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Clonal architecture of del(5q) myelodysplastic syndromes:
aberrant CD5 or CD7 expression within the myeloid
progenitor compartment defines a subset with high
clonal burden
Leukemia (2016) 30, 517–520; doi:10.1038/leu.2015.158

Myelodysplastic syndromes (MDSs) represent a heterogeneous
hematopoietic stem cell disorder.1 A precise estimation of the
prognosis within the various MDS subgroups is essential for
tailored therapeutic decisions. Especially, MDS patients with an
isolated deletion of the long arm of chromosome 5 (del(5q))
represent a distinct subgroup regarding clinical outcome with a
favorable prognosis in the majority of cases.2 Furthermore, they
present with characteristic cytomorphological features, such as
hypolobated megakaryocytes, macrocytic anemia and a normal or
increased peripheral platelet count.3 Recently, flow cytometry
(FCM) has been shown to serve as a valuable additional diagnostic
and prognostic tool, especially to separate between unilineage
and multilineage dysplasia.4,5 Besides, it is known that abnormal
antigen expression on myeloid progenitor cells (myPCs) is
associated with a poor outcome.6,7 In fact, aberrant CD7
expression on myPC of anemic lower-risk MDS patients predicts
for a significantly lower response rate to erythropoiesis-
stimulating agent (ESA) therapy irrespective of comparable other
clinical predictive markers (erythropoietin level, transfusion
burden).8 The pathophysiological background for this observation
is still unknown. Notably, it has not been shown so far whether
these distinct immunophenotypic characteristics correlate with
presence and extent of clonal hematopoiesis, which in turn might
not be responsive to growth factor stimulation. Therefore, in this
study we separated different hematopoietic cell compartments of
del(5q) MDS patients by fluorescence-activated cell sorting (FACS)
and quantified the respective distribution of clonal burden with
interphase fluorescence in situ hybridization (iFISH).

In total, 41 bone marrow samples (IPSS-R very low/low/int = 22,
high/very high= 19) of 30 MDS patients with del(5q) were
investigated (Supplementary Table 1). Before cell sorting, on a
FACS-Aria-II (BD, San Jose, CA, USA), samples were immunophe-
notyped to ensure the presence of the cell populations to be
sorted using a preparation, gating and analysis procedure
according to IMDSFlow Working Group guidelines.4 Thus, the
following cell populations were defined and sorted: myPC—
SSClowCD45dimCD34+CD117+, myPC with/without CD56 expres-
sion; granulopoiesis (GP)—SSC++CD45dim and their respective
maturation stages (CD13+CD16−, CD13−CD16−, CD13+CD16+);
and nucleated red cells (NRC)— CD45−CD235a+CD71(+)++

(Supplementary Figures 1A and E). A range of 5000–50 000 cells
were sorted for the subsequent iFISH analyses. Del(5q) was detected
using the LSI EGR1/D5S23,D5S721 Dual Color Probe (Abbott,
Wiesbaden, Germany). A detailed description of all methods is
given as Supplementary Information at Leukemia’s website.
First, the distribution of clonal cells in the main hematopoietic

compartments was analyzed. As a result, clonal iFISH+ cells could
be detected in all subsets with the highest frequency in myPC
(77%) followed by GP (69%) and NRC (31%), respectively
(Po0.020; Figure 1a). Braulke et al.9 described a high clonal
burden in MACS-sorted CD34+ cells in peripheral blood and
proposed this method for therapeutic monitoring of patients.
Furthermore, Tehranchi et al.10 reported that the malignant clone
is dominant and even persists in the progenitor cell compartment
when patients enter complete remission after lenalidomide
treatment. These findings together with our current data confirm
the high frequency of clonal cells predominant in the myPC again
providing evidence for MDS being a stem cell disease.
Next, we evaluated immunophenotypically characterized

maturation stages of GP. We observed that the clonal burden
declined significantly with maturation with the lowest frequency
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of del(5q) cells in the CD13+CD16+ most mature compartment
(P= 0.023; data not shown). In addition, we aimed to investigate
whether there is a correlation between disease stage by IPSS-R
(very low/low/int vs high/very high) and clonal burden in the
cellular subpopulations. In fact, myPC presented with a compar-
able high clonality independent from IPSS-R risk category
(Figures 1b and c). Remarkably, the comparison of myPC and GP
resulted in a significantly lower frequency of clonal iFISH+ cells in
the mature and immature GP in del(5q) MDS with lower IPSS-R
(myPC: 87% vs mature and immature GP: 65% and 61%,
respectively), whereas in higher-risk MDS, myPC and GP showed
similar high percentages of clonality. This points toward a
proliferation and differentiation advantage of the cytogenetically
abnormal clone, which becomes even more prominent with the
evolution into more advanced clinical stages. The high clonality
within the GP is not surprising but has not been so far investigated
in del(5q) MDS. As GP represents a considerable part of nucleated
cells, it also mainly reflects the clonal burden in the whole bone
marrow. Especially in lower-risk MDS, GP seems to be an easily
accessible target for therapy monitoring. This thesis is supported
by Lübbert et al.11 who investigated the GP in four MDS patients
during decitabine treatment, using density gradient cell separa-
tion. Dependent on the success of therapy they reported a
reappearance of normal GP as well as a modest differentiation of
clonal GP.
Although to a lesser extent than myPC and GP, nucleated red

cells (NRCs) showed a distinctive clonal involvement, as well. The
extent of clonality within erythropoiesis was wide spread within
the entire MDS cohort (Figure 1a). Especially in lower-risk MDS
with anemia and dysplastic alterations of erythropoiesis as one of
the leading symptoms, NRC might also serve as a compartment
worth to be considered for therapy monitoring. In the future, an
immunophenotypic separation of NRC, for example, in CD71+

CD117+CD105+ immature NRC vs the more mature counterpart
(CD105−), might allow new insights in terms of the extent of
clonality within the different maturation stages of erythropoiesis.
A step further, we addressed the question whether abnormal

antigen expression on myPC is associated with the frequency of
clonality. Notably, sorted myPC with aberrant CD56 expression
included significantly more iFISH+ cells compared with the
immunophenotypically inconspicuous counterpart in the same
samples (81% vs 54%, P= 0.043; Figure 1d). Of note, CD56
expression on myPC per se was not associated with a more
advanced clinical score, as only three of the five sorted samples
belonged to patients with a high/very high IPSS-R score and/or del
(5q) as part of a complex karyotype.
Furthermore, Westers et al.8 found an association between

abnormal antigen expression on myPC, for example, CD7, CD56
and CD11b, and resistance to ESA treatment in transfusion-
dependent lower-risk MDS. Although mechanistically not well
understood at this time, an extension of the Nordic score adding
abnormal antigen expression on myPC besides erythropoietin
levels was proposed. Rigolin et al.12 detected a higher percentage
of cytogenetically abnormal metaphases in patients nonrespon-
sive to erythropoietin. Bardet et al.13 point to the importance of
aberrant CD7 expression in MDS diagnostics, too. Therefore, we
investigated the clonal involvement in a subgroup of predomi-
nantly lower-risk MDS harboring del(5q) plus an aberrant CD5/CD7
expression on myPC and compared it with a cohort with matched
IPSS-R but without this aberrant antigen expression
(Supplementary Table 1). Remarkably, the frequency of clonal
cells was significantly higher in all of the FACS-sorted main
populations (myPC, GP and NRC) compared with the respective
controls (Figures 2a and c). This difference was most prominent in
NRC (72% vs 17%, P= 0.002) compared with GP (88% vs 56%,
P= 0.003) and myPC (88% vs 73%, P= 0.035). In addition, we found

Figure 1. Frequency of clonal iFISH+ cells. (a) Main cell compartments (myPC, n= 37; GP, n= 31; NRC, n= 31; myPC vs GP, P= 0.015; myPC vs
NRC, Po0.001; GP vs NRC, Po0.001). Paired comparison of clonal iFISH+ cells in myPC and maturing subpopulations of GP according to
IPSS-R risk groups: (b) very low/low/int, n= 17 (myPC vs CD13+CD16−, P= 0.004; myPC vs CD13+CD16+, P= 0.009); (c) high/very high, n= 13
(not significant). (d) Paired comparison of myPC according to aberrant CD56 expression (n= 5, P= 0.043). *Po0.05; **Po0.005.
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slightly higher serum erythropoietin levels in patients with
aberrant CD5/CD7 expression compared with the control group
(355 vs 78 U/l) while transfusion burden did not differ
(Supplementary Table 1). These results provide for the first time
some explanation on the clonal level for the above mentioned
theory of phenotypic alterations (for example, CD5 on myPC) and
subsequent resistance to ESA. Owing to these findings it might
be feasible to incorporate the knowledge on the phenotypically
abnormal myPC together with the high clonal burden in NRC in
future trial design, for example, combining lenalidomide and
hypomethylating agents.
Finally, it is known that the presence of a TP53 mutation in del

(5q) MDS is associated with lenalidomide treatment failure.14 In
order to associate our findings with the respective clonality on the
molecular level, we compared the iFISH results with the mutation
load of five patients presenting with a del(5q) and a concomitant
TP53 mutation. Considering the main cell compartments, we
observed a similar mutational load of TP53 within myPC and NRC
(50% and 49%, respectively), whereas GP showed a lower
mutation load (29%). Interestingly, in all FACS-sorted compart-
ments, the clonal burden assessed by mutational analysis of TP53
was lower compared with the amount of cells harboring a del(5q)
as assessed by iFISH. Significance was reached for the GP (GP: 29%
vs 83%, n= 5, P= 0.043; myPC: 50% vs 85%, n= 4; NRC: 49% vs
77%, n= 3). This very high percentage of iFISH+ cells could be
attributed to the presence of an aberrant CD5/CD7 expression
per se in four of the five patients, but points also toward del(5q) as
early event in the pathogenesis of MDS compared with the TP53
mutation. These data support the paradigm that mTP53 is a late
event in the evolution of MDS as well as confirms the
heterogeneous character of this disease.15

In summary, our data show a correlation of specific aberrant
phenotypes detected by FCM and the respective proportion of
clonal cells within different hematopoietic subpopulations. The
data help to improve our understanding of MDS biology and
warrant further evaluation of FCM in diagnostics and treatment
monitoring of MDS.
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