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Abstract

The thale cress Arabidopsis thaliana is a powerful model organism for studying a wide variety of 

biological processes. Recent advances in sequencing technology have resulted in a wealth of 

information describing numerous aspects of A. thaliana genome function. However, there is a 

relative paucity of computational systems for efficiently and effectively using these data to create 

testable hypotheses. We present CressInt, a user-friendly web resource for exploring gene 

regulatory mechanisms in A. thaliana on a genomic scale. The CressInt system incorporates a 

variety of genome-wide data types relevant to gene regulation, including transcription factor (TF) 

binding site models, ChIP-seq, DNase-seq, eQTLs, and GWAS. We demonstrate the utility of 

CressInt by showing how the system can be used to (1) Identify TFs binding to the promoter of a 

gene of interest; (2) identify genetic variants that are likely to impact TF binding based on a ChIP-

seq dataset; and (3) identify specific TFs whose binding might be impacted by phenotype-

associated variants. CressInt is freely available at http://cressint.cchmc.org.
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Introduction

The sequencing of the Arabidopsis thaliana genome over 15 years ago [1] enabled a new era 

of scientific exploration of this versatile model organism. As “next generation” sequencing 

technologies continue to mature, datasets capable of measuring function on a genome-wide 

scale continue to become more prevalent. Despite an exponential increase in our ability to 

generate data probing function on a genome-scale, there remains a lag in our analytical 

capability to effectively analyze these data to attain new biological insights.

Several useful bioinformatics tools are currently in widespread use in the Arabidopsis 

community (see de Lucas et al. [2], Bassel et al. [3], and Brady et al. [4] for reviews). 

However, as more complex and higher resolution data types become available, there is an 

increasing need for the development of user-friendly computational tools for their analysis. 

In the past five years alone, Arabidopsis data have been released describing genetic variants 

associated with particular traits [5] or altered gene expression levels [6], open chromatin 

regions in multiple tissue types and conditions [7], and DNA binding specificities for 

hundreds of transcription factors (TFs) [8]. Collectively, these data offer new opportunities 

to probe gene regulation and genome function. However, access to the wide range of 

analytical capabilities afforded by these data remains largely limited to bioinformaticians.

We present CressInt (thale cress data intersector), a user-friendly, freely accessible web 

server for integrating and analyzing genome-scale A. thaliana gene datasets. Conceptually, 

CressInt is similar to visually analyzing data in a genome browser such as those provided by 

UC Santa Cruz [9] or Ensembl [10], with the key differences that (1) up to thousands of loci 

of interest can be queried at once; (2) quality-controlled data specific to A. thaliana are pre-

loaded into the CressInt system; and (3) results are downloadable in formats easily amenable 

to further downstream analysis. CressInt combines data from a wide variety of sources, 

including TF genomic binding regions (from ChIP-seq), TF DNA binding specificities (from 

Protein Binding Microarrays (PBMs) [11]), chromatin accessibility (DNAse-seq), and 

genetic variants associated with specific phenotypes (from GWAS) or genotype-dependent 

gene expression levels (i.e., expression quantitative trait loci or eQTLs). The CressInt 

system enables a wide range of queries, from simple (e.g., identifying all datasets 

intersecting genomic regions of interest), to complex (e.g., identifying genetic variants of 

interest likely to affect the binding of specific TFs). To our knowledge, there is currently no 

web server capable of performing these operations on A. thaliana datasets that are already 

integrated into the system. This not only enables easy access to these data for non-

computational experts, but also saves hours of time that would otherwise be spent 

identifying, obtaining, quality checking, and re-formatting the various data sets.

CressInt’s intuitive graphical user interface is designed to be easy to use for non-

bioinformaticians, while maintaining sufficient power and capabilities to enable downstream 

computational analysis. Using three case studies, we demonstrate the ability of CressInt to 

effectively use functional genomics data to generate testable hypotheses involving genes or 

phenotypes of interest. The CressInt web server is freely available at https://

cressint.cchmc.org (Login for review: reviewer; Password: wrlcressint).
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Materials and methods

Data and code availability

All source code developed for the web server is available on Bitbucket (https://

bitbucket.org/weirauchlab/tf-tools-cressint). All datasets are available from the authors upon 

request.

Data collection and quality control

We obtained data from a variety of sources (Table 1). All genome-based datasets are 

organized by plant tissue type (e.g., seedling, leaf, inflorescence, etc.), and stored as UC 

Santa Cruz BED6 files [9]. DNase-seq data indicating open chromatin regions in A. thaliana 

seedlings exposed to heatshock, darkness, and light were taken from Sullivan et al. [7]. 

4,355,790 naturally occurring genetic variants and eQTLs derived from seedlings were 

obtained from Gan et al. [6]. The eQTL set was filtered to only include SNPs with P-values 

< 0.001. GWAS data were obtained from Atwell et al. [5], and genetic variants were 

included in our set of phenotype-associated variants if they either (1) have associations 

exceeding genome-wide significance (P < 2.75×10−7, which corresponds to the Bonferroni-

corrected P<0.05 cutoff used in the original study; 178 SNPs in total) or (2) are among the 

top 10 most strongly associated variants for each phenotype, regardless of P-value (943 

SNPs in total). TF binding specificity models were taken from build 1.01 of the CisBP 

database [8] (http://cisbp.ccbr.utoronto.ca/).

We obtained ChIP-seq data from the Gene Expression Omnibus (GEO) [12]. Beginning with 

all 26 A. thaliana ChIP-seq datasets available in GEO in March of 2015, we used a three-

step quality control procedure to ensure that only high-quality datasets are included in the 

CressInt system. First, we removed any datasets whose peak regions cover > 5% of the A. 

thaliana genome, deeming them too non-specific (with the exception of ChIP-seq for 

histone marks, which mark general regulatory regions and tend to have wider peaks). Next, 

we removed any datasets where the number of peaks obtained from the GEO dataset did not 

match the number of peaks reported in the publication associated with the data – this step is 

necessary because both GEO datasets and methods sections of manuscripts are often 

insufficiently documented to reproduce the reported peak calls. Finally, we ran all peak sets 

through the TF DNA binding motif enrichment algorithm used by HOMER [13], and only 

included datasets where the ChIP’ed TF’s motif ranks in the top three of enriched motifs. A 

total of 16 ChIP-seq datasets, taken from 13 different studies, passed our QC process (Table 

1).

Differential binding of transcription factors to genetic variants

We used PBM data describing the DNA binding specificities of 575 A. thaliana TFs taken 

from Weirauch et al. [8], and a similar procedure used in that study and another recent study 

[14] to identify TFs whose binding might be affected by the alleles of 4,355,790 naturally 

occurring A. thaliana genetic variants [6]. One type of data produced by a PBM experiment 

is the E-score, which ranges from −0.50 to +0.50, and quantifies the relative preference of 

the binding of the tested TF to each of the 32,896 possible 8 base sequences [11]. We 

constructed a matrix containing the PBM 8-mer E-scores for 534 PBM experiments (267 
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constructs, each assayed on two independent array designs). 466 of these experiments 

directly assay the DNA binding specificity an A. thaliana TF. 68 of them measure a related 

TF in another organism that has a similar DNA binding domain (DBD) to at least one A. 

thaliana TF (68 experiments). Each PBM experiment was mapped to its “closest” A. 

thaliana TF by either (1) assigning it to the A. thaliana TF that was directly measured 

(trivial); or (2) (for PBMs measuring non-A. thaliana TFs) assigning it to the A. thaliana TF 

with the most similar DBD (based on percent amino acid identity in DBD alignments - see 

Weirauch et al. [8] for details of how thresholds for these inferred binding specificities are 

established).

We then scored the alleles of each genetic variant using the resulting 8-mer E-score matrix. 

For a given variant, we first determined all 8-mers in the reference genome sequence 

overlapping each allele - for example, a SNP will overlap eight 8-mers, plus their reverse 

complements, for each allele. For each PBM experiment, we then identified the highest 

scoring 8-mer E-score attained by any of the reference allele sequences (Eref), and the 

highest attained by any non-reference allele (Enon-ref). We then identified all PBM 

experiments where only one of Eref and Enon-ref has an E-score value exceeding 0.45 (values 

above this threshold will likely be strongly bound by the given TF [15]). All experiments 

meeting this criterion were then assigned a final score Efinal, which is the maximum value of 

(Eref and Enon-ref). Finally, we also calculated the predicted difference in binding strength 

between the two alleles as Edelta = |Eref - Enon-ref|. We then created a final ranked list of TFs 

(sorted by Efinal) whose binding is likely to be affected by the alleles of a given SNP (e.g., 

strongly binding to one allele, but not binding to the other).

Web server implementation

The user interface to the CressInt analysis pipeline is served by a GNU/Linux virtual 

machine running CentOS 6 and the Apache 2.2 web server. The web front-end is 

implemented primarily as HTML “templates” rendered through the use of a PHP library 

(http://twig.sensiolabs.org/), which maintains a separation of concerns between interface and 

application logic. Client-side JavaScript manages interaction among input form elements in 

the web front-end, and the form submission is done asynchronously (via Ajax), allowing 

certain types of validation errors such as missing inputs or malformed BED files to be 

detected and reported without a page reload. Input data for analysis is received and 

processed by a Perl CGI (Common Gateway Interface) script, which in turn interfaces with 

an in-house high-performance computing (HPC) cluster (currently containing over 700 

processing cores) through a set of locally-developed Perl modules, generating shell scripts 

for batch processing. These Perl modules abstract away the implementation details of the 

batch facility (IBM’s Load Sharing Facility [LSF]) and allow interfaces to be written for 

other local or remote HPC load-sharing systems without impacting the front-end web 

service. Intersection analyses are performed using the BedTools suite [16], along with 

custom-written code written in C++. A user may optionally provide an email address to 

receive notification of a completed CressInt analysis, or may simply leave the web browser 

open and wait for the job to complete.
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Results

Overview of the CressInt system

CressInt is designed to be easily useable for non-computational experts, while also 

maintaining sufficient power to be suitable for advanced downstream computational 

analyses. The system accepts one of three different types of inputs (Figure 1, top): (1) 

Genomic coordinates (in UC Santa Cruz BED3, BED4, BED5, or BED6 formats); (2) Gene 

lists (either common gene names or TAIR IDs; or (3) A set of phenotypes of interest, taken 

from a recent GWAS study [5]. The user can also choose to include or exclude functional 

genomics datasets based on data or tissue type (Figure 1, middle). After error and format 

checking, CressInt converts the input into a set of labeled genomic coordinates (in BED file 

format) and intersects these coordinates with the selected datasets. Two sets of results are 

presented to users (Figure 1, bottom): (1) The intersection results, which indicate all data 

sets in the system whose coordinates overlap with the input set; and (2) TF differential 

binding predictions, which identify genetic variants that might impact the binding of specific 

TFs.

The CressInt system currently includes several different types of datasets relevant to gene 

regulation (Table 1). TF DNA binding specificity models taken from the CisBP database [8] 

are used to identify the specific TFs that might differentially bind a given genetic variant. 

The models are based on a large collection of universal PBM experiments covering 575 A. 

thaliana TFs [8]. Briefly, universal PBMs are double-stranded microarrays whose probes are 

designed such that all possible 10 base sequences occur exactly once, and hence all non-

palindromic 32,896 8-base sequences occur 32 times in diverse flanking sequence contexts 

[11]. The resulting data, which track well with binding affinity [15], therefore offer a robust 

estimate of the binding of the assayed TF to every possible 8-base sequence. Although in 

vitro-derived TF binding specificities are in general reflective of in vivo specificities [17], 

we note that there can be exceptions (e.g., in cases where a TF’s binding is modified by a 

co-factor). Using this collection of TF binding models, CressInt has the capability to 

systematically scan the alleles of a given genetic variant to identify the particular TFs whose 

binding it might affect (see Methods).

In addition to TF binding models, CressInt incorporates ChIP-seq datasets taken from a 

variety of studies assaying either the binding of specific TFs (14 datasets), or histone marks 

that are indicative of chromatin state (three datasets) (Table 1). All ChIP-seq datasets were 

subjected to a rigorous three step quality control procedure before being considered for 

inclusion in the system (see Methods). CressInt also includes DNase-seq datasets taken from 

a recent large-scale study [7] and the Plant Regulome database (http://plantregulome.org/

public/). DNase-seq is a next-generation sequencing assay that identifies DNase 

hypersensitive regions on a genome scale, and hence is capable of identifying regions of 

open chromatin in a certain tissue type [18]. Thus, DNase-seq data are useful for identifying 

areas of the genome that are likely to function as regulatory regions bound by TFs.

CressInt also includes the full set of 4,355,790 genetic variants identified in a recent study 

comparing the genomic sequences of 19 A. thaliana strains [6]. Among these variants, 

317,570 are cis expression quantitative trait loci (eQTLs) taken from the same study (at a 
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cutoff of P<0.001). Cis eQTLs are variants that affect the expression of a nearby gene as a 

function of genotype. Thus, eQTLs are useful for identifying functional variants that are 

likely to affect the binding of TFs. CressInt also includes a set of 1,004 genetic variants that 

are associated with one of 107 traits and phenotypes analyzed in a recent genome-wide 

association study (GWAS) [5] (see Methods). Such variants provide important clues for 

understanding genome function and biological diversity, due to their ability to modulate a 

phenotype in a genotype-dependent manner.

In the following sections, we demonstrate the power of CressInt by presenting case studies 

of how a user might use the system. First, we show how it can be used to identify TFs that 

bind to the promoter of a gene of interest. Next, we demonstrate how a user can input their 

own ChIP-seq data in order to identify genetic variants within the ChIP peaks that might 

impact the binding of the ChIP’ed TF. Finally, we show how CressInt can be used to find TF 

binding sites that might be impacted by genetic variants associated with a particular 

phenotype.

Case study 1: Identifying TFs binding to a promoter of interest—A fundamental, 

powerful feature of CressInt is its ability to query genomic regions of interest to generate 

hypotheses. For example, consider the case where a user is interested in identifying potential 

regulators of the AGL20/SOC1 gene, which encodes a MADS box family TF that controls 

the flowering process. To identify possible candidates, the user simply enters “AGL20” and 

defines the desired promoter search space (for this example, we use the region starting at the 

AGL20 TSS and extending 1000 bases upstream). Upon completion of the job, the user is 

provided with data indicating that five different MADS box family TFs all bind the AGL20 

promoter, based on ChIP-seq experiments performed in flower and inflorescence tissues 

taken from three different studies (Figure 2A). Strikingly, all five TFs also play established 

roles in flower development. Further, MADS box TFs form homo- and hetero-dimers upon 

binding DNA [19], suggesting that these TFs might cooperatively regulate AGL20. Further 

supporting the CressInt-generated hypothesis, MADS box TFs recognize the CArG-box 

upon binding DNA [20], and there are five putative CArG boxes in the AGL20 promoter 

region (Figure 2A). A pair is located directly within the peak summits of all five TFs, with a 

third and fourth located just upstream, also near peak summits for all five TFs. In summary, 

through this simple query, we have identified specific binding sites for TFs likely to regulate 

a gene of interest.

Case study 2: Identifying genetic variants likely to affect the binding of a 
ChIP’ed TF—To demonstrate how CressInt can generate specific hypotheses from a user-

provided genome-wide dataset, we submitted PIF1/PIL5 ChIP-seq peak regions in seedlings 

to CressInt as input, and asked the system to identify all likely PIF1 binding sites within 

these peaks that overlap naturally occurring genetic variants. In total, CressInt identified 53 

variants that have a strong predicted binding site (E-score > 0.45) in the Col-0 (reference) 

strain, and a weak site (E-score < 0.30) in at least one other strain. For example, one variant, 

located in the promoter region of the RGA gene (Figure 2B), has a reference allele that is 

predicted to be very strongly bound (E-score = 0.499), with weak binding predicted for the 

alternative allele (E-score = 0.172). Figure 2C depicts the reference and non-reference allele 
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sequences of this variant, along with flanking genomic bases. The reference allele perfectly 

matches the ideal PIF1 binding site (top sequence), while the non-reference allele “breaks” 

this site (bottom sequence). Both PIF1 and RGA are TFs involved in negative regulation of 

seed germination through participation in the gibberellic acid-mediated signaling pathway. 

Further, PIF1 directly increases the expression of RGA by binding to the same site identified 

by CressInt, with binding being abolished upon mutation of this site [21]. This example 

demonstrates that CressInt can be used to identify naturally occurring genetic variants that 

might impact the functional binding of a particular TF. Specifically, it shows how a genome-

wide ChIP-seq dataset can be used to formulate the specific hypothesis that in the Mt-0 

strain, which harbors the alternative allele of this variant, the direct regulation of RGA by 

PIF1 is likely attenuated, due to decreased PIF1 binding at this site. Intriguingly, this locus 

also overlaps ChIP-seq peaks for PIF3/POC1, a bHLH family TF that also recognizes G-box 

motifs (Figure 2B). Like PIF1, PIF3 is a member of the phytochrome interacting factor 

family of TFs, and the two proteins form heterodimers upon binding the G-box [22]. Thus, 

by intersecting the PIF1 ChIP-seq dataset with other datasets available in CressInt, we have 

arrived at the testable hypothesis that PIF1 and PIF3 might cooperatively bind the RGA 

promoter, and that this interaction might be impacted by a naturally occurring genetic 

variant.

Case study 3: Identifying TF binding sites likely to be affected by genetic 
variants associated with a phenotype of interest—As a final illustration, consider a 

user that is interested in the molecular mechanisms underlying the genetic determinants of 

flowering time. This user would start by selecting relevant phenotypes (e.g. “FT_field”, 

which counts the number of days between germination date and appearance of the first 

flower). CressInt then finds all genetic variants associated with the selected phenotypes, and 

identifies potential TFs whose binding they might affect. One such example is illustrated in 

Figure 2D, for a variant located 130 bases upstream of the ATCAF1B gene, which is 

expressed in flowers and plays a putative role in mRNA deadenylation. Although no clues 

for the function of this variant can be gleaned from the available functional genomics data 

(since it does not overlap any datasets), the expression of ATCAF1B is known to be affected 

by the genotype of the variant (i.e., it was identified as an eQTL in Gan et al. [6]), 

suggesting that its functional impact on flowering time is likely due to TF binding events 

specific to one of its alleles. Based on CressInt’s output, the top TF candidate is AtbZIP63, 

which is predicted to strongly bind the “G” allele (E-score = 0.463), and not bind the “A” 

allele (E-score = 0.138) (Figure 2D). Importantly, AtbZIP63 is also expressed in flowers. 

Further, a different genetic variant also associated with flowering time is located proximal to 

the AtbZIP63 gene locus. Collectively, these results implicate a potential role for AtbZIP63 

in flowering time determination, and specifically suggest that a flowering time-associated 

variant located in the promoter of ATCAF1B acts by causing differential binding of this TF. 

Further, they demonstrate how CressInt can be used to generate testable hypotheses for 

mechanisms underlying a particular phenotype, even without a priori knowledge of specific 

genes or genomic regions of interest.
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The CressInt web interface

CressInt is available at http://cressint.cchmc.org (Login for review: reviewer; Password: 

wrlcressint). The CressInt web server has been tested on several web browsers, including 

Google Chrome, Firefox, and Internet Explorer 10 and 11. In addition to the main page for 

creating a new job, the web site has several additional useful features, including Help and 

FAQ pages, details on the incorporated datasets, an update log, links to a variety of other 

Arabidopsis web resources, and a contact page.

The CressInt web interface was designed to be easy to use, yet flexible (Figure 3). At the top 

of the page, a user can select between three modes of operation (corresponding to the three 

case studies above): Intersect, Find TF/SNPs, and Phenotypes to TF/SNPs. Intersect 

identifies all datasets that overlap the user query. Find TF/SNPs identifies genetic variants 

located within the user query regions, and predicts the TFs whose binding they might affect. 

Phenotypes to TF/SNPs starts with a phenotype of interest, and identifies TFs whose binding 

might be affected by variants associated with that phenotype. As described above, users can 

select from multiple input format options, including genomic regions, gene names, and 

phenotypes. Users can paste or type entries into the online form, or upload text files. In the 

‘Parameters’ section, users can select the data and tissue types to be included in the query 

(by default, all datasets are included) (Figure 3, middle). Before submitting a job, a user has 

the option to provide their email address for automatic notification upon completion of their 

job. There is also an option to name the job for future reference. Upon submitting a job, a 

new page appears that automatically refreshes while the jobs run, and posts the final results 

when they are ready.

There are two basic output pages of CressInt (Figure 1): intersection results indicate all data 

in the system whose coordinates overlap with the input set, while TF differential binding 

predictions identify genetic variants that might impact the binding of specific TFs. Both 

outputs are formatted to be easily human-readable, with multiple visualization options. All 

input files and parameter choices are saved and documented for reference. Data can be 

easily sorted or filtered, and are downloadable in tab-delimited text format for processing in 

another application such as Microsoft Excel, or for additional downstream computational 

analysis.

Discussion and Conclusions

We present the CressInt web server, a user-friendly system for leveraging A. thaliana 

functional genomics datasets to formulate testable hypotheses about gene regulation and 

genome function. Through three case studies, we offer examples of how the CressInt system 

can be used to explore Arabidopsis biology. The power of CressInt lies in its combination of 

intuitive design and its inclusion of a wide range of diverse genome-scale datasets. The 

flexibility of the CressInt system design enables easy inclusion of additional datasets as they 

become available, and we encourage members of the plant community to use the provided 

links to alert us of additional useful datasets. In the future, we plan to extend the CressInt 

system to other plant and non-plant model organisms. We expect that CressInt will be a 

useful addition to the Arabidopsis genomic toolkit, and anticipate that it will enable 

numerous insights into the function of plant genomes.
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Figure 1. Overview of the CressInt workflow
As input, users can supply genomic coordinates, gene names, gene IDs, or phenotypes of 

interest (top). CressInt contains a wide range of genome-indexed data sources, which can be 

selected based on the data type or source tissue (middle – see also Table 1). Upon submitting 

a job, the user input is “intersected” with the selected data types, and results are displayed 

providing overlapping genomic coordinates (bottom left) and TF binding sites that overlap 

genetic variants (bottom right).
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Figure 2. Sample applications of CressInt
A. Discovery of TFs binding a promoter of interest, as discussed in “case study 1”. UC 

Santa Cruz genome browser [9] screenshot depicting locations of (top to bottom): AGL20/

SOC1 gene, putative CArG boxes (recognized by MADS box family TFs), and ChIP-seq 

data for seven experiments describing the genome-wide binding of five MADS-family TFs 

in flower and inflorescence tissues. Blue boxes, which contain CArG boxes and ChIP-seq 

peaks for multiple TFs, indicate likely binding sites. B. Identification of genetic variants 

likely to impact the binding of a ChIP’ed TF, as discussed in “case study 2”. See (A) for 

explanation. Green vertical line indicates location of the SNP discussed in “case study 2”. C. 
Data supporting the differential binding of the PIL5 TF to the “case study 2” SNP. Sequence 

logo [23] at top indicates the preferred base at each position of the PIL5 DNA recognition 

sequence – taller nucleotides indicate preference for the corresponding base at the 

corresponding position. DNA sequences below indicate the two alleles of the SNP, along 
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with flanking genomic bases. Note that the reference allele (top) is a strong match to the 

PIL5 DNA binding motif, but the non-reference sequence (bottom) is not. D. Data 

supporting the differential binding of the AtbZIP63 TF to the “case study 3” SNP. See (C) 

for explanation.
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Figure 3. The CressInt web server front page
Screenshot of the CressInt user interface. Here, users can select the “mode” they would like 

to run (top), enter input data (middle top), select from available datasets (middle bottom), 

and provide information on the job being submitted (bottom).

Chen et al. Page 15

Curr Plant Biol. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 16

Table 1

Datasets incorporated into the CressInt system

Data type Source Description

TF DNA binding 
specificity models

Weirauch et al., 2014 [8] CisBP database, which contains thousands of TF binding models across 
eukaryotes

DNase-seq Sullivan et al., 2014 [7] Genome-wide mapping of DNase hypersensitive sites in A. thaliana seedlings

Genetic variants and 
eQTLs

Gan et al., 2011 [6] Multiple reference genomes and transcriptomes for 19 A. thaliana strains

GWAS Atwell et al., 2010 [5] Genome-wide association study of 107 phenotypes in A. thaliana inbred lines

ChIP-seq Chica et al., 2013 [24] H3K4me3 and H3K27me3 marks in leaves

ChIP-seq Willing et al., 2015 [25] H3K27me1 marks in leaves

ChIP-seq Ómaoiléidigh et al., 2013 [26] AG binding in inflorescences

ChIP-seq Pajoro et al., 2014 [27] AP1 and SEP3 binding in inflorescences

ChIP-seq Wuest et al., 2012 [28] AP3 and PI binding in flowers

ChIP-seq Oh et al., 2014 [29] ARF6 binding in seedlings

ChIP-seq Heyman et al., 2013 [30] ERF115 binding in dark growing cells

ChIP-seq Fan et al., 2014 [31] HBI1 binding in seedlings

ChIP-seq Zhiponova et al., 2014 [32] IBL1 binding in seedlings

ChIP-seq Moyroud et al., 2011 [33] LFY binding in seedlings

ChIP-seq Pfeiffer et al., 2014 [34] PIF1 binding in seedlings

ChIP-seq Zhang et al., 2013 [35] PIF3 binding in seedlings

ChIP-seq Brandt et al., 2012 [36] REV binding in seedlings

ChIP-seq Huang et al., 2012 [37] TOC1 binding in seedlings
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