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Abstract

Novel carbon quantum dot (CQD)-modified BiOI photocatalysts were prepared via a facile hydrothermal process.
The CQD-modified BiOI materials were characterized by multiple techniques. The CQD with an average size around
several nanometers was distributed on the surface of BiOI microsphere. Its photocatalytic activity was investigated
sufficiently by the photodegradation of methylene orange (MO). The results showed that the CQD/BiOI 1.5 wt.%
sample exhibited the optimum photocatalytic activity, which was 2.5 times that of the pure BiOI. This improvement
was attributed to the crucial role of CQDs, which could be acted as a photocenter for absorbing solar light, charge
separation center for suppressing charge recombination.
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Background
The exploration and construction of new photocatalysts
with high catalytic efficiency in sunlight is a core issue in
photocatalysis all the time and is also significant in solv-
ing current environment and energy problems [1–3].
Recently, bismuth oxyhalides (BiOX, X = Cl, Br, and I) as
a novel ternary oxide semiconductor have drawn much
attention because of their potential application in photo-
catalysis. Among them, BiOI is photochemically stable
and has the smallest band gap (about 1.7–1.9 eV), which
can be activated by visible light irradiation [4–6]. How-
ever, the narrow band gap could also lead to a quick re-
combination of the photogenerated electron–hole pairs.
Hence, inhibiting the recombination of the photogener-
ated electron–hole pairs was the key point to enhance
the photocatalytic property.
Carbon quantum dot (CQD), as a novel issue of re-

cently found nanocarbons, exhibits excellent photophysi-
cal properties. Especially, the strong size and excitation
wavelength-dependent photoluminescence (PL) behav-
iors would enhance the photocatalytic properties of the

CQD-based composites [7, 8]. Previous studies have shown
that the electron-accepting and transport properties of car-
bon nanomaterials provide a convenient way to separate
photogenerated electrons; thus, enhanced photocatalytic
performance can be achieved through the construction
of semiconductor/carbon composites [9, 10]. Notably,
the design of complex photocatalysts (TiO2/CQDs,
Ag3PO4/CQDs, Bi2MoO6/CQDs) to utilize more sun-
light has been reported [11–13]. Considering such re-
markable properties of CQDs and the limitations of the
BiOI photocatalytic system, the combination of CQDs
and BiOI may be regarded as an ideal strategy to con-
struct highly efficient complex photocatalytic systems.
In this work, we prepared a CQD/BiOI nanocomposite

photocatalyst via a facile hydrothermal process. The re-
sults indicated that the CQDs were successfully com-
bined with the BiOI microsphere and the introduction
of CQDs could efficiently increase the concentration and
the migration ratio of the photogenerated carrier, which
was the key for the increased photocatalytic property.

Methods
Reagents
All chemicals used in this study were of analytical grade
(ChengDu Kelong Chemical Co.) and were used without
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further purification. Citric acid (C6H8O7 · H2O, 99.5 %),
ethylenediamine (C2H8N2, 99 %), Bi(NO3)3 · 5H2O (99 %),
KI (99 %), ethylene glycol (C2H6O2, 99.5 %), ethanol
(C2H6O, 99.7 %), and distilled water were used in all
experiments.

Synthesis of CQD-Modified BiOI
CQD powder was synthesized according to the literature
followed by freeze drying [14]. BiOI microspheres were
synthesized by a facile solvothermal method. Typically,
0.4 g KI and 1.16 g Bi(NO3)3 · 5H2O were dissolved in
40 mL of ethylene glycol. Then, a certain content of
CQD powder was added into the solution. Subsequently,
the mixture was transferred to a 50-mL Teflon-lined
stainless steel autoclave and the reaction was kept at
160 °C for 12 h. Finally, the resulting precipitate was col-
lected, washed thoroughly with deionized water and
ethanol, and dried at 60 °C in vacuum. Pure BiOI and
CQD-modified BiOI samples with different mass ratios
(0.5, 1, 1.5, and 2 wt.%) were synthesized using a similar
route by tuning the content of CQDs.

Instruments
The X-ray diffraction (XRD) patterns of the samples were
recorded on a Danton TD-3500 X-ray diffractometer
using Cu Kα radiation (λ = 1.54 Å). The field-emission
scanning electron microscopy (FE-SEM) measurements
were carried out with a field-emission scanning electron
microscope (Hitachi, SU-8020). Transmission electron
microscopy (TEM) micrographs were taken with a
JEOL-JEM-2010 (JEOL, Japan) operated at 200 kV.
Fourier transform infrared (FT-IR) spectra (KBr pellets)
were recorded on Nicolet model Nexus 470 FT-IR equip-
ment. X-ray photoelectron spectroscopy (XPS) analysis
was performed on an ESCA Lab MKII X-ray photoelec-
tron spectrometer using the Mg Kα radiation. UV-vis ab-
sorption spectra of the samples were obtained on a UV-vis
spectrophotometer (Hitachi, U-3900), and BaSO4 powder
was used as the substrate. The PL spectra were measured
using a customized single-photon counting system
(Beijing Zolix), A He-Ga laser (λ = 325 nm) was used as
the excitation source. The photoelectric performance was
measured using an electrochemical system (CHI-660B,
China). BiOI and CQD/BiOI electrodes served as the
working electrode; the counter and the reference elec-
trodes were a platinum wire and a saturated Ag/AgCl
electrode, respectively. A solution of 0.1 M NaSO4

was used as an electrolyte solution for the measure-
ment, and a 150-W Xe arc lamp was utilized as the
light source for the photoelectrochemical (PEC) meas-
urement. The photoresponse of the photocatalysts in
the presence and absence of visible light was mea-
sured at 0.0 V. Electrochemical impedance spectra
(EIS) were recorded in the open circuit potential

mode, and the frequency was ranged from 100 kHz
to 0.01 Hz.

Trapping Experiment
Potassium iodide (KI), tertbutyl alcohol (TBA), and po-
tassium dichromate (K2Cr2O7) were used to trap hole,
·OH, and photogenerated electrons, respectively. Photo-
catalyst (0.1 g) with different trapping agents was added
into MO (100 mL, 50 mg/L) aqueous solution. The scav-
engers used in this research are tertbutyl alcohol (TBA,
1 %) for ·OH, potassium dichromate (K2Cr2O7, 1 %) for
e−, and potassium iodide (KI, 1 %) for h+, respectively.

Photocatalytic Activity Measurement
The photocatalytic activities of the as-prepared samples
were evaluated by the degradation of methyl orange (MO)
under visible light irradiation at ambient temperature
using a 150-W Xe lamp with a 420-nm cutoff filter as the
light source. In each experiment, 100 mg of photocatalyst
was dispersed in an MO (100 mL, 50 mg L−1) aqueous so-
lution. Prior to irradiation, the solution was continuously
stirred in the dark for 1 h to ensure the establishment of
adsorption–desorption equilibrium between the photo-
catalysts and the degrading pollutants. During the pho-
toreactions, the MO solutions with photocatalysts were
continuously stirred with magnetometric stirrer, and a
3-mL sample solution was taken out at every 10-min
interval during the experiment, followed by centrifuga-
tion and filtration to remove the photocatalysts. The
concentrations of MO were determined by monitoring
the change of optical density at 465 nm, with a Varian
UV-vis spectrophotometer (Cary-50, Varian Co.).

Results and Discussion
The morphology of the as-prepared CQD/BiOI compos-
ites was shown in Fig. 1a, b. As seen, the sample was
composed of uniform layered structure nanoplates and
presented microsphere morphology. The diameter was
about 1 to 2 μm and the thickness of the nanoplates was
less than 50 nm. The SEM images of the other series
samples were also given in Additional file 1: Figure S1,
and it can be seen that the adding of CQDs would not
change the original morphologies of BiOI. The nitrogen
adsorption–desorption isotherms and the corresponding
pore size distributions of the as-obtained samples were
shown in Fig. 1c. According to the result, the calculated
specific surface area was 42 m2/g. Obviously, this large
specific surface area could have a positive effect on
photocatalytic property [15, 16].
The XRD patterns of the series of CQD/BiOI compos-

ites were shown in Fig. 1d. It can be clearly seen that these
photocatalysts were crystallized in a single phase. All the
samples can be indexed to the tetragonal structure BiOI
(JCPDS 10-0445). However, for the CQD-modified BiOI
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samples, no characteristic peak of CQDs (about 26°)
can be found, which should be attributed to the low
CQD content in the samples. Actually, if the content
was lower than 5 %, which was hardly characterized
by XRD, similar work was also demonstrated in the
previous report [12, 17].
For a further investigation, the TEM and HRTEM

were shown in Fig. 2a, b. Obviously, the nanoplates
and microsphere morphology can be found in Fig. 2a,
which was in agreement with the SEM result before.
The high-resolution image was shown in Fig. 2b.
Clearly, many uniformed particles were distributed on
the surface of the BiOI; and in the corresponding
HRTEM image, it can be seen that these particles
have distinct lattice spacing. An atomic spacing
(0.332 nm) could be distinguished, which could be
ascribed to the (002) lattice fringes of CQD. The
TEM and HRTEM results were directly indicated that
the CQDs were successfully modified on the BiOI
microsphere.
FT-IR spectra were also carried out to further

characterization of CQD/BiOI (Fig. 2c). The absorption
band at 1624 cm−1 should assign to the stretching
modes of BiOI [12]. The absorption band was located at
1384 cm−1 which should be attributed to the stretching
modes of NO3

− groups and C=C [18], and the band at
1046 and 880 cm−1 was associated with the skeletal vi-
bration of sp2 and sp3 C–H and C–OH [12]. Obviously,
due to the existence of CQDs, the bond was largely

enhanced, which further demonstrated the existence of
CQDs in these composites.
XPS spectrum was also used to study the surface

properties of the CQD-modified BiOI sample as
shown in Fig. 2d. It can be seen that C peaks were at
284.7, 286, and 288.3 eV, which could be assigned to
the C–C bond with the sp2 orbital, C–O–C bond,
and C=O bond, respectively [19]. As for the O 1s
(Additional file 1: Figure S2a shown), two peaks lo-
cated at 530.8 and 531.4 eV also should be ascribed
to the C–O–C and C=O bond in CQDs, respectively.
The Bi 4f and I 3d also were shown in Additional file 1:
Figure S2b, c, both of which were consistent with the re-
ported [18, 20].
Before the photodegradation process, the adsorption–

desorption property was tested during 60 min and the
result was given in Additional file 1: Figure S3. It can be
seen that all the samples shown excellent adsorption
ability, which should be attributed to the huge specific
surface areas of BiOI. This adsorption ability was en-
hanced with the CQD content increased, which should
ascribe to the surface electron accumulated in CQDs
[21]. The photocatalytic activities were evaluated as
shown in Fig. 3a. Clearly, all the CQD-modified BiOI
samples exhibited higher photocatalytic activity than
pure BiOI, and the photocatalytic efficiency was
1.5 wt.% > 2 wt.% > 1 wt.% > 0.5 wt.% > pure BiOI. For
the 1.5 wt.% sample, it can degrade 98 % of MO in
50 min while there is only 40 % of the pure BiOI

Fig. 1 The SEM images (a, b) and nitrogen adsorption–desorption isotherms. Insert: the corresponding pore size distributions of CQD/BiOI
1.5 wt.% sample (c). XRD patterns of the series of CQD/BiOI composites (d)
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Fig. 3 Photocatalytic degradation of MO in the presence of pure BiOI and CQDs/BiOI materials under visible light (λ > 420) irradiation (a).
The UV-vis diffuse reflectance spectroscopy of the pure BiOI and the series of CQD/BiOI samples (b). Transient photocurrent responses
(c) and electrochemical impedance spectroscopy (EIS) Nyquist plot (d) of the series samples

Fig. 2 The TEM images of CQD/BiOI 1.5 wt.% sample (a, b). FT-IR spectra of pure BiOI and CQD/BiOI 1.5 wt.% samples (c). the XPS C 1s spectra of
the CQD/BiOI 1.5 wt.% samples (d)
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sample. The CQDs would act as an electron-accepting
and transport center, which would result in a lower re-
combination rate of photoinduced electron–hole pairs.
The light absorption and the charge transportation

and separation were the key properties of the high per-
formance of CQD/BiOI photocatalyst. UV-vis spectros-
copy has been proved for understanding the electronic
structure of semiconductors. As can be seen in Fig. 3b,
the pure BiOI sample could absorb the wavelength less
than 750 nm which indicate a strong light absorption
and the result was in accordance with the previous
report [4, 5]. Meanwhile, for the CQD-modified samples,
the absorption intensity increased with the CQD content
increase. The increased light absorption may generate
more electron–hole pairs during the photocatalytic
process.
As well known, the charge separation is the most com-

plex and key factor essentially determining the efficiency
of photocatalysis [22]. For a deep investigation, the PEC
system was accompanied to investigate the photophysi-
cal behaviors of photogenerated electron–hole pairs as
shown in Fig. 3c. It was found that the photocurrent re-
sponse of all CQD/BiOI samples were higher than the
pure BiOI sample, especially. As shown, the CQD/BiOI
1.5 wt.% sample was nearly seven times higher than the
pure BiOI. The result suggested a more efficient separ-
ation and longer lifetimes of photoexcited electron–hole

pairs. The EIS result (shown in Fig. 3d) reflected that the
impedance arc radius of CQD/BiOI was smaller than the
pure BiOI under visible light, indicating an enhanced
separation efficiency of the photoexcited charge carriers
in CQD/BiOI. In this regard, the transient photocurrent
response and EIS results revealed an analogous trend
with respect to the photocatalytic activity of the sam-
ples. Furthermore, the PL result also indicated that
the CQD-modified BiOI could effectively decrease the
recombination of the photoinduced electrons and holes
(as seen in Additional file 1: Figure S4).
To determine the involvement of active radical species

during photocatalysis, we performed a trapping experi-
ment (Fig. 4a) for the detection of the hydroxyl radical
(·OH), hole (h+), and electron (e−) in the photocatalytic
process, taking the CQD/BiOI 1.5 wt.% sample as an
example. The degradation behavior of MO is decreased
upon the addition of TBA, K2Cr2O7, and KI, respectively,
validating that ·OH radicals, photoexcited electrons,
and h+ are the main active species for MO removal.
Based on the above results, the reaction mechanism

diagram of CQD/BiOI photocatalysts was proposed as
shown in Fig. 4b. The band gap of BiOI was about
1.8 eV, which can be easily excited by visible light.
However, the ECB and EVB of BiOI were 0.6 and
2.4 eV, respectively. Hence, ·OH could not be pro-
duced via an e−→ ·O2

−→H2O2→ ·OH route. For the

Fig. 4 Photocatalytic activity comparison of the CQD/BiOI 1.5 wt.% sample in different photocatalysis systems under visible light irradiation (a).
The schematic of the separation and transfer of photogenerated charges in the CQD/BiOI combined with the possible reaction mechanism of the
photocatalytic procedure (b). Stability tests of CQD/BiOI 1.5 wt.% sample (c) and the XRD pattern of the sample before and after stability tests (d)
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VB holes in BiOI, it can oxidize OH− or H2O into
·OH due to their high potential energy; thus, it can
be concluded that ·OH should be generated only via
an h+→OH−/H2O→ ·OH route [18]. Furthermore,
the photogenerated electrons would transfer to the
CQDs due to their excellent electronic conductivity,
which resulted in effective separation process for the
photogenerated electron–hole pairs. The transferred
electrons will accumulate on the CQDs and then in-
hibit the recombination of the electron–hole pairs.
Obviously, the enhanced photocatalytic activity can be
achieved, and the CQDs would play a crucial role in
this process.
The photochemical and structural stability of a catalyst

is important for practical applications. The stability of
CQD/BiOI was tested by carrying out the photocatalytic
reaction for multiple runs. The results were presented in
Fig. 4c. The photocatalytic activity during the sixth
runs can be observed. This result demonstrated that
the CQD/BiOI composites have a stable photochem-
ical property. Moreover, the almost unchanged XRD
spectra of CQD/BiOI before and after the stability
test (Fig. 4d) further indicated the phase stability of
the CQD-modified BiOI photocatalysts.

Conclusions
In conclusion, CQD-modified BiOI photocatalysts were
synthesized using a facile hydrothermal treatment process.
After being modified by CQDs, the photocatalytic activ-
ities of degradation of MO under visible light irradiation
were increased greatly. The significant improvement in
photocatalytic performance was attributed to the crucial
role of CQDs in the samples. The CQD modification has
several advantages, including enhanced light harvesting,
improvement of interfacial charge transfer, and suppres-
sion of charge recombination. This work provides useful
information on the design and fabrication of other
CQD-modified semiconductor materials.
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