avoids strong parametric 

assumptions on the joint distribution of longitudinal outcomes, but as a trade-off, requires a 

model for the follow-up time process to facilitate correcting the bias resulted from outcome-

dependent follow-up. For example, Lin et al. (2004) investigated the marginal mean 

regression of the longitudinal outcome, while modeling the follow-up time process by a 

proportional intensity model (Andersen and Gill, 1982). They proposed an inverse intensity 

weighting strategy to adjust for the effect of outcome-dependent follow-up on the observed 

outcomes. To avoid directly estimating the baseline intensity function of the follow-up visit 

process, which usually requires smoothing, Buzkova and Lumley (2007) justified the use of 

intensity-ratio as the inverse weight in Lin et al. (2004)'s approach. The resulting estimator 
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does not require smoothing, and thus is simpler to compute. Furthermore, it can be applied 

under a mixture of continuous and discrete follow-up visit times.

With skewed and censored outcomes, quantile regression is naturally advantageous over 

either Gaussian regression modeling or marginal mean regression because quantiles are 

more robust and informative summary statistics for a skewed distribution and have better 

identifiability than mean when censoring is present. This motivates us to consider quantile 

regression modeling for longitudinal data with irregular outcome-dependent follow-up. With 

a proper formulation of outcome process and follow-up time process as in Lipsitz et al. 

(2002), our model specifies how the quantiles of the outcome at time t relates to the 

covariates observed up to time t. This type of marginal quantile regression model has been 

exploited in literature by many authors in various aspects (Jung, 1996; Lipsitz et al., 1997; 

Koenker, 2004; Wang and Fygenson, 2009; Yi and He, 2009; Yuan and Yin, 2010; Lee and 

Kong, 2013, among others). For example, Lipsitz et al. (1997) proposed a GEE-type 

estimating equation and adopted the technique of inverse probability weighting to handle 

missing outcomes due to random dropouts. Koenker (2004) considered subject-specific fixed 

effects which are intended to capture unobserved individual heterogeneity, and proposed an 

ℓ1-regularization estimating method to modify the inflation effect caused by the introduction 

of individual fixed effects. Wang and Fygenson (2009) investigated the case with 

longitudinal outcomes left censored by fixed constants and developed inference procedures 

that properly account for censoring and intra-subject dependency. Lee and Kong (2013) 

recently presented an adaptation of Wang and Fygenson (2009)'s method to handle 

longitudinal data subject to both left censoring and random dropouts. However, all these 

methods are generally focused on standard longitudinal settings with common visit times or 

outcome-independent follow-up times.

For marginal quantile regression inference, ignoring the dependency between irregular 

follow-up times and outcomes can lead to biased estimation. This is well demonstrated by an 

exploratory analysis of the PBB example. In Figure 3, we plot the 25th, 50th, 75th empirical 

quantiles of PBB measurements collected in each of four follow-up time intervals. Each gray 

dot represents one PBB measurement. Without accounting for outcome-dependent follow-

up, a naive interpretation of Figure 3 would be that the distribution of PBB would first shift 

up and then go down over the time course. This is not scientifically plausible, and in fact, 

manifests the data distortion resulted from outcome-dependent follow-up. A further data 

examination reveals that the cohort participants who had PBB levels measured 10 to 16 

years after PBB exposure are mostly those who had high PBB levels at the initial study visit. 

Thus, the PBB samples collected during this time period are not representative of the PBB 

concentrations of the whole study cohort, but rather reflect the PBB distribution for a 

subcohort that is likely to have high PBB levels. This explains the unexpected rise in 

empirical PBB quantiles observed in Figure 3, and more importantly indicates the need to 

appropriately address outcome-dependent follow-up in quantile regression analysis of 

longitudinal data.

In this paper, we develop a marginal quantile regression approach to analyzing longitudinal 

data with censored and skewed outcomes as well as irregular outcome-dependent follow-up. 

We propose an estimation procedure that properly accommodates these realistic data 
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features. More specifically, we employ Powell (1986)'s censored quantile regression 

technique to handle fixed or known random left censoring to longitudinal outcomes. To 

address outcome-dependent follow-up, we model the follow-up time process via a 

proportional intensity model, viewing each follow-up visit as a recurrent event. As one of the 

most popular models for recurrent events, a proportional intensity model can be 

conveniently implemented by standard statistical software such as SAS and R. It also allows 

us to specify how the intensity for the counting process of visits at time t depends on the past 

observed data, including visit history, outcomes, and covariates; thus it is an appropriate 

device for characterizing outcome-dependent follow-up. The adopted proportional intensity 

model forms the basis to correct the bias induced by outcome-dependent follow-up through 

inverse intensity-ratio weighting. It can also help understand the factors influencing the 

follow-up behaviors. We properly design our estimation and inference procedures so that 

they can be implemented via existing statistical software for quantile regression. 

Algorithmic issues are carefully addressed.

The rest of this paper is organized as follows. In Section 2, we introduce models and present 

the proposed estimation procedure and algorithm. We outline asymptotic studies in Section 

3, and develop bootstrap and sample-based inference procedures in Section 4. In Section 5, 

we evaluate the proposed method by simulation studies. In Section 6, we present an analysis 

of PBB data, which demonstrates the importance and practical utility of the new method. We 

conclude with some remarks in Section 7.

2. Methods

2.1 Data and Notation

Let  denote the outcome process of interest, namely the outcome at time t, and likewise 

let Zi(t) denote a vector of external covariate processes for the ith subject. Let [Li, Ri] be a 

time interval indicating when the ith subject is under study. We assume that Li and Ri are 

independent of  given Zi(·). Note that  and Zi(·) are only observed at Li, when the 

subject enters the study, and at a sequence of follow-up visit times, 

within (Li, Ri]. Here mi is the total number of follow-up visits for the ith subject.

Define a counting process for study entry as  and a counting process for 

follow-up visits as . Outcome  is subject to left censoring at a 

fixed constant c. As explained in a remark in Section 7, the constant c can be replaced by a 

random variable which is observed for all subjects. Define . The 

observed data consist of 

. Notation with 

subscript i removed stands for the corresponding population analogue.

2.2 Models

Define the τth conditional quantile of a random variable Y given Z as QY(τ|Z) = inf{y : 

Pr(Y ≤ y|Z) ≥ τ}. We consider a marginal quantile regression model that takes the form,
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(1)

where Xi(t) = (1,Zi(t)⊤)⊤ and β0(τ) is a vector of unknown regression coefficients. This 

model marginally specifies the relationship between outcome quantiles and covariates at 

time t. The coefficients in β0(τ) are formulated as functions of τ, thereby allowing for 

inhomogeneous covariate effects across different segments of the outcome distribution. 

Model (1) covers some commonly used models for longitudinal data. For example, one 

special case is the linear random intercept model, , where for 

subject i, ai is the random intercept effect, and εi(t) is the random error term at time t that 

follows a common distribution over t. With (ai, εi(t)) assumed to be independent of Zi(t), it 
can shown that QY*(t)(τ|Zi(t)) = {μ + Qa+ε(τ)} + b⊤Zi(t), where Qa+ε(τ) denotes the τth 

quantile of ai + εi(t). Thus model (1) holds in this special case.

Model (1) is also flexible in characterizing the profile change of the longitudinal outcome 

over time, which is of particular interest in the PBB study. For instance, with Zi(t) = t, model 

(1) becomes . In this case, the coefficient b0(τ) represents the τth 

quantile of baseline outcome (i.e. Yi(0)) and b1(τ) represents the change rate of the τth 

outcome quantile over time. Clearly, this model can be expanded to adjust for relevant 

baseline covariates or covariates collected during follow-up.

We further model follow-up visit times, and give some special attention to the subtle 

difference between the initial study visit and follow-up visits. This is motivated by the PBB 

study, in which, the commonly adopted time origin is the PBB exposure date set as July 1, 

1973, rather than the date at study entry. Since study participants had little or no knowledge 

about how much they were exposed to PBB until they received results from their initial visit, 

we expect little dependency between the initial visit time and outcomes. In fact, we assume 

that  and Li is not necessarily fixed. Consequently, our modeling of the 

follow-up process starts after the initial study visit. That is, defining a history function ℋi(t) 
as all observed data before time t of the ith subject, we assume a proportional intensity 

model (Andersen and Gill, 1982) that takes the form,

(2)

where  and α0 is a vector of 

unknown coefficients. Here hi(t) is a vector of time-dependent covariates belonging to ℋi(t), 
which may be flexibly set to contain prior outcomes or covariates observed before time t.

2.3 Estimation

The primary estimation goal is to estimate the β0(τ) in model (1), which captures the 

covariate effects on the τth marginal quantile of the outcome of interest, Y*(t). When the 

follow-up process is independent of the outcome process, one may follow Wang and 

Fygenson (2009)'s method to estimate β0(τ) through minimizing the objective function,
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(3)

where ρτ(u) = u · {τ − I(u < 0)}. The basic idea underlying objective function (3) is derived 

from an application of the equivariance property of quantiles to monotone transformation 

(Koenker, 2005). A similar strategy was used by Powell (1986)'s method for censored 

quantile regression. More specifically, by the equivariance property, under model (1), 

quantiles of the observed outcome, Yi(t), satisfy,

Such a relationship between the observed outcomes and covariates lays the key justification 

for objective function (3).

However, in the presence of outcome-dependent follow-up, minimizing (3) does not render a 

valid approach because Yi(t) and dNi(t) are not independent given Xi(t). To correct the bias 

resulted from outcome-dependent follow-up, we adopt the strategy of inverse intensity-ratio 

weighting (Buzkova and Lumley, 2007) with separate handling of the initial study visit and 

follow-up visits. That is, we intend to weigh the outcomes observed at follow-up visits by 

the reciprocal of the intensity ratios, which, according to the follow-up time model (2), take 

the form wi(t; α0) = I (Li < t ≤ Ri) exp {hi(t)⊤α0}. At the same time, we do not weigh the 

data collected at the initial study visit because the study entry time Li is assumed to be 

conditionally independent of outcomes given covariates. Since α0 is usually unknown, we 

employ weights wi(t; α̂) instead of wi(t; α0), where α̂ is a consistent estimate for α0 obtained 

by Andersen and Gill (1982)'s method, which maximizes a partial likelihood function of 

model (2).

We propose to estimate β0(τ) by the minimizer of Ψτ(β; α̂) with respect to β, where

(4)

The resulting estimator is denoted by β̂(τ). We recommend calculating wi(t; α̂) based on 

centered covariates. Doing so would lead to a better interpretation of the weight and also 

naturally confine the weight to take values in a reasonable range. For example, suppose gi(t) 

is a covariate included in hi(t). A centered covariate  is defined as gi(t) – ḡ, where 

.

To find the minimizer of Ψτ(β; α̂), we note that Ψτ(β; α̂) has an equivalent form of
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This shows that, by treating observed outcomes as independent and properly assigning 

weights as one or the reciprocal of estimated intensity-ratio, we can solve the minimization 

problem for objective function (4) by using the existing crq() function in R package quantreg 
via the option for Powell's censored regression quantiles.

To justify the proposed weighting strategy, we examine the gradient of Ψτ(β; α) with respect 

to β, denoted by Uτ{β; α}, which equals

Assuming , or in words, dNi(t) is independent of current 

outcome and covariates given the history, we can show that under model assumptions (1) 

and (2),

At the same time, provided that  is independent of Yi(t) given Xi(t), it is easy to see 

that

Combining these results immediately gives E[Uτ{β0(τ); α0}] = 0, which endorses the 

proposed idea for estimating β0(τ). As commented by Lin et al. (2004), the assumption, 

, is weaker than those imposed by Lipsitz et al. (2002), and is 

reasonable for the follow-up mechanisms of many real studies, including the PBB study.

3. Asymptotic Properties

We study the asymptotic properties of the proposed estimator, β̂(τ). Due to space limit, we 

relegate regularity conditions and proofs of theorems to Web Appendices A–C.

The asymptotic properties of β̂ (τ) are stated in the following theorems.

Theorem 1: Under conditions C1-C4, supτ∈[γ, γ′] ║β̂(τ) − β0(τ)║ → 0, a.s..
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Theorem 2: Under conditions C1-C6, {n1/2 [β̂(τ) − β0(τ)] : τ ∈ [γ, γ′]} converges weakly to a 

Gaussian process with mean 0 and covariance matrix Σ, which is defined in (C.3) in Web 

Appendix C.

Note that Theorems 1 and 2 provide the asymptotic properties of {β̂(τ), τ ∈ [γ,γ′]}, with 0 < 

γ < γ′ < 1. In principle, the choice of [γ,γ′] should reflect the range of the quantile levels of 

interest. In theory, we assume that γ and γ′ satisfy the technical constraints imposed by the 

regularity conditions. These constraints are necessitated by considerations relating to the tail 

identifiability and estimation stability. For example, with γ′ < 1, we can avoid the 

complication with extreme quantile inference. When Yi(t) is subject to left censoring by a 

positive constant, the lower tail quantiles may not be identifiable, and thus requiring γ > 0 

may be necessary. In practice, there is usually no definite way to verify whether these 

technical constraints are met or not. Our recommendation is to first select γ and γ′ based on 

the scientific interest and then adjust γ and γ′ in an adaptive manner. That is, when β̂(τ) turns 

out to be an infeasible solution at τ = γ (or γ′), we would reset γ (or γ′) to a larger (or 

smaller) value. Based on our numerical experience, such an empirical adaptive rule 

performances very well.

4. Inference

Bootstrap procedures can be used to make inference on β0(τ). For example, one may 

generate a bootstrap sample by randomly selecting n subjects with replacement. Based on 

each bootstrap sample, the proposed estimation procedure can be applied to obtain a 

bootstrap estimator, denoted by β̂* (τ). With many bootstrap samples generated, the 

asymptotic distribution of √n{β ^(τ) − β0(τ)} can be approximated by the empirical 

distribution of √n{β̂*(τ) − β̂(τ)}.

We also develop a sample-based inference procedure, which is expected to be more 

computationally efficient. One challenge is about how to estimate the asymptotic variance 

matrix of √n{β ^(τ) − β0(τ)}, which involves the unknown density function fYi(t)(Xi(t)⊤ 

β0(τ)|Xi(t)) according to our asymptotic studies. To tackle this difficulty, we adopt the 

technique of Huang (2002) and Peng and Fine (2009). More specifically, we perturb Uτ(β̂; 

α̂) and then utilize the functional linearity of Uτ(·) to derive a sample-based consistent 

estimate for Bτ(β0(τ); α0) in condition C5. Then we can obtain a consistent estimate for the 

asymptotic variance of √n{β̂(τ) − β0(τ)} based on its closed form derived in the proof of 

Theorem 2. The specific procedure is outlined as follows.

Step 1. Define 

and , where v⊗2 = vv⊤. Find a symmetric and 

nonsingular (p + 1) × (p + 1) matrix E(τ) such that Ω(τ) = E2(τ). Let ej(τ) denote the jth 

column of E(τ).

Step 2. Solve the equation
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(5)

for b, and denote the solution by β̌
j(τ) (j = 1,…, p + 1).

Step 3. Calculate D(τ) = (β̌
1(τ) − β̌(τ),…, β̌

p+1(τ) − β̂(τ)).

Step 4. Compute n−1/2E(τ)D(τ)−1, which provides a consistent estimate for Bτ(β0(τ); α0).

It is, however, not straightforward to employ the crq() function in R to solve equation (5) in 

Step 2. In order to take the advantage of existing software package, we propose an 

alternative solution-finding strategy for equation (5). That is, we first solve the equation,

(6)

where . Mimicking the proposed algorithm for β0(τ), we can solve 

equation (6) using the crq() function. It is easy to show that equation (6), coupled with 

condition , is equivalent to equation (5). Therefore, we check whether the solution 

to equation (6), b̃, satisfies the condition . If yes, we let β̌
j(τ) = b̃. Otherwise, we 

solve equation (6) switching the sign of ej(τ). In this case, solving equation (6) would serve 

to locate a solution to a variant of equation (5), which is given by

(5′)

Note that the perturbations to Uτ(b;α̂) posed by equation (5) and equation (5′), namely ej(τ) 

and −ej(τ), have the same asymptotic order. Following the theory presented in Huang (2002) 

and Peng and Fine (2009), we can show that the proposed inference procedure remains valid 

when one replaces equation (5) by (5′). When (5′) is adopted for some j, E(τ) in Step 4 

needs to be updated by (e1(τ),…, − ej(τ), …, ep+1(τ)) accordingly.

Let B̂(τ) denote the proposed sample-based estimate for Bτ(β0(τ); α0). A consistent sample-

based covariance estimator for β̂(τ) may be given by

where ιi(·) is an influence function defined in Web Appendix A (see (A.2)), and Âτ and Ĵ 
are plug-in estimators of Aτ(β0; α0) and J(α0) defined in (C.2) in Web Appendix C and (A.1) 

in Appendix A respectively.
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5. Simulations

Simulation studies were conducted to assess finite-sample performance of the proposed 

method. We considered two time-independent covariates, Zi1 ∼ Uniform(0, 1) and Zi2 ∼ 

Bernoulli(0.5), and one time-dependent covariate Zi3(t) = t. For the study visit times, we 

generated the study entry time Li from Uniform(0, 1), and the time at the end of follow-up 

Ri from Uniform(4, 5). Between Li and Ri, follow-up visit times were generated according 

to a proportional intensity model:

(7)

where Y(t−) represents the last observed outcome before time t and a0 = 0.2. A positive 

coefficient for Y(t−) would indicate that subjects with larger previous outcomes have higher 

intensity of making subsequent visits.

We adopted Normal distribution and Gamma distribution for generating outcomes. More 

specifically,

Case 1: Yi(t) = max(0, 4.5+di − Zi1+Zi2−t+εi(t)), where 

and  and they are independent. In this set-up, data follow a marginal quantile 

regression model,

Case 2: Yi(t) = max(0, 3.5 + di − 2Zi1 − t + εi(t)), where 

and , and they are independent. In this set-up, data follow 

a marginal quantile regression model,

Under the set-ups described above, c is specified as 0, the average number of visits is 4.4, 

and the average left censoring rate is 10% in both case 1 and case 2. Note that fitting model 

(1) to a dateset with responses Yi(t) subject to left censoring by c can be equivalently 

formulated as fitting model (1) to a transformed dataset with shifted responses, Yi(t) − c, 

subject to left censoring by the constant 0. Therefore, the cases we considered here with c = 

0 are representative for the general scenarios with nonzero c's.

For each set-up, we generated 1000 data sets of sample size n = 200. For each simulated 

dataset, we applied the proposed method to estimate covariate effects on the 25th, 50th, and 

75th outcome quantiles. We also compared our method with a naive approach, which 
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implements Wang and Fygenson (2009)'s method by obtaining the coefficient estimator as 

the minimizer of objective function (3). Empirical bias and standard deviations of estimators 

from both methods are presented in Table 1. It is shown that the proposed estimator is 

virtually unbiased. The bias from the naive method is quite evident; the magnitude of bias 

can be over half of the magnitude of standard deviation in some cases. The empirical 

standard deviations of the proposed estimator are reasonable for the sample size n = 200 and 

are fairly close to estimated standard deviations. The agreement between empirical and 

estimated standard deviations improves as the sample size is increased to n = 400. We also 

examined the estimates at higher quantiles, corresponding to τ = 0.85, 0.90, 0.95. The results 

are presented in Table D.1 of Web Appendix D, indicating satisfactory performance of our 

proposals. The simulation results with n = 400 are presented Table D.2 of Web Appendix D.

In our simulations, we evaluated both bootstrap and sample-based inference procedures. The 

bootstrap size was chosen as 500. In Table 1, we report the averages of standard deviation 

(SD) estimates and the empirical coverage rates of 95% confidence intervals obtained from 

both inference approaches. Generally, both types of SD estimates are acceptably close to the 

empirical standard deviations. The bootstrap-based SD estimates are slightly better than the 

sample-based SD estimates. The computation of the sample-based approach is about 50 

times faster than that of the bootstrapping procedure. Both bootstrap and sample-based 

inference procedures yield confidence intervals with accurate coverage rates.

We also investigated the robustness of the proposed estimation of model (1) to the potential 

mis-specification of the model for the follow-up time process. We consider three different 

scenarios of model mis-specification. The details about the set-ups and the results are 

relegated to Web Appendix D due to space limit.

From our simulations, we find that the proposed estimator always has much smaller bias 

compared to that of the naive estimator. When only a moderate model misspecification 

presents, the bias of the proposed estimator is only slightly larger than the empirical bias 

observed in the case with correctly specified follow-up model. The bias increases as the 

departure from the true model increases. Overall, the proposed method demonstrates quite 

robust performance when the follow-up time model is misspecified.

6. Application to PBB study

Polybrominated biphenyls (PBBs) are manufactured chemicals added as flame retardants to 

electrical devices, plastics, and various textiles. A widespread contamination with PBBs 

occurred in Michigan during 1973 - 1974 when PBB was accidently substituted for a 

nutritional supplement manufactured at the same chemical plant. The PBB was then mixed 

with animal feed. Farmers and Michigan residents throughout the state were exposed to PBB 

by consuming contaminated animal food products (e.g. milk, beef, pork, chicken, eggs). The 

Michigan Department of Public (now Community) Health (MDCH), in collaboration with 

the US Public Health Service, established a registry of individuals exposed to the 

contaminated food products. Since the initial enrollment period (1976 - 1978), the MDCH 

has periodically contacted cohort members to obtain additional serum samples. Serum 

samples from cohort members were collected from 1976–1993.
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Our analysis was focused on understanding the elimination of PBB from the body by 

examining repeated measurements of PBB in serum. The current analysis is limited to 

women. PBBs are stable, persistent halogenated organic pollutants with extremely long half-

lives. Participants may continue to have measurable PBB levels in serum after more than 20 

years. We included females who were born before the contamination incident (July, 1973) if 

they had at least two serum PBB measurements at least 6 months apart, and if they had an 

initial serum PBB measurement greater than 2 parts per billion (p.p.b.) and taken after age 

16. We required an initial serum PBB measurement of at least 2 p.p.b. to ensure that their 

levels were above the limit of detection of 1 p.p.b. This imposed “artificial” truncation which 

would limit the interpretation of our analysis results to the population with initial visit PBB 

measurements greater than 2 p.p.b. We excluded females who were younger than age 16 at 

initial measurement because childhood growth could potentially affect the compartment 

mobility and thus the equilibrium of serum PBB concentration levels. We also excluded 

measurements taken during pregnancy or during any period of breast-feeding because of the 

potential mobilization of PBB into the bloodstream during these times (Eyster et al., 1983; 

Kreuzer et al., 1997).

The final dataset used for our analysis included 364 women. There are between 2 and 7 

serum measurements of PBB per woman. Initial PBB concentration level ranges from 1 to 

559.80 p.p.b. (mean=11.44, median=2.40). Outcome Y*(t) is defined as log(PBB) at time t, 
with the time origin set as July 1, 1973, the time when the PBB contamination started. Study 

entry time L is defined as the time from PBB exposure date to the first study visit. Similarly, 

R is defined as the time from PBB exposure to the most recent PBB serum measurements 

available, December 31, 1993. The initial visit time L ranges from 2.67 to 8.04 years with 

mean=3.74, median=3.71, and interquartile range=(3.38, 3.96). A histogram of the gap times 

between adjacent visits is presented in Web Appendix F.

When we modeled follow-up visit times, we excised separate attentions to the three time 

periods, 1976-1981, 1982-1989, and 1990-1993, to accommodate the special design of the 

PBB study. During 1982-1989, a substudy focused on those with high PBB levels to 

examine the health of those who had been more severely exposed. As a result, serum 

samples available during this time period were mostly contributed by participants of this 

substudy, who tended to have higher PBB levels than a member randomly selected from the 

whole study cohort. After 1990, all participants of the PBB study were aggressively 

contacted for serum samples. Giving a careful consideration of such a study design and 

conjecturing that a high initial PBB level may lead to more frequent follow-up visits, we 

assume the following model for the follow-up visit time process:

(8)

Note that in model (8), we convert the three calendar time intervals stated above into time 

intervals starting from the assigned time origin. The coefficients, α1, α2 and α3, represent 

the effects of the initial outcome on the follow-up time process in these three time intervals 

respectively.
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Table 2 presents the coefficient estimates for the assumed proportional intensity model (8). 

All coefficient estimates are positive. The estimated α2 has the largest magnitude, 0.584, and 

is significantly different from zero with p < 0.01. This result indicates that one unit larger in 

the initial log(PBB) level may be associated with 79% higher intensity of making a follow-

up visit during 1982-1989. This is consistent with our observation in Figure 2, which 

demonstrates participants with higher initial PBB levels have more follow-up visits. In 

contrast, the coefficient estimates for α1 and α3 are close to zero. This may reflect a rather 

uniform visit patterns across all study cohort member during the cohort recruiting and during 

the most recent time periods.

We modeled the outcome log(PBB) by marginal quantile regression models taking the form,

(9)

where 0 < τ < 1. Here, the intercept, β0(τ), represents the τth quantile of log(PBB) level at 

time origin. The time effect, β1(τ), represents the elimination rate of the population τth 

quantile of log(PBB) level over time, and thus is the key quantity of interest in this analysis. 

We applied the proposed method to estimate model (9) with τ = 0.25, 0.50, 0.75, 0.85, 0.90 

and 0.95. We also fit these models by naively applying Wang and Fygenson (2009)'s 

method, which would ignore the dependency between follow-up and outcome. For 

inference, we adopted the bootstrap procedure to obtain standard deviation estimates and 

95% confidence intervals. The bootstrap size was chosen as 500.

In Table 3, we present the coefficient estimates and 95% confidence intervals obtained from 

the proposed method and the naive approach. Based on the naive approach, we obtain 

positive time coefficient estimates at all considered quantile levels. In particular, the 95% 

confidence interval for the time effect on the 75th percentile of PBB concentration is (0.001, 

0.054). This result can lead to a conclusion that among individuals at the 75th percentile of 

PBB distribution the amount of PBB in their blood increases with time. It contradicts with 

the biologic fact that human bodies can not produce chemical PBB (and the exposure did not 

continue). As we explain in Section 1 on Figure 3, these positive time effect estimates are 

probably artifacts caused by ignoring the dependency between outcome and follow-up.

On the other hand, the estimates for β1(τ) from the proposed approach are all negative except 

for the β1(τ) estimate with τ = 0.25, which is extremely close to zero. The negative estimates 

for the time effect are consistent with the biological evidence that PBB concentration in 

blood should decrease over time. By taking into account that subjects with lower initial PBB 

levels tend to contribute fewer serum samples, our inverse intensity-ratio weighting strategy 

assigned larger weights for these subjects and hence correct the bias due to outcome-

dependent follow-up.

In addition, the estimated time coefficients demonstrate an overall trend of increasing with τ. 

The time effect on lower percentiles, such as τ = 0.25, 0.50, 0.75, are not significant while 

the time effect on the 95th quantile is significantly less than zero. Our estimates may be 

interpreted as that the 95th percentile of PBB distribution decreases 5.1% (= 1 − 

exp(−0.052)) per year with 95% confidence interval between 0.7% and 9.2%. The faster 
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elimination rates of upper quantiles (compared to those of lower quantiles) provide some 

confirmation to the conjecture that subjects with higher PBB levels may demonstrate faster 

PBB elimination over time. The interesting and sensible varying pattern of time effect on 

different quantiles cannot be uncovered by traditional longitudinal models that are focused 

on modeling mean outcomes.

We also performed sensitivity analyses, in which we fit two different models for follow-up 

visit times. In one case (Case A), we assume that the proportional intensity model for visit 

times include one additional covariate, BMI, which represents the body mass index of study 

participants at study enrollment. In the other case (Case B), we fit the proportional intensity 

model (8) with Yi(Li) replaced by its discrete version with cutoff points chosen as exp(1) 

and exp(3). The results from adopting these different visit time models are presented in Web 

Appendix E; please see Table E.1–Table E.4. From Tables E.1 and E.3, we note that fitting 

the three different visit time models consistently evidences the presence of outcome-

dependent following during 1982-1989, which conforms to the design of the PBB study. 

Moreover, it renders quite similar estimates for β0(τ). This demonstrates the robustness of 

the proposed method.

In summary, our analysis shows that the PBB concentration distribution shifts down slowly 

over time. Upper quantiles decrease faster than lower quantiles. A significant decreasing 

trend over time has been shown by the data for the 95th quantile of PBB distribution. 

Ignoring outcome-dependent follow-up would result in very biased estimates of β1(τ) 

leading to implausible scientific conclusions.

7. Remarks

Quantile regression offers a robust and flexible approach to analyzing longitudinal data with 

skewed outcomes. Irregular outcome-dependent follow-up is a common data feature but can 

be easily overlooked in practice. The proposed inverse intensity-ratio weighted estimator can 

effectively correct the bias due to irregular outcome-dependent follow-up, with reasonable 

modeling of the follow-up time process.

The current method exposition takes the assumption that the left censoring variable is a fixed 

constant. Nevertheless, the new method can be readily adapted to cases where the left 

censoring variable is random but always observed. Moreover, it is straightforward to extend 

the proposed method to deal with doubly censored longitudinal outcomes, for example, 

measurements subject to a upper detection limit as well as a lower detection limit.

Like Powell (1986)'s censored quantile regression method, our approach can be readily 

extended to cases where the left censoring variable is not just a fixed constant but a random 

variable which is always observed. More specifically, when the outcome Yi(t) is subject to 

left censoring by an observed random variable Ci(t), the proposed method would remain 

valid if one replaces the constant c by Ci(t) and Ci(t) is independent of Yi(t) given Xi(t). 
Such an extension of the proposed method can accommodate more general practical settings, 

for example, a long-term follow-up study where the assay detection limit changes over time.
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The proposed method can be revised to accommodate other types of models for the follow-

up time process, such as proportional mean/rate model (Lin et al., 2000). Our simulations 

suggest that the proposed estimation of the marginal quantile regression model is reasonably 

robust to mis-specifications of the follow-up time model. Even when the adopted 

proportional intensity model departs from the true model, our approach can still achieve 

considerable bias reductions compared to the naive approach that does not make any 

adjustment for outcome dependent follow-up.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of PBB concentration measurements after logarithm transformation.
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Figure 2. 
Distribution of observed log (PBB) at the first visit versus number of measurements.

Sun et al. Page 18

Biometrics. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
An intuitive data illustration of PBB study.

Sun et al. Page 19

Biometrics. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 20

Ta
b

le
 1

Si
m

ul
at

io
n 

st
ud

ie
s 

th
at

 c
om

pa
re

d 
th

e 
pr

op
os

ed
 m

et
ho

d 
an

d 
th

e 
na

iv
e 

ap
pr

oa
ch

: E
m

pS
D

 –
 e

m
pi

ri
ca

l s
ta

nd
ar

d 
de

vi
at

io
n;

 A
vg

SD
 –

 th
e 

av
er

ag
e 

of
 s

ta
nd

ar
d 

de
vi

at
io

n 
es

tim
at

es
; C

ov
95

 –
 th

e 
co

ve
ra

ge
 r

at
e 

of
 a

 9
5%

 c
on

fi
de

nc
e 

in
te

rv
al

.

N
ai

ve
P

ro
po

se
d

B
oo

ts
tr

ap
pi

ng
Sa

m
pl

e-
ba

se
d

E
ff

ec
t

T
ru

e
B

ia
s

E
m

pS
D

B
ia

s
E

m
pS

D
A

vg
SD

C
ov

95
A

vg
SD

C
ov

95

C
as

e 
1

τ 
=

 0
.2

5

In
te

rc
ep

t
4.

16
3

-0
.0

77
0.

15
7

-0
.0

11
0.

16
2

0.
17

2
0.

97
0.

19
4

0.
95

Z
1

-1
.3

37
0.

14
9

0.
28

4
0.

02
8

0.
30

7
0.

32
3

0.
96

0.
34

8
0.

94

Z
2

0.
66

3
0.

13
1

0.
17

5
0.

01
1

0.
19

0
0.

18
9

0.
95

0.
20

1
0.

94

t
-1

0.
03

3
0.

03
2

0.
00

07
0.

03
5

0.
04

1
0.

97
0.

05
4

0.
96

τ 
=

 0
.5

In
te

rc
ep

t
4.

5
-0

.0
66

0.
14

5
-0

.0
07

0.
14

4
0.

15
3

0.
95

0.
16

2
0.

95

Z
1

-1
0.

13
4

0.
26

9
0.

01
5

0.
26

9
0.

28
7

0.
96

0.
30

1
0.

95

Z
2

1
0.

13
0

0.
16

9
0.

00
2

0.
17

1
0.

17
3

0.
95

0.
17

4
0.

93

t
-1

0.
02

8
0.

02
7

-0
.0

00
6

0.
02

8
0.

03
1

0.
97

0.
03

6
0.

97

τ 
=

 0
.7

5

In
te

rc
ep

t
4.

83
7

-0
.0

61
0.

15
5

0.
00

2
0.

14
9

0.
15

9
0.

96
0.

16
5

0.
95

Z
1

-0
.6

63
0.

11
7

0.
30

0
-0

.0
10

0.
27

8
0.

29
8

0.
96

0.
30

0
0.

94

Z
2

1.
33

7
0.

14
2

0.
19

1
0.

00
08

0.
17

8
0.

18
5

0.
96

0.
18

4
0.

94

t
-1

0.
02

5
0.

02
7

-0
.0

02
0.

02
7

0.
03

0
0.

97
0.

03
3

0.
96

C
as

e 
2

τ 
=

 0
.2

5

In
te

rc
ep

t
4.

13
4

-0
.0

29
0.

12
1

0.
00

6
0.

12
1

0.
12

5
0.

94
0.

13
5

0.
93

Z
1

-1
.3

66
0.

06
2

0.
21

8
-0

.0
03

0.
21

1
0.

22
5

0.
96

0.
23

5
0.

95

Z
2

0.
63

4
0.

06
5

0.
12

7
-0

.0
01

0.
12

9
0.

13
2

0.
95

0.
13

5
0.

94

t
-1

0.
02

2
0.

02
6

0.
00

1
0.

02
7

0.
03

1
0.

97
0.

03
8

0.
97

τ 
=

 0
.5

In
te

rc
ep

t
4.

41
8

-0
.0

43
0.

14
2

0.
00

6
0.

13
6

0.
14

6
0.

96
0.

15
5

0.
94

Biometrics. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 21

N
ai

ve
P

ro
po

se
d

B
oo

ts
tr

ap
pi

ng
Sa

m
pl

e-
ba

se
d

E
ff

ec
t

T
ru

e
B

ia
s

E
m

pS
D

B
ia

s
E

m
pS

D
A

vg
SD

C
ov

95
A

vg
SD

C
ov

95

Z
1

-1
.0

82
0.

09
7

0.
26

1
-0

.0
05

0.
24

4
0.

26
3

0.
96

0.
27

5
0.

95

Z
2

0.
91

8
0.

09
3

0.
16

6
-0

.0
07

0.
15

4
0.

15
5

0.
94

0.
15

7
0.

93

t
-1

0.
02

7
0.

02
8

0.
00

1
0.

02
8

0.
03

1
0.

97
0.

03
5

0.
96

τ 
=

 0
.7

5

In
te

rc
ep

t
4.

77
7

-0
.0

60
0.

19
5

0.
00

2
0.

17
8

0.
19

0
0.

96
0.

19
9

0.
95

Z
1

-0
.7

23
0.

13
4

0.
38

3
0.

00
1

0.
32

7
0.

33
9

0.
94

0.
35

2
0.

93

Z
2

1.
27

7
0.

15
1

0.
24

1
-0

.0
08

0.
20

9
0.

21
0

0.
94

0.
20

5
0.

92

t
-1

0.
03

3
0.

03
5

0.
00

04
0.

03
4

0.
03

7
0.

97
0.

04
0

0.
96

Biometrics. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 22

Table 2
Parameter estimates of the proportional intensity model for PBB study

Coeff Estimate exp(Estimate) p-value

α1 0.027 1.03 0.61

α2 0.584 1.79 < 0.01

α3 0.039 1.04 0.52
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Table 3
Parameter estimates and 95% confidence interval for PBB study

Naive Proposed

Quantile Estimate 95% CI Estimate 95% CI

Intercept

25th 0.150 (0.092, 0.208) 0.182 (0.155, 0.210)

50th 0.852 (0.707, 0.997) 0.904 (0.609, 1.199)

75th 1.496 (1.246, 1.745) 1.435 (1.171, 1.699)

85th 2.298 (1.763, 2.833) 2.057 (1.635, 2.479)

90th 2.829 (2.182, 3.475) 2.956 (2.357, 3.555)

95th 3.813 (3.112, 4.514) 4.047 (3.379, 4.716)

Time

25th 0.009 (2e-4, 0.018) 6e-17 (-0.008, 0.008)

50th 0.006 (-0.007, 0.018) -0.009 (-0.024, 0.007)

75th 0.028 (0.001, 0.054) -4e-17 (-0.012, 0.012)

85th 0.019 (-0.027, 0.064) -8e-4 (-0.024, 0.022)

90th 0.036 (-0.017, 0.090) -0.026 (-0.056, 0.005)

95th 0.046 (-0.003, 0.096) -0.052 (-0.097, -0.007)
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