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Abstract

Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in 

the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, 

Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging 

to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and 

characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with 

a slowly varying refractive index. In this paper, the general theory of Fourier phase from first 

principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset 

and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that 

both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence 

quantitative phase microscopy are special cases of this general theory. Analytical expressions are 

provided for both, and simulations are presented to explain and support the theoretical results. 

These results are further used to show how Fourier phase allows the estimation of an axial mean 

spatial frequency profile of the sample, along with depth-resolved characterization of localized 

optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of 

Doppler optical coherence tomography is also provided.

1. INTRODUCTION

Phase is a manifestation of an electromagnetic wave propagating through a medium [1]. In 

microscopic imaging, where the media are often cells and tissue samples with low intrinsic 

contrast under bright-field imaging conditions, phase contrast [2,3] and differential 

interference phase contrast [4,5] microscopes are extensively used to noninvasively visualize 

the structure and dynamics of these unlabeled biological samples. Over time, research 

efforts have focused on developing microscopes with the ability to both visualize and 

quantify this phase contrast [6–12] and applying them to characterize cellular dynamics and 

pathology [13–19]. The phase in these transmission-mode quantitative phase microscopes is 

well understood in wave optics. It is the integral of the sample refractive index along its 

depth—that is, the optical path length (OPL)—with respect to the surrounding medium and 

couples together the refractive index and the sample thickness.
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In the past decade, Fourier-domain optical coherence tomography (FD-OCT) [20,21] has 

been utilized to successfully extend the idea of quantitative phase from transmission-mode 

to reflection-mode [22–24], generating significant interest in the research community [25–

41]. Unlike the transmission phase, however, the phase measured through FD-OCT—either 

using spectral-domain OCT (SD-OCT) or swept-source OCT (SS-OCT) configurations—is 

the phase of the Fourier transform of the spectral interference between the depthwise 

coherently integrated back-reflected waves from within the sample and a reference 

(preferably a common mode). This Fourier phase, therefore, involves an explicit 

recharacterization of the phase associated with the propagating electromagnetic wave and 

carries distinctly different information than the OPL in transmission-mode quantitative 

phase microscopy (QPM). While studying cellular dynamics at a strong interface, the 

authors of [23] showed that Fourier phase at the interface estimates the subresolution change 

in its optical depth location. They named their FD-OCT-derived approach for measuring 

Fourier phase changes at strong interfaces as spectral-domain phase microscopy (SDPM). In 

our own work, we have been interested in extending the measurement of Fourier phase to 

fixed-depth locations within the sample without any strong interfaces. This has led to the 

development of depth-resolved spatial-domain low-coherence quantitative phase microscopy 

(dr-SLQPM) [42,43]. During its development, we realized that both SDPM and dr-SLQPM 

are special cases of a more general and richer theory of Fourier phase. This general 

theoretical framework is the focus of this paper.

We show that Fourier phase in the context of FD-OCT is an estimate of the otherwise 

inaccessible (based on Fourier amplitude) structural information about the sample refractive 

index within the implicit coherence gating enforced by the limited spectral bandwidth of the 

light source. This structural information characterizes the subresolution offset and mean 

spatial frequency of the coherence-gated refractive index at the optical depth being probed.

Subresolution offset, first introduced in [23] for a special case, is in general a measure of the 

subresolution deviation between the optical depth where the measurement is made and the 

optical depth corresponding to the weighted-center of the coherence-gated refractive index 

around the probed optical depth. In the particular case of a strong interface, it can be used to 

measure the subresolution change in the optical depth location of the interface [23]. (Also 

see Eq. (9) and the related discussion, and Section 4).

The mean spatial frequency is a measure of the average rate-of-change of refractive index 

within the coherence gate at the optical depth being probed. It is, therefore, a measure of the 

intrinsic structural property of the coherence-gated refractive index. It quantifies not only the 

changing (increasing or decreasing) optical density within the gate but also its mean 

heterogeneity.

Fourier phase is a joint estimate of these two characteristics of the coherence-gated sample 

refractive index. We show why this is so and derive analytical expressions for this joint 

estimate from first principles. We additionally show that under specific sample and 

measurement conditions, SDPM and dr-SLQPM are special cases of this joint estimate. To 

bring the theoretical framework full circle, we further show that for an ideal source with 

unrestricted spectral bandwidth, all structural information is carried in the Fourier amplitude 
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of FD-OCT and the Fourier phase is zero. The theoretical results presented here are 

illustrated and verified throughout by plotting the derived analytical expressions and 

performing numerical simulations.

These analytical expressions and numerical simulations have interesting implications. Using 

them we estimate the axial mean spatial frequency profile of the sample, along with 

providing depth-resolved characterization of localized heterogeneity of the sample refractive 

index and density changes in the sample refractive index. We also show that they provide a 

Fourier-phase-based explanation of the principle of Doppler OCT (D-OCT), a functional 

extension of FD-OCT [44].

The paper is structured as follows. In Section 2, we present how Fourier phase originates 

and derive its general expression by introducing the concept of structural information. 

Section 3 explains Fourier phase in the context of a slowly varying refractive index and 

presents the corresponding analytical expression. This expression is used to establish the 

validity of dr-SLQPM. In Section 4, the refractive index profile with a strong interface is 

considered, and the general expression for Fourier phase is used to derive the specific 

measurement made by SDPM. In Section 5, Fourier phase is discussed for an ideal source 

with infinite spectral bandwidth. Simulation-based results along with Fourier phase 

applications and a Fourier phase-based explanation of the D-OCT principle are presented in 

Section 6. We conclude in Section 7. For ease of explanation, detailed derivations associated 

with the above sections have been collected in the appendices.

2. GENERAL THEORY

Consider an FD-OCT optical setup that either uses a coherent source with point scanning or 

a spatially incoherent source with full-field illumination. In the latter case, the van Cittert–

Zernike theorem [1] along with the light source properties can be utilized to design optical 

setups (see, for example, [45]) that decompose the sample illumination beam into mutually 

incoherent light channels. In either case, if the illumination angle is small, the back-reflected 

sample field at an en face location (x′, y′) is characterized by a one-dimensional (1D) axial 

refractive index profile ns(z′), with z′ denoting the physical depth [46]. This 1D 

characterization is also used in developing the principle of SDPM [23,24] and FD-OCT 

itself [20].

Assuming that the sample being probed satisfies the Born approximation [1], the reflection 

profile corresponding to ns(z′) is given by [47,48]

(1)

We note that the concept of Born approximation is typically associated with describing the 

scattering potential of a weakly scattering sample in the setting of diffraction tomography to 

reconstruct the three-dimensional (3D) refractive index distribution of the sample via far-

field measurements of the scattering amplitude [49]. There, the scattering potential F(r) 

characterizes the refractive index distribution of the sample ns(r) with respect to the 
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surrounding medium nm(r) through the relation  [1,47,50], where 

 is free-space wavenumber corresponding to wavelength λ0. However, in the context 

of Fourier phase, the gradient of the refractive index within the sample is of primary interest 

as it is the change in the refractive index within the sample that gives rise to the back-

reflected sample field. It has been shown that the validity of the Born approximation also 

allows the scattering potential of an object to be described in terms of the gradient of the 3D 

refractive index [47]. The restriction of the gradient to the 1D setting is given by Eq. (1).

For the purpose of explication, we adopt a common-path reflection-mode geometry, while 

noting that it is not a requirement. (Methods have been developed to remove phase noise 

arising in optical setups, where the reference is generated using a mirror placed in a separate 

reference arm [51].) In common-path geometry, the reference wave generated by reflection 

from the substrate–sample interface spectrally interferes with the back-scattered waves from 

all sample depths (see Fig. 1) resulting in a spectrally interfered signal given by [50]

(2)

Here, S(k) is the source spectrum, and the integration upper limit L represents the sample 

thickness. Equation (2) states that for every wave number k=1∕λ (we use the spectroscopic 

wave number notation), the last term on the right-hand side is the coherent integration of 

interference between the reference and reflections from all depths, modulated by the source 

spectrum. The strength of the sample reflection from physical depth z′ is given by the 

reflection profile rs(z′) and that of the reference by rr. The self-interference of the reference 

and within-sample scattering gives rise to the first two terms. In this expository development 

of Fourier phase, we ignore the first two terms. In practice, ancillary background 

measurements are used to separately measure and remove . Furthermore, typical 

experimental conditions ensure rs(z′) ≪ rr, and we can ignore the second term . 

(In SS-OCT dual balanced detection is used to mitigate the effect of the first two terms.) 

We, therefore, simplify Eq. (2) to

(3)

where, the reflection term has been normalized to remove rr.

In reflection-mode geometry shown in Fig. 1, the illumination and back-scattered wave 

vectors corresponding to the wave number k, respectively, are  and . The 

resulting axial spatial frequency, therefore, is given by 

. We note that throughout this paper spatial frequency 

will exclusively refer to axial spatial frequency. Incorporating it in Eq. (3) and transforming 

to the optical-space where Fourier measurements are made, we reformulate Eq. (3) as (see 

Appendix A)
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(4)

where

(5)

is the optical depth corresponding to the physical depth z′ and

(6)

defines the mapping of the reflection profile rs(z′) to the optical-space. Equation (4) now 

expresses the coherent integration of interference between the reference and reflections from 

all depths within the sample as a function of the optical depth instead of the physical depth. 

We emphasize that this mapping from physical-space to optical-space is imperative with the 

use of Fourier transform in FD-OCT, as the Fourier transform allows access only to the 

latter and not the former.

The spectral source S(K) we controls the resolution with which can recover ropl(zopl(z′)) 

through the virtual coherence gating enforced by its correlation function in the optical-space. 

If the source spectrum had infinite bandwidth, we would have ideal resolution allowing for 

exact measurement of real-valued ropl(zopl(z′)) with Fourier phase being zero. (We prove this 

in Section 5.) In practice, however, only a finite spectral bandwidth can be realized, with an 

attendant loss in resolution. The resulting Fourier transform of the spectral interference has 

both amplitude and phase, with both carrying distinct information about the refractive index 

profile within the coherence gate.

The amplitude of the Fourier transform has been well understood within the context of FD-

OCT. It captures the coherence-gated average of ropl(zopl(z′)) and therefore is a point 

estimate of the average strength of coherence-gated ropl(zopl(z′)) at the optical depth being 

probed. Fourier phase, on the other hand, is a point estimate of two distinct structural 

characteristics of the refractive index profile within the coherence gate.

The first structural characteristic is the subresolution offset. We denote it by δzopl(z), where 

zopl(z) indicates the optical depth being probed. Subresolution offset estimates the 

subresolution deviation of the optical depth associated with the weighted-center  of 

the refractive index profile within the coherence gate, from zopl(z). (Note that the coherence 

gate is centered at zopl(z).) Mathematically, the subresolution offset is given by

(7)

where
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(8)

Here, Γ(zopl(z′)− zopl(z)) is the correlation function centered at the probing depth zopl(z) that 

ensures the integration is performed only at those depths that lie within the coherence gate 

centered at zopl(z). The weighting by the normalized reflection profile ropl(zopl(z′)) 

emphasizes those depths where the reflection are strong relative to other depths, resulting in 

 being the weighted-center of the refractive index profile. Although no assumption 

about a strong interface is made, and in fact none is required, we do note that for a strong 

interface located at zopl(z0), ropl(zopl(z′)) → riδ(zopl(z′)−zopl(z0))—a Dirac-delta at zopl(z0) 

with reflection coefficient ri—and Eq. (7) reduces to

(9)

Thus, for a strong interface, δzopl(z) describes the subresolution offset of zopl(z0), the optical 

depth where the strong interface is located, from zopl(z), the optical depth being probed. 

Although a strong interface is easy to identify, δzopl(z) provides additional accuracy in 

estimating the correct optical depth location of the interface, when there is only a 

subresolution deviation of the optical depth being probed from the actual optical depth 

location of the interface. This is the basis for SDPM [23]. Figure 2(a) is a visual illustration 

of subresolution offset using a simple refractive index profile model. (Note that a strong 

interface is not assumed.) Later, in Section 3.A, we present a parametric model for this 

simple refractive index profile, where the subresolution offset is modeled through the 

subresolution shift parameter. We will effectively employ this model to validate our results.

The second structural characteristic is the mean spatial frequency of the coherence-gated 

refractive index. We denote it by si(zopl(z)), where zopl(z) is again the optical depth where 

the refractive index profile is being probed. Mean spatial frequency estimates the average 

rate at which change in refractive index occurs within the coherence gate centered at zopl(z). 

(As we will show, the averaging is a direct consequence of the coherence gate.) For 

example, for an increasing or decreasing refractive index profile within the coherence gate, 

it characterizes how fast or slow that subresolution change occurs. More generally, it is a 

characterization of the refractive index heterogeneity within the coherence gate. (Details are 

in Sections 3 and 6.H.) A simple illustration of mean spatial frequency is depicted in Fig. 

2(b), where small changes in the shape of the refractive index model are used to indicate the 

increasing or decreasing rates-of-change in optical density. The parametric modeling of 

mean spatial frequency is done through the subresolution shape parameter.

Having described what structural characteristics Fourier phase estimates, we next show how 

and why this is the case.

A. Structural Information

Consider the spectral interference P(K) in Eq. (4) in its generalized complex form,
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(10)

with ℜ representing the real part of its argument. Here, for a given K, we interpret the 

integrand of Eq. (10) as a phasor rotating with angular frequency 2πzopl(z′). The amplitude 

of this phasor is the real-valued reflection profile ropl(zopl(z′)). Probing ropl(zopl(z′)) at 

optical depth zopl(z) corresponding to the physical depth z does not return ropl(zopl(z)) but its 

weighted average over the coherence gate around zopl(z). Using the phasor representation, 

we explicitly incorporate this loss in resolution by extending the phasor amplitude to its 

general complex form

(11)

where I(K, δzopl(z)) controls the division of ropl(zopl(z′)) between the quadrature cosine and 

sine components. It is the cosine component that we have access to through Eq. (10). The 

imaginary sine component represents the resolution loss due to the coherence gate. 

Therefore, a nonzero value of I(K, zopl(z)) results in a leakage of ropl(zopl(z′)) from the real 

in-phase component to the imaginary quadrature component. This loss will naturally be 

greater for refractive index profiles with greater structural content within the coherence gate. 

Therefore, we refer to I(K, zopl(z)) as structural information reflecting the subresolution 

structural content of the coherence-gated refractive index profile. We choose I(K, zopl(z)) to 

be a function of both spatial frequency K and the optical depth zopl(z) at which the refractive 

index is being probed. The dependence on the latter is natural because the measurement is 

being made at that optical depth. The dependence on the former is because the measurement 

is being made in the spectral domain where the sample is being probed by waves with wave 

numbers .

To characterize the nature of the dependence of I(K, zopl(z)) on K and zopl(z), we note that 

when we probe the refractive index at zopl(z), the Fourier amplitude is the coherence-gated 

average of ropl(zopl(z′)). We denote it as |p(zopl(z))|. If we were to place an actual coherence 

gate, corresponding to the correlation function of the light source at the probing depth 

zopl(z), then the corresponding coherence-gated average of ropl(zopl(z′)) would be

(12)

where we have exploited the symmetry of the correlation function to write the convolution 

as a correlation. This coherence-gated average has an associated weighted-center where the 

optical depth of the structural content of the refractive index profile within the coherence 

gate is centered. This weighted-center is precisely given by  [defined in Eq. (8)]. If 

this weighted-center and the probing depth zopl(z) coincide, then |p(zopl(z))|=ravg. If, 

however, the two are offset from each other, then the deviation manifests as δzopl(z) given 

by Eq. (7) and can be accounted for in the following way. The reflection profile within the 

coherence gate centered at zopl(z) is given by the equivalent reflection profile 
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 Equation (10) then tells us that the spectral 

interference signal corresponding to the back-reflected waves from this equivalent profile is

(13)

which can be rewritten as

(14)

where  is the subresolution offset and for reflection profile 

 is exactly given by Eq. (7). On comparing the 

complex phasor amplitudes in Eqs. (11) and (14), we define the structural information as

(15)

This bilinear—in K and δzopl(z)—characterization of information-loss in conjunction with 

Eq. (11) bounds I(K, δzopl(z)) to the range (−1, 1). For values outside this range, the 

structural behavior will manifest in the Fourier amplitude—the amplitude of p(zopl(z)) 

defined in Eq. (18).

Incorporating Eq. (15) in Eq. (11), we get

(16)

which simplifies the spectral interference P(K) in Eq. (10) to (see Appendix B)

(17)

Thus, the phasor representation of resolution loss allows us to express spectral interference 

in terms of structural information. We next show that an estimate of this structural 

information I(K, zopl(z)) is accessible to us through Fourier phase.

B. Fourier Phase

Fourier phase at the optical depth zopl(z) is the phase of the Fourier transform of the spectral 

interference P(K),

(18)

Appendix C details the expansion of p(zopl(z)) in Eq. (18) to p(zopl(z))
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(19)

with ℑ representing the imaginary part of its argument and * denoting the convolution 

operation. ℜ, as before, represents the real part of its argument. As explained in Appendix C, 

Eq. (19) is the baseband representation of the Fourier transform of the spectral interference 

whose carrier frequency corresponds to the central frequency of the source

(20)

In Eq. (19), , ℓ = 0, 1, 2, … is the baseband representation of the (ℓ) th 

derivative of reflection profile, and Γ(zopl(z)) is the baseband representation of the 

correlation function corresponding to the source spectrum centered at Kc. Note that ℓ is a 

general representation for both 2j and 2j + 1.

The baseband signal holds the entirety of the information content—both amplitude and 

phase—of the back-scattered signal. A closer look at Eq. (19) reveals that 

, ℓ = 0, 1, 2, …, are the coefficients of the Taylor expansion of the 

baseband reflection profile , about zopl(z), and therefore characterize the 

reflection profile in optical-space. The convolution with the correlation function ensures that 

only their coherence-gated structural characterization about zopl(z) is reflected in p(zopl(z)).

Equation (19) shows that Fourier phase is given by

(21)

where the odd and even order derivatives, respectively, appear in the numerator and 

denominator of the fraction. Taken with their respective imaginary and real parts, the 

separation of odd and even coherence-gated Taylor coefficients, respectively, to the 

numerator and denominator characterizes the structure in a manner that is consistent with 

tangent phase notation.
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Equation (21) states that the Fourier phase measured at zopl(z) jointly estimates two 

structural features of the coherence-gated refractive index profile. The first is the 

aforementioned subresolution offset, δzopl(z). The second feature is characterized by the 

fraction

Despite its rich information content, this fraction is difficult to interpret apart from noting 

that it is some form of structural characterization of the reflection profile. However, there 

are two specific scenarios, where the fraction and therefore Eq. (21) reduce to simpler forms. 

Fortunately, these are the two scenarios of most interest in the context of FD-OCT. The first 

is when the refractive index profile is dominated by a strong interface and the Fourier phase 

measurement is made at this interface. SDPM and its derivatives fall in this category. The 

second arises when there are no strong interfaces within the sample and the sample is well-

matched with the medium that it is immersed in. In this scenario, the refractive index profile 

has a small gradient so that the Born approximation is satisfied. Here, the Fourier phase 

measurements do not track a particular interface but are made at fixed depth locations. dr-

SLQPM falls under this latter category.

It was in anticipation of the second category that we developed the general theory under the 

assumption that the Born approximation was satisfied. For the first category, certain specific 

considerations need to be satisfied to ensure the validity of Eq. (21). We detail them in 

Section 4, where we re-establish the validity of Eq. (21) and its simplification in the 

presence of a strong interface. We, however, first present the Fourier phase for a slowly 

varying refractive index profile.

3. FOURIER PHASE ALONG A SLOWLY VARYING REFRACTIVE INDEX 

PROFILE

Samples with slowly varying refractive index profiles have small gradients. Consequently, 

their corresponding reflection profiles, given by Eq. (6), have even smaller derivatives. As a 

result, higher-order derivatives of the reflection profile can be neglected, allowing the 

simplification of Fourier phase in Eq. (21) as

(22)

where only the reflection profile (zeroth-order derivative) and its gradient (first-order 

derivative) are considered. For notational ease, we define
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(23)

and rewrite Eq. (22) succinctly as

(24)

Equation (24) shows that the Fourier phase for a slowly varying refractive index profile is a 

joint estimate of δzopl(z) and si(zopl(z)). To characterize the structural information estimated 

by the latter, we express si(zopl(z)) in terms of the refractive index profile itself. Using Eqs. 

(1) and (6), we expand Eq. (23) to

(25)

where f(·) represents the convolution of its argument with the correlation function and 

therefore enforces the coherence gating. Equation (25) reveals that for a slowly varying 

refractive index, the Fourier phase at some optical depth of interest is a manifestation of the 

interplay between the coherence-gated refractive index profile ns(zopl(z)) and its first two 

derivatives  and  at the optical depth zopl(z). We refer to the two 

derivatives, respectively, as the gradient and curvature of ns(zopl(z)). The ratio between the 

coherence-gated curvature and the coherence-gated gradient is the first term of Eq. (25), 

with both derivatives having been first normalized by . (This normalization is due 

to the measurement being performed in optical-space.) In the slowly varying refractive index 

regime, both the curvature and the gradient are well-defined and so is the ratio. Furthermore, 

the first term of Eq. (25) has a simple interpretation: it is an estimate of the mean spatial 

frequency of the coherence-gated refractive index profile. To see this, first observe that for a 

slowly varying refractive index the contribution of  effectively cancels out, 

therefore simplifying the first term to . The effect of canceling the 

contribution of  from the numerator and the denominator of the first term is 

illustrated in Fig. 3(a), which shows a scatter plot of the first term and its simplified form for 

a range of slowly varying refractive index profiles at a fixed probing zopl(z). The refractive 

index model used to generate the scatter plot is defined in Eq. (26) (see the following 

section), and the refractive index variation is controlled through the subresolution shape 

parameter that varies from −3 to −2.3 in the log-scale (also explained in the next section). 

This is the range of slow changes in the shape of the refractive index. As can be seen, the 

scatter plot aligns along the 45° line showing close correspondence between the first term 

and its simplification. This simplified form is a ratio of the coherence-gated curvature and 

gradient of the refractive index profile within the coherence gate. The former is a measure of 

the mean gradient of the refractive index within the coherence gate, while the latter 

measures the net change in the refractive index within the coherence gate. The ratio of the 

Uttam and Liu Page 11

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two, therefore, is an estimate of the mean spatial frequency of the coherence-gated refractive 

index profile. This can be easily understood by considering the analogy with a car equipped 

with an accelerometer and a speedometer. For a fixed time interval Δt, the average velocity 

of the car is , while the average traveled distance is . Here, a(t) 

and v(t) respectively, denote the instantaneous acceleration and velocity of the car measured, 

respectively, by the accelerometer and the speedometer. The ratio  gives the average time 

the car takes to travel distance . The ratio , on the other hand, gives the average number of 

times the car can travel the distance  in one unit of time, that is, it gives the mean temporal 

frequency of car motion. On relating acceleration with curvature of the refractive index, 

speed with the gradient of the refractive index, and the time interval with the coherence gate, 

it is easy to see that the first term of Eq. (25) in the slow-varying regime estimates the mean 

spatial frequency of refractive index change within the coherence gate around zopl(z). This 

mean spatial frequency describes the average rate at which the spatial change in the 

refractive index occurs within the coherence gate. This change can be an increasing or a 

decreasing refractive index within the coherence gate and is described by the subresolution 

shape of the refractive index profile illustrated in Fig. 2(b). This change can also be an 

increase (or a decrease) in subresolution heterogeneity, which will manifest as an increase 

(or a decrease) in spatial frequency. (See Section 6.H.) Finally, to complete the discussion of 

the first term of Eq. (25) we note that the normalization by  need not be neglected 

as it naturally results from making the measurements in the optical-space. Even with 

normalization, the first term of Eq. (25) is an estimate of the mean spatial frequency in 

optical-space. The simplification was primarily done to explain this first term without being 

encumbered by the normalization factor.

The second term of Eq. (25), also well-defined for a slowly varying refractive index, is 

unresponsive to the slow variation. Figure 3(b) shows the scatter plot between it and its 

simplified form , where the effect of the gradient of the slowly varying 

refractive index profile is neglected in the numerator and the denominator. First, it can be 

seen that the scatter plot has no spread illustrating the unresponsiveness of the second term 

to the variation in refractive index. Second, the location of the scatter points shows that the 

effect of the gradient of the refractive index profile is to reduce the contribution of the 

second term to si(zopl(z)) in Eq. (25).

In absolute terms, the factors used to normalize the scatter plots for the first and second 

terms of Eq. (25), respectively, are 1.019 × 107 m−1 and 0.0025 m−1. Since the former is 

much greater than the latter, the second factor can be neglected, resulting in si(zopl(z)) itself 

being an estimate of mean spatial frequency. It is also worth noting that the value of the 

subresolution shape parameter for which si(zopl(z)) 1.019 × 107 m−1 in the log-scale is −2.3. 

In the linear-scale the log-scale value corresponds to 1 × 107 m−1, illustrating that si(zopl(z)) 

is indeed an estimate of the mean spatial frequency. Finally, we note that si(zopl(z)) is not 

defined in the impractical scenario of the refractive index gradient being zero, that is, when 

the reflection profile is zero and there is no back-scattered light.
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Therefore, we can now state that the Fourier phase jointly estimates the structural 

information given by δzopl(z) the subresolution offset, and si(zopl(z)), the mean spatial 

frequency.

A. Subresolution Shape and si(zopl(z))

Consider the refractive index model given by the modified sigmoidal function

(26)

where an isolated change in shape is modeled at a physical depth z0. Figure 4 provides the 

illustration. A small change in z0 will shift the physical depth where the isolated change 

occurs. We refer to this change in z0 as the subresolution shift in the location of the isolated 

change in the refractive index profile. In Section 6, we decompose z0 as z0 = zℓ + Δz0. We 

perform our Fourier measurement at optical depth zopl(zℓ) corresponding to physical depth 

zℓ. Δz0 models the subresolution offset. Since zℓ is kept fixed, the subresolution shift 

parameterizes the subresolution offset. The structural characteristic δzopl(z0) is an estimate 

of Δz0 in optical-space.

The parameter n0 is the baseline refractive index, and Δn is the net change in refractive 

index around physical depth z0. Noting that the refractive index of vacuum is one, we set n0 

≥ 1. The shape parameter s controls how the net change Δn manifests itself. For a given Δn, 

small values of s indicate a slowly varying refractive index, while the limit s → ∞ indicates 

a strong interface, where the net change Δn occurs in a single discontinuous step. This range 

of shapes of the refractive index profile is shown in Fig. 4. We refer to this shape parameter 

as subresolution shape as its effect is primarily localized within the coherence gate. We note 

that for the refractive index model in Eq. (26), the subresolution shape s controls the rate at 

which the isolated change occurs. For increasing s, the rate-of-change increases. This notion 

can be made precise by considering the Fourier transform of a sigmoidal function. The 

Fourier pair is given by . It can be seen in the amplitude 

of the Fourier transform that the frequency spread of cosech away from zero is controlled by 

the subresolution shape s. As s increases, the rate at which the isolated change occurs 

increases, and the Fourier pair shows that the higher spatial frequencies are present in the 

refractive index model in proportion to s. Therefore, we use s as a measure of spatial 

frequency of the refractive index profile within the coherence gate. The unit of s is meter−1.

Based on this model and using Eq. (25), we can analytically compute the value of si(zopl(z)). 

Additionally, if for the sake of simplicity, we assume δzopl(z) to be some constant c, we can 

qualitatively isolate the effect of si(zopl(z) on Fourier phase ϕ(zopl(z)) through the simplified 

relation ϕ(zopl(z)) = tan−1 (csi(zopl(z))). Figures 5(a), 5(b), and 5(c) plot this effect of 

si(zopl(z)) on Fourier phase, respectively, due to changes in s, n0 and Δn. We express the 

shape parameter in log-scale by transforming s to log10 (sd∕2), where d = 1 nm. The shape 

parameter of this transformed representation changes from −3 to 0 as the refractive index 

changes from a slowly varying profile (0.002∕d) to one with a strong interface (2∕d). We note 

that to approximately ensure that the parameter-based changes in the refractive index profile 
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can be reasonably described as subresolution changes, we consider a small range of values 

for the three parameters.

Figure 5 shows that the Fourier phase responds most strongly to change in subresolution 

shape and most weakly to change in n0. The Fourier phase eventually becomes unresponsive 

to increasing subresolution shape because these are higher-order changes not captured by the 

curvature and gradient of the refractive index. Fourier phase has a moderate response to Δn 

primarily through the indirect effect of Δn on the subresolution shape for any given value of 

the s parameter. Δn itself does not directly affect the Fourier phase because it is the common 

term in both the curvature and gradient of the refractive index profile and therefore its effect 

is canceled out [in the first term Eq. (25)], while its effect on the second term is weak.

B. Depth-Resolved Spatial-Domain Low-Coherence Quantitative Phase Microscopy

In dr-SLQPM, the sample satisfying the Born approximation is embedded in a well-matched 

medium, making it ideally suited to the Fourier phase approximation in Eq. (22) for 

volumetric structural characterization. Utilizing an approximately collimated and spatially 

incoherent white light source, dr-SLQPM decomposes the 3D physical-space into lateral x, 

y-space, with each en face location x, y associated with an axial z channel (with the 

associated z-space), which is mutually incoherent with channels corresponding to other 

lateral locations. The standard FD-OCT principle allows dr-SLQPM to map each z-space 

refractive index profile to optical-space zopl, allowing dr-SLQPM to operate in the hybrid 

space (x, y, zopl). For all en face locations, the zopl space is sampled at fixed optical depths 

(note, not interfaces) with the sampling interval a small fraction of the width of the 

coherence gate. This oversampling mimics the action of a sliding window along the axial 

refractive index profile. Oversampling has two benefits. First, the small sampling step 

ensures that any change in Fourier phase results in a two-dimensional (2D) Fourier phase-

based map that washes out the effect of δzopl(z)—the reason and the extension to 3D is 

discussed in Section 6.C—allowing the map to characterize the mean spatial frequency of 

the axial refractive index.

4. FOURIER PHASE AT A STRONG INTERFACE

In 2005, two groups independently proposed spectral-domain phase microscopy (SDPM) 

where they measured the Fourier phase ϕ(zopl(z)) to, respectively, study subresolution 

motion in living cells and perform quantitative phase-contrast imaging in the reflection-

mode. In both of these works, Fourier phase measurements were performed at a strong 

interface. One of the groups was also the first to provide a physical interpretation of their 

results (see Eq. (2) in [23]) by establishing a relation between the Fourier phase 

measurement at a strong interface and the subresolution offset δzopl(z) between the optical 

depth the measurement was made and the optical depth where the interface was actually 

located. We now show that their result is a special case of the Fourier phase defined in Eq. 

(21).
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A. Establishing the Validity of the Born Approximation

Our derivation of Fourier phase required the validity of the Born approximation which 

assumes a sample with a slowly varying refractive index profile [1]. Such a profile 

decouples the Cartesian components of the complex light wave 

 as it travels through the sample by ensuring 

that the last term of the wave equation

(27)

is negligible, thereby allowing a one-to-one far-field correspondence between K and kbs − 

ki. However, when the refractive index profile is defined by a strong interface, the gradient 

of the refractive index can no longer be neglected. Nevertheless, for normal source 

illumination where the sample can be decomposed into an en face representation of 1D 

refractive index profiles—a condition typically satisfied by FD-OCT setups— the 

decoupling is valid despite the strong interface, under the strict condition that the number of 

strong interfaces is restricted to one.

Consider the general case of a plane-polarized light wave incident on the interface at an 

angle θi. (See Fig. 6.) Assuming the parallel and perpendicular polarization of the light wave 

at the interface be the complex-valued amplitudes Ep and Es, respectively—the polarizations 

are described with respect to the plane of incidence—the Cartesian components of the 

incident wave are given by  and  When the angle of 

incidence is normal, that is,  is zero. As the gradient of the refractive index profile 

is along the z-direction with its lateral components zero, the last term of Eq. (27) is zero. 

Furthermore, a single strong interface does not violate the assumptions of negligible 

multiple-scattering events and negligible depth distortion effects due to the refractive index 

gradient required for the Born approximation to hold. As a result, both Eq. (1) [47,48,52] 

and Eq. (21) remain valid, however, Eq. (22) is not.

B. Invalidity of Eq. (22) at a Strong Interface

Corresponding to the refractive index profile model of  in Eq. (26), the reflection 

profile in the optical-space is

(28)

In the limit s → ∞, the refractive index is approximated by a Heaviside function, while the 

reflection profile in Eq. (28) approaches (see Fig. 7) a Dirac-delta

(29)
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where  is the reflection coefficient at the optical depth 

zopl(z). It is interesting to note that this reflection strength corresponds to the reflection 

coefficient  obtained using the Fresnel equations for normal illumination [1], 

after accounting for the optical-space transformation factor 

Incorporating Eq. (29) in Eq. (21), we rewrite the Fourier phase at zopl(z0) as

(30)

where

Here, ℓ denotes the order of Dirac-delta derivative. We note that since ri is common to both 

the numerator and the denominator, it cancels out.

Equation (30) shows that unlike the slowly varying refractive index profile, higher-order 

derivatives of the refractive index profile are not negligible, thereby invalidating Eq. (22). 

However, as we now show, under a mild condition, we get a simple closed form for the 

Fourier phase at a strong interface that matches the result in [23]. We note that this Fourier 

phase is derived under more general conditions than those in [23].

C. SDPM: General Development

We begin by restating the Fourier phase in Eq. (30) as (see Appendix D for details)

(31)

where

and
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The abbreviation H.O.T. stands for “higher-order terms” with respect to γ(0).

Simplification of Eq. (31) requires that the condition  be satisfied. We know from 

Eq. (11) and the discussion thereafter that . Therefore, for the condition 

 to be valid, we only need to show , that is, 

the ratio of the second-order derivative of the correlation function evaluated at its center of 

symmetry, and the square of the center frequency of the source is much less than one. For a 

typical Gaussian correlation function with standard deviation σ, the magnitude of Γ(2)(0) is 

. Therefore, the condition  is satisfied when . For a standard 

deviation σ, the corresponding full width at half-maximum of the coherence gate is 

. Furthermore, the central wavelength of the source spectrum . Figure 8 

plots  as a function of ℓc and λc. As can be clearly seen, for a majority of ℓc and λc 

combinations typical for OCT setups, . For these combinations , and 

Eq. (32) simplifies to

(32)

(33)

as the higher powers of γℓ(0) can be neglected. For , the ratio 

 in Eq. (33) is upper bounded by 1.554, and the Fourier phase is given by

(34)

For even smaller values of Δ, the ratio approaches one, and the Fourier phase is given by

(35)

For , Fourier phase is simply approximated by

(36)

This result is identical to that obtained in [23].
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5. FOURIER PHASE FOR AN IDEAL CONDITION: INFINITE SPECTRAL 

BANDWIDTH

For infinite spectral bandwidth, the correlation function approaches a Dirac-delta, 

, with ℓc → 0. As a consequence, the integral on the right-hand side 

of Eq. (8) approaches zopl(z), resulting in δzopl(z) → 0. It then follows from Eq. (21) that the 

Fourier phase approaches zero if the fraction 

remains well-defined. To verify that this indeed is the case, we first note that Kc is no longer 

the center frequency. In fact, the concept of center frequency becomes meaningless for an 

ideal source with infinite spectral bandwidth. It follows that the baseband and the passband 

representations of the derivatives of the reflection profile are the same because downshifting 

the ideal source by any amount has no effect. As a result, 

 and each imaginary term in the numerator 

is

(37)

(38)

(39)

(40)

(41)

We note that  is always a real-numbered value. Equations (37) through (41) 

show that all the summation terms in the numerator of Eq. (21) are zero and therefore so is 

the numerator.

The denominator, on the other hand, reduces to

(42)
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(43)

(44)

and consequently, the fraction reduces to . Therefore, it is indeed well-

defined and is in fact zero and so is the Fourier phase. Equations (41) and (44) further show 

that the Fourier transform of the spectral interference given in Eq. (19) is

(45)

Thus, for an ideal source with infinite spectral bandwidth, the Fourier transform of the 

spectral interference between the reference wave and the back-reflected sample field is a real 

signal, equal to the actual reflection profile of the sample.

6. RESULTS AND DISCUSSION

Having presented the theoretical development of how the Fourier phase jointly estimates 

subresolution offset and mean spatial frequency, we present simulations based on the 

parametric model of the refractive index profile given in Eq. (26) to support our theoretical 

predictions, illustrate the suitability of Fourier phase for dr-SLQPM, and highlight its 

distinct characterization of coherence-gated structural information with respect to Fourier 

amplitude. We also present multiple applications of Fourier phase and describe flow velocity 

in D-OCT in terms of Fourier phase.

A. Parametric Modeling of the Refractive Index Profile

We use Eq. (26) to model the refractive index profile. This profile is parameterized by z0, n0, 

Δn, and s. Parameter z0 is the depth location around which the change in the refractive index 

profile occurs with respect to the baseline refractive index characterized by n0. Parameters 

Δn and s control the nature of this change. The former specifies the increase (Δn > 0) or 

decrease (Δn < 0) in refractive index, while the latter specifies how this increase or decrease 

is realized. For small values of s, the rise is gradual and spread over a range of depths 

around z0. This spread implies that back-reflected waves are coming from a range of depths, 

corresponding to greater structural complexity and higher structural information. It is in this 

range of smaller values of s that the Fourier phase is most responsive, as is shown in the 

results presented below.

For s → ∞, the rise is sharp and localized at z0, corresponding to a strong interface. Here, 

based on our discussion in Section 4, we expect the Fourier phase to primarily estimate 

δzopl(z). This is indeed the case. As a side point, we note that Δn contributes to the strength 

of the interface. A sharp change might not imply a strong interface if Δn is small. This is 

especially true in experimental settings, where the refractive index profile with a sharp 

change can only be approximated by a Heaviside function. In such settings, for the sharp 
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change to qualify as a strong interface, Δn should be large enough that it relatively 

dominates the slow-varying changes in the refractive index at other depths. However, in the 

simulations presented here, the interface with a sharp change and strong interface coincide.

Each of the above four parameters define the following four behaviors:

1. Behavior 1: subresolution shift controlled by z0. [See Fig. 2(a).] As noted in 

Section 3.A, for a fixed zℓ, change in z0 parameterizes subresolution offset Δz0.

2. Behavior 2: subresolution shape controlled by s. [See Fig. 2(b).]

3. Behavior 3: baseline shift controlled by n0. [See Fig. 9(a).]

4. Behavior 4: interface increment controlled by Δn. [See Fig. 9(b).]

The first two have already been discussed in the context of δzopl(z) and si(zopl(z)). 

Simulation results presented below validate those connections. The last two behaviors are 

included for a complete description of Fourier phase response to all model parameters.

In Sections 6.C, 6.D, and 6.E we, respectively, present Fourier phase simulations for 

Behaviors 1 and 2, 3 and 2, and 4 and 2. The reason for including Behavior 2 in all the three 

cases is that we have presented theoretical details for the refractive index profile that is 

either slowly varying or has a strong interface, and the demarcation between these two 

regimes is controlled by s. We begin by detailing our simulation methodology.

B. Simulation Methodology

To simulate the Fourier phase measurement, we consider a white light spectral source S(k) 

with spectral bandwidth B (500–800 nm), center frequency Kc= 3.25 MHz, and ℓc = 1.5 μm 

corresponding to a Gaussian-shaped S(k), and mean refractive index of 1.4. The refractive 

index profile ns(z′), defined by Eq. (26), is implemented as a multilayer system with the unit 

layer thickness taken to be d = 1 nm. The implementation requires constructing a transfer 

matrix [53] to mimic wave propagation through the refractive index profile. This is done for 

each K = 2k = 2∕λ. The back-reflected waves from all depths are interfered with a reference 

that is implemented in the common mode, by defining a substrate and refractive index 

profile interface. These interferences from all depths are integrated to get the spectral 

interference curve, P(K), as a function of spatial frequency K. (We note that unlike the 

experimental implementation, where phase noise can be greatly minimized by common-

mode geometry, it is not important in the context of this simulation. It suffices to simply set 

the reference reflection-coefficient to one.) The self-interference of the reference and back-

reflected sample waves is ignored. The Fourier transform of the spectral interference curve 

is the complex Fourier signal p(zopl(z)) as a function of optical depth. The Fourier transform 

is implemented as a discrete-time Fourier transform. The phase of the Fourier transformed 

spectral interference is

(46)
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This phase is wrapped and modulated by the center frequency Kc. Therefore, it is first 

unwrapped along the optical depth, followed by subtracting −2πK czopl(z) from it to remove 

the phase ramp associated with the Kc-centered passband of the source spectrum. The 

resulting phase is the unwrapped Fourier phase. This, however, is not the final result as the 

unwrapped Fourier phase, by definition, accumulates Fourier phase along the depth due to 

the unwrapping. Therefore, at any optical depth, it is affected by all depths preceding it. We 

resolve this conflict by computing the gradient  and integrating it 

within the coherence gate around the optical depth zopl(z) to get the correct Fourier phase. 

Note that this coherence-gated integration of the phase gradient is not providing any 

additional information. It is only retrieving the coherence-gated unwrapped Fourier phase 

information—associated with p(zopl(z))—otherwise difficult to access due to phase 

wrapping. Furthermore, since ϕ′(zopl(z′)) is the instantaneous frequency, it cannot exceed the 

bandwidth of the source spectrum. Therefore, we use it to filter out those depths where the 

instantaneous spatial frequency exceeds the source bandwidth.

The phase obtained after the filtering is expressed in units of length by multiplying it by , 

where λc is the wavelength corresponding to Kc. We denote it by δopl. As an illustration, 

Fig. 10 shows Fourier phase as a function of optical depth computed using the method 

outlined above for refractive index profile modeled by Eq. (26) with increasing values of s. 

This method to extract Fourier phase is used in all results presented below.

C. Fourier Phase: Estimating Subresolution Offset and Subresolution Shape

We consider a 7 μm refractive index profile and set n0 = 1.4 and Δn = 0.01. The 

corresponding OPL is roughly 10 μm. Parameter n0 fixes the baseline refractive index, and 

Δn fixes the net increment in the refractive index with respect to the baseline. The two 

parameters z0 and s are varied:

1. A Fourier phase measurement is made at zℓ, and Δz0 is varied from −20 through 20 

nm. We set zℓ = 2.85 μm, resulting in a subresolution shift in z0 = Δzℓ + Δz0 ranging 

from 2.83 through 2.87 μm.

2. The shape parameter s is varied from 0.002∕d to 2∕d, which changes the shape at the 

interface from slowly varying to strong. To avoid cluttering the figures, s is plotted 

in a log-scale (from −3 to 0). The transformation to log-scale was discussed in 

Section 3.A.

For each of the pairwise values of z0 and s, the Fourier phase is measured at zopl(zℓ) = 4 μm. 

Figure 11(a) shows the 2D plot of the resulting Fourier phase as a function of Δz0 and s. In 

the slowly varying refractive index regime, Fourier phase increases with the increasing value 

of s just as theoretically predicted by Eq. (25), shown in Fig. 5(a). Fourier phase, therefore, 

captures increasing optical density. Comparing Eq. (24) with Eqs. (34) and (35) shows that 

si(zopl(zℓ)) is approximately bounded by 2πKc. Therefore, as the value of s approaches the 

strong interface regime, its value approaches or exceeds 2πKc, and Fourier phase 

dependence on s ceases. As a result, for strong interfaces Fourier phase primarily depends 

on δzopl(zℓ) in accordance with theoretical results in Eqs. (34)–(36). Figure 11(b) shows this 
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dependence through the marginal representation extracted from the 2D plot. As can be seen, 

Fourier phase captures the subresolution offset δzopl(zℓ). For Δz0 < 0, zopl(z0) < zopl(zℓ), and 

in conjunction with Eq. (7), implies  and δzopl(zℓ) > 0. Similarly, for Δz0 > 

0, δzopl(zℓ) < 0. It should, however, be noted that in the simulation δzopl(zℓ), underestimates 

the subresolution offset Δz0, partly because of the correlation function weighting in Eq. (8) 

skews the weighted-center toward zopl(zℓ) and partly by the action of tan−1. We note that 

Fourier phase estimation of δzopl(zℓ) for a strong interface makes it suitable for measuring 

subresolution dynamic changes in optical depth of the interface via SDPM.

In our theoretical development of a slowly varying refractive index profile, we showed in 

Eq. (24) that tan (ϕ(zopl(zℓ))) = δzopl(zℓ)si(zopl(zℓ)). From our simulation we know the value 

of Fourier phase ϕ(zopl(zℓ)), and also δzopl(zℓ), allowing us to estimate the mean spatial 

frequency, which for the model we have used is parameterized by the subresolution shape. 

Figure 11(c) shows the estimate of subresolution shape corresponding to the actual s = −2.7 

in the log-scale as function of Δz0. First, the estimate of s is approximately −2.27 and is 

constant for all values of subresolution offsets, thereby illustrating that si(zopl(zℓ)) captures 

the intrinsic structural characteristic of the refractive index profile. Second, the value of s is 

slightly over-estimated primarily because the value of δzopl(zℓ) is under-estimated.

In the slowly varying refractive index regime, the symmetry of Fourier phase dependence on 

δzopl(zℓ) can be used to remove its effect by performing Fourier phase measurements at 

multiple optical depths with subresolution sampling intervals. Given the symmetry, a 

depthwise average of the Fourier measurements will wash out the dependence of Fourier 

phase on δzopl(zℓ) and only capture the effect of s [or more generally si(zopl(zℓ))] as desired. 

Moreover, it is not even necessary that the Fourier phase average be taken for the entire 

sample depth. A window, the size of the coherence gate, can be moved over the Fourier 

phase profile. Averaging within the window will remove the effect of δzopl(zℓ), while also 

providing a depth-resolved estimate of s. (See Section 6.H below.) When performed at all 

lateral locations, we get a 3D characterization of s.

Fourier phase and Fourier amplitude: can Fourier amplitude estimate either δzopl(zℓ) or 

si(zopl(zℓ)) unambiguously? The answer is no. In Figs. 12(a) and 12(b), we show the Fourier 

amplitude profiles, respectively, for different values of Δz0 and s. For the former, the 

subresolution offsets of the order of 10 nm do not substantially change the amplitude profile. 

For the latter, although the amplitude does change with changing s, it is difficult to ascertain 

the cause. This causal ambiguity—whether the amplitude change is due to a slowly varying 

refractive index or simply due to a smaller interface increment Δn for a sharp interface—is 

not present in Fourier phase. For a slowly varying refractive index, a fast increase in Fourier 

phase, as shown in Fig. 11, can happen only due to an increasing si(zopl(zℓ)). (This point is 

further emphasized by the results in the next two sections.) On the other hand, for refractive 

index profiles with a strong interface, the change in Fourier phase is only due to 

subresolution offset δzopl(zℓ).
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D. Fourier Phase: Estimating Baseline Shift and Subresolution Shape

Here, we set z0 = zℓ and define the baseline refractive index to be n0 = zℓ + δn0, with zℓ = 1.4 

and δn0 (Behavior 3) varying between −0.02 and 0.02. As in Section 6.C above, shape 

parameter s is varied from 0.002∕d through 2∕d, corresponding to −3 through 0 in the log-

scale. For each pairwise value of δn0 and s, the Fourier phase is computed. Figure 13 shows 

the 2D plot of Fourier phase as a function of δn0 and s. The plot shows that Fourier phase 

captures the subresolution shape of the refractive index profile but very weakly depends on 

the baseline shift, which is in line with the theoretical prediction of Eq. (25) shown in Fig. 

5(b). The primary discrepancy between theory and simulation is that when the baseline shift 

is large enough for the same measurement location of zopl(zℓ), the weighted-center 

moves from one side of zopl(zℓ) to the other, thereby inducing a change in sign. Specifically, 

when the baseline increases, that is δn0 > 0, the optical depth zopl(z0) where the interface is 

located also increases for the same physical depth z0, and at some combinations of s and δn0 

it exceeds zopl(zℓ) and δzopl(zℓ) becomes negative. This can be seen in Fig. 13, where the 

change from positive to negative is not centered at n0 = 0 but deviates from it depending on 

what s is. This is not an issue in the practical scenario. If one ensures that the mean 

refractive index of the medium in which the cell or tissue sample is embedded is less than 

the mean refractive index of the sample, δn0 will effectively be less than zero, resulting in 

our operating in the positive regime. Given this regime, the Fourier phase dependence on |

δn0| is weak.

E. Fourier Phase: Estimating Interface Increment and Subresolution Shape

We set n0 = zℓ, z0 = zℓ, and vary interface increment Δn (Behavior 4) and subresolution 

shape s, respectively, between −0.02 and 0.02, and −3 and 0 (log-scale). Figure 14 shows 

that as in the previous two cases, Fourier phase reliably estimates structural information 

corresponding to subresolution shape parameter s in the slowly varying refractive index 

regime. However, unlike the theoretical prediction in Fig. 5(c), where the dependence of 

Fourier phase on interface increment is moderately weak, the simulation shows that the 

dependence of Fourier phase on interface increment is even weaker. This discrepancy 

primarily arises because the interface increment indirectly affects the shape of the increment. 

This indirect effect is easily captured in the plot of the analytical expression. In the case of 

simulation, however, this effect is subsumed by the changing shape parameter.

We note that Fourier phase distinctly captures one characteristic of Δn, and that is the 

direction of change. For negative values of Δn, Fourier phase becomes more negative with 

increasing values of s until it enters the strong interface regime, where it stops responding to 

changes in s. The opposite happens for positive Δn.

F. Application: Fourier-Phase-Based Estimation of the Axial Mean Spatial Frequency 
Profile

The parametric model of the refractive index profile helped illustrate the nature of structural 

information carried by Fourier phase. In practice, however, such an ideal profile has modest 

relevance. Therefore, we turn our attention to a more realistic refractive index profile (with 

n0 = 1.4) depicted in Fig. 15(a). Fourier phase measurements are performed on this 
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refractive index profile using the simulation methodology outlined in Section 6.B above. 

These measurements are performed at fixed oversampled optical depths in accordance with 

the strategy discussed in Section 3.B. The resulting optical phase profile ϕ(zopl(z)) is 

convolved with a Gaussian window W—mimicking the coherence gate imposed by the 

spectral source described in Section 6.B above—to suppress the effect of subresolution 

offset δzopl(z) due to its local symmetry and obtain ϕW(zopl(z)). (See Section 6.C above.) The 

estimate of the optical-space axial mean spatial frequency profile is then given by 

, where the coherence ℓc as the normalization factor.

To show that  does indeed carry axial mean spatial frequency information, we also 

estimate the axial mean spatial frequency directly from the refractive index profile by 

performing a short-time Fourier transform (STFT) along ns(z′) after mapping it to the 

optical-space zopl(z′). The STFT window is chosen to be the same window W used to 

compute . The STFT window scans the refractive index profile at all those optical 

depth locations zopl(z) for which the phase profile was computed. At each optical depth 

zopl(z) the amplitude  of the Fourier transform of the windowed refractive index 

profile  centered at zopl(z) gives its axial spatial frequency distribution over the 

spatial frequency range defined by the spectral source baseband bandwidth. This distribution 

is used to calculate the STFT-based mean spatial frequency  at that optical depth 

using the relation . Figure 15(b) plots the Fourier phase and 

STFT-based estimates of the axial mean spatial frequency of the refractive index profile in 

Fig. 15(a) as a function of optical depth. These mean spatial frequency profiles are plotted in 

the log-scale. The figure clearly shows that both approaches result in similar behavior, 

although Fourier phase in this example underestimates the mean spatial frequency.

G. Application: Fourier Phase-Based Depth-Resolved Characterization of Change in 
Optical Density

For the same refractive index profile as above, we now include a small local decrement 

(minimum Δn = −0.001) in the refractive index around optical depth zopl(z0) = 5.3 μm. 

Figure 16(a) illustrates the refractive index profiles with and without this decrement. The 

corresponding Fourier phase profiles ϕ(zopl(z)) are plotted in Fig. 16(b). They show that 

Fourier phase is able to provide a depth-resolved characterization of this decrement. As 

discussed in Section 6.E above, however, this characterization is the indirect effect of the 

local refractive index decrement on . We note that we have not computed 

ϕW(zopl(z)) because, first, the decrement occurs in a window smaller than the coherence 

gate, and second, it gives us an opportunity to illustrate the phase profile itself.

H. Application: Fourier Phase-Based Depth-Resolved Characterization of Heterogeneity

Heterogeneity is a well-established statistical characteristic in many biological processes, 

such as cancer development. Here we indicate the presence of heterogeneity by considering 

two refractive index profiles with a localized difference in the rate of variation of the 
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refractive index around the optical depth zopl(z0) = 7.7 μm. This localized heterogeneity is 

shown in Fig. 16(a), and the corresponding Fourier phase profiles are shown in Fig. 16(b). It 

can be seen that the phase value increases with an increase in heterogeneity.

In practice, it is difficult to separate local change (increment or decrement) in the refractive 

index from refractive index heterogeneity, and in a real scenario Fourier phase will manifest 

the combined effect of the two. This is only natural because they both affect the mean spatial 

frequency si(zopl(z)).

I. Doppler OCT in the Context of Fourier Phase

A different scenario arises when we consider, for example, blood flow through static tissue. 

Here, the flow of blood primarily affects the weighted-center  within the coherence 

gate resulting in the subresolution offset δzopl(z) between it and the probing depth zopl(z). 

For a fixed probing depth zopl(z0), the phase difference ΔΦ between the Fourier phase at two 

adjacent A-scans, therefore, captures the net axial subresolution offset. If the time t between 

the two A-scans is known, the axial flow velocity is given by . Strictly speaking, 

this is the axial optical flow velocity. To estimate the axial flow velocity itself, v should be 

divided by the average refractive index of the sample.

7. CONCLUSION

Despite being enthusiastically received by the research community, the scope and physical 

meaning of Fourier phase within the framework of FD-OCT has not been fully studied. This 

paper is an attempt to fill that gap. We have shown that Fourier phase is a direct 

consequence of finite spectral bandwidth of the source that results in a loss of structural 

information into the quadrature component of the complex spectral interference. Phasor 

representation allowed us to reveal that Fourier phase is, in fact, able to access an estimate 

of this structural information. We showed that this joint estimate characterizes subresolution 

offset and mean spatial frequency of coherence-gated refractive index profile, and derived 

an analytical expression precisely showing how and why this is the case. We also showed 

that both dr-SLQPM and SDPM are special cases of this general theoretical framework of 

Fourier phase and look at complementary aspects of Fourier phase. The former focuses on 

measuring mean spatial frequency, while the latter measures subresolution offset. Both have 

the advantage associated with any derivative of FD-OCT that they quantify the coherence-

gated depth-resolved structure of the sample without being confounded by its thickness as in 

transmission-mode QPM.

Based on the general framework of Fourier phase, we further showed that Fourier phase can 

be applied to estimate axial mean spatial frequency profile and characterize localized change 

in the refractive index and heterogeneity. These characterizations play an important role in 

early cancer detection and risk assessment [43]. Finally, we utilized the principle of Fourier 

phase to derive axial flow velocity in D-OCT.
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APPENDIX A: SPECTRAL INTERFERENCE

Starting with Eq. (3), and noting that , we have

(A1)

implying a dilation of the source spectrum under the transformation from wave number to 

spatial frequency. We denote the source spectral density in the spatial frequency basis by 

. As this representation is purely notational, we redefine S(K) = S1K without 

any loss in generality or accuracy because dilation, though made implicit, is not ignored. 

Therefore, we rewrite Eq. (A1) as

(A2)

The OPL is a monotonically increasing function of physical depth for any given refractive 

index profile. This definition, expressed in Eq. (5), is used in Eq. (A2) to get

(A3)

(A4)

where the substitution  follows from the Leibniz theorem. Equation (A4) 

states that when the integration is performed in the optical-space zopl(z′), the reflection 

profile is modified from r(z′), to . The normalization by the refractive index accounts 

for mapping of the reflection profile from the physical-space to optical-space. The mapping 

zopl(z′) from physical-space to optical space defines a homeomorphism between the two 

spaces that preserves the topological structure of the two spaces. As a result, the value of the 

modified reflection profile at z′ is the same as that at zopl(z′). Therefore, we denote the 

modified reflection profile at the optical depth zopl(z′) (corresponding to physical depth z′) 

by 

(A5)
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It is helpful to think of ropl(zopl(z′)) as a distribution acting on cos(2πKzopl(z′) through 

integration, because it allows the modeling of interfaces within the reflection profile that 

otherwise are difficult to handle mathematically. (See Section 4.B for an example.) This 

interpretation is feasible because cos(2πKzopl(z′)) is a smooth function with compact support 

over [0, zopl(L).

APPENDIX B: SIMPLIFYING SPECTRAL INTERFERENCE

Starting with generalized representation of the spectral interference

(B1)

and substituting Eq. (11) we get

(B2)

(B3)

APPENDIX C: FOURIER TRANSFORM OF THE SPECTRAL INTERFERENCE

Starting with Eq. (18),

(C1)

and substituting Eq. (17), we get

(C2)

Due to finite spectral-bandwidth, finite sample-depth, and real samples, Fubini’s theorem 

applies, allowing for the interchange of integrals. This, in conjunction with Euler 

representation of the cosine term, results in

(C3)

Rearranging Eq. (C3) allows us to express p(zopl(z)) as a sum of
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(C4)

and

(C5)

1. Baseband Represenation of p1(zopl(z))

To simplify Eq. (C4), we rewrite it as

(C6)

(C7)

where Eq. (C6) employs the power series representation of the analytic exponential function 

, and Eq. (C7) decomposes the power series into its even and odd powers. 

Denoting them, respectively, by he(Kδzopl(z)) and ho(Kδzopl(z)), we write Eq. (C7) as

(C8)

The inner integrals are the Fourier transforms of S(K)he(Kδzopl(z)) and S(K)ho(Kδzopl(z)), 

evaluated at (zopl(z)−zopl(z′)). Considered together with the outer integrals, they reduce Eq. 

(C8) to a convolution between the reflection profile, the correlation function of the light 

source, and Fourier transforms of he(K δzopl(z)) and ho(K δzopl(z)). The transforms of latter, 

respectively, are

(C9)
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(C10)

where the notation δ(ℓ) (zopl(z)) denotes the (ℓ)th derivative of the Dirac-delta, δ. The 

convolution of the outer integral then simplifies to

(C11)

where  is the (2j)th derivative of the reflection profile, * indicates the 

convolution operation, and  is the correlation function 

corresponding to the source spectrum centered at Kc.  itself is its baseband 

representation. We assume that the source spectral range is [K1, K2] and its center frequency 

Kc is as defined in Section 2.B.

There is a second interpretation of Eq. (C11). To see it, we focus on the convolution 

operation  in Eq. (C11),

(C12)

(C13)

(C14)

(C15)

where  is the baseband representation of the 

(ℓ)th derivative of the reflection profile. As mentioned above, Γ(zopl(z)) is the baseband 

representation of Γ(zopl(z)) which is the correlation function corresponding to the source. 

Substituting Eq. (C15) in Eq. (C11), we get the final form of p1(zopl(z)) as

(C16)
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which decomposes p1(zopl(z)) into its baseband representation (the term in the parentheses) 

and the carrier signal (the exponential before the parentheses) with carrier frequency Kc. The 

Fourier phase depends only on the baseband representation. Therefore, in the main text we 

exclusively use the baseband representation of p1(zopl(z)).

2. Baseband Representation of p2(zopl(z))

Following the same approach as above, p2(zopl(z)) simplifies to p2(zopl(z))

(C17)

where we have exploited the symmetry of the correlation function. The notations 

and  denote the complex conjugation of  and , respectively.

Summing Eqs. (C16) and (C17) gives us the Fourier transform p(zopl) of spectral 

interference P(K) as

(C18)

with ℜ and ℑ representing the real and imaginary parts of their respective arguments. We 

emphasize that in the main text the baseband representation of p(zopl(z)) is used. Also, the 

leading is dropped as p(zopl(z)) can be normalized by it.

APPENDIX D: SIMPLIFYING FOURIER PHASE REPRESENTATION AT A 

STRONG INTERFACE

We start by evaluating the first three convolutions in both the numerator and denominator of 

the Fourier phase expression in Eq. (30).

First convolution in the denominator of Eq. (30):

(D1)
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(D2)

(D3)

First convolution in the numerator of Eq. (30):

(D4)

(D5)

(D6)

Second convolution in the denominator of Eq. (30):

(D7)

(D8)

(D9)

Second convolution in the numerator of Eq. (30):

(D10)

(D11)

(D12)
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Third convolution in the denominator of Eq. (30):

(D13)

(D14)

(D15)

Third convolution in the numerator of Eq. (30):

(D16)

(D17)

(D18)

Substituting Eqs. (D3), (D6), (D9), (D12), (D15), and (D18) in Eq. (30), the Fourier phase 

becomes

(D19)

where Δℓ = (2πKcδzopl(z0))ℓ, ℓ ∈ ℤ+; and γℓ(0) = Γ(2ℓ)(0)(δzopl(z0))2ℓ, ℓ ∈ ℤ+. Again, the 

abbreviation H.O.T. stands for “higher-order terms” with respect to γ(0).

References

1. Born, M.; Wolf, E. Principles of Optics. 7. Cambridge University; 1999. 

2. Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects. 
Physica. 1942; 9:686–698.

3. Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part 
II. Physica. 1942; 9:974–986.

Uttam and Liu Page 32

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Pluta M. Nomarski’s DIC microscopy: a review. Proc SPIE. 1994; 1846:10–25.

5. Preza C, Snyder DL, Conchello J-A. Theoretical development and experimental evaluation of 
imaging models for differential-interference-contrast microscopy. J Opt Soc Am A. 1999; 16:2185–
2199.

6. Creath K. Phase-shifting speckle interferometry. Appl Opt. 1985; 24:3053–3058. [PubMed: 
18224002] 

7. Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging. 
Opt Lett. 1999; 24:291–293. [PubMed: 18071483] 

8. Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C. Digital 
holographic microscopy: a noninvasive contrast imaging technique allowing quantitative 
visualization of living cells with subwavelength axial accuracy. Opt Lett. 2005; 30:468–470. 
[PubMed: 15789705] 

9. Mann C, Yu L, Lo C-M, Kim M. High-resolution quantitative phase-contrast microscopy by digital 
holography. Opt Express. 2005; 13:8693–8698. [PubMed: 19498901] 

10. Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, Gillette MU, Popescu G. Spatial light 
interference microscopy (SLIM). Opt Express. 2011; 19:1016–1026. [PubMed: 21263640] 

11. Paganin D, Nugent KA. Noninterferometric phase imaging with partially coherent light. Phys Rev 
Lett. 1998; 80:2586–2589.

12. Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher 
order intensity derivatives. Opt Express. 2010; 18:12552–12561. [PubMed: 20588381] 

13. Dunn GA, Zicha D, Fraylich PE. Rapid, microtubule-dependent fluctuations of the cell margin. J 
Cell Sci. 1997; 110:3091–3098. [PubMed: 9365279] 

14. Zicha D, Genot E, Dunn GA, Kramer IM. TGFbeta1 induces a cell-cycle-dependent increase in 
motility of epithelial cells. J Cell Sci. 1999; 112:447–454. [PubMed: 9914157] 

15. Popescu, G. Quantitative Phase Imaging of Cells and Tissues. McGraw-Hill; 2011. 

16. Creath K, Goldstein G. Dynamic quantitative phase imaging for biological objects using a 
pixelated phase mask. Biomed Opt Express. 2012; 3:2866–2880. [PubMed: 23162725] 

17. Doblas A, Sánchez-Ortiga E, Martínez-Corral M, Saavedra G, Garcia-Sucerquia J. Accurate 
single-shot quantitative phase imaging of biological specimens with telecentric digital holographic 
microscopy. J Biomed Opt. 2014; 19:046022. [PubMed: 24781590] 

18. Klossa J, Wattelier B, Happillon T, Toubas LDLDominique, Untereiner V, Bon P, Manfait M. 
Quantitative phase imaging and Raman micro-spectroscopy applied to malaria. Diagn Pathol. 
2013; 8:S42.

19. Girshovitz P, Shaked NT. Doubling the field of view in off-axis low-coherence interferometric 
imaging. Light. 2014; 3:e151.

20. Fercher A, Hitzenberger C, Kamp G, El-Zaiat S. Measurement of intraocular distances by 
backscattering spectral interferometry. Opt Commun. 1995; 117:43–48.

21. Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs. time domain optical 
coherence tomography. Opt Express. 2003; 11:889–894. [PubMed: 19461802] 

22. Leitgeb RA, Schmetterer L, Hitzenberger CK, Fercher AF, Berisha F, Wojtkowski M, 
Bajraszewski T. Real-time measurement of in vitro flow by Fourier-domain color Doppler optical 
coherence tomography. Opt Lett. 2004; 29:171–173. [PubMed: 14744000] 

23. Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA. Spectral-domain phase microscopy. Opt 
Lett. 2005; 30:1162–1164. [PubMed: 15945141] 

24. Joo C, Akkin T, Cense B, Park BH, de Boer JF. Spectral-domain optical coherence phase 
microscopy for quantitative phase-contrast imaging. Opt Lett. 2005; 30:2131–2133. [PubMed: 
16127933] 

25. Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. Real-time 
assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical 
coherence tomography. Opt Express. 2003; 11:3116–3121. [PubMed: 19471434] 

26. Wang L, Wang Y, Guo S, Zhang J, Bachman M, Li G, Chen Z. Frequency domain phase-resolved 
optical Doppler and Doppler variance tomography. Opt Commun. 2004; 242:345–350.

Uttam and Liu Page 33

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Sarunic MV, Weinberg S, Izatt JA. Full-field swept-source phase microscopy. Opt Lett. 2006; 
31:1462–1464. [PubMed: 16642139] 

28. Choma MA, Ellerbee AK, Yazdanfar S, Izatt JA. Doppler flow imaging of cytoplasmic streaming 
using spectral domain phase microscopy. J Biomed Opt. 2006; 11:024014. [PubMed: 16674204] 

29. Akkin T, Joo C, de Boer JF. Depth-resolved measurement of transient structural changes during 
action potential propagation. Biophys J. 2007; 93:1347–1353. [PubMed: 17526590] 

30. Adler DC, Huber R, Fujimoto JG. Phase-sensitive optical coherence tomography at up to 370,000 
lines per second using buffered Fourier domain mode-locked lasers. Opt Lett. 2007; 32:626–628. 
[PubMed: 17308582] 

31. Joo C, Kim KH, de Boer JF. Spectral-domain optical coherence phase and multiphoton 
microscopy. Opt Lett. 2007; 32:623–625. [PubMed: 17308581] 

32. McDowell EJ, Ellerbee AK, Choma MA, Applegate BE, Izatt JA. Spectral domain phase 
microscopy for local measurements of cytoskeletal rheology in single cells. J Biomed Opt. 2007; 
12:044008. [PubMed: 17867812] 

33. Adler DC, Huang S-W, Huber R, Fujimoto JG. Photothermal detection of gold nanoparticles using 
phase-sensitive optical coherence tomography. Opt Express. 2008; 16:4376–4393. [PubMed: 
18542535] 

34. Akkin T, Landowne D, Sivaprakasam A. Optical coherence tomography phase measurement of 
transient changes in squid giant axons during activity. J Membr Biol. 2009; 231:35–46. [PubMed: 
19806385] 

35. Wang RK, Nuttall AL. Phase-sensitive optical coherence tomography imaging of the tissue motion 
within the organ of Corti at a subnanometer scale: a preliminary study. J Biomed Opt. 2010; 
15:056005. [PubMed: 21054099] 

36. Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgeb RA, Hitzenberger CK. 
Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence 
tomography. Opt Express. 2011; 19:1217–1227. [PubMed: 21263663] 

37. Pai JH, Liu T, Hsu HY, Wedding AB, Thierry B, Bagnaninchi PO. Molecular photo-thermal 
optical coherence phase microscopy using gold nanorods. J Biomed Opt. 2014; 4:27067–27073.

38. Gao SS, Wang R, Raphael PD, Moayedi Y, Groves AK, Zuo J, Applegate BE, Oghalai JS. 
Vibration of the organ of Corti within the cochlear apex in mice. J Neurophysiol. 2014; 112:1192–
1204. [PubMed: 24920025] 

39. Tsai MT, Chang FY, Yao YC, Mei J, Lee YJ. Optical inspection of solar cells using phase-
sensitive optical coherence tomography. Sol Energy Mater Sol Cells. 2015; 136:193–199.

40. Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, Zawadzki RJ. In vivo volumetric 
imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed 
Opt Express. 2011; 2:1504–1513. [PubMed: 21698014] 

41. Yin B, Kuranov RV, McElroy AB, McElroy AB, Kazmi S, Dunn AK, Duong TQ, Milner TE. 
Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood 
oxygen saturation. J Biomed Opt. 2013; 18:056005.

42. Uttam S, Bista RK, Staton K, Alexandrov S, Choi S, Bakkenist CJ, Hartman DJ, Brand RE, Liu Y. 
Investigation of depth-resolved nanoscale structural changes in regulated cell proliferation and 
chromatin decondensation. Biomed Opt Express. 2013; 4:596–613. [PubMed: 23577294] 

43. Uttam S, Pham HV, LaFace J, Leibowitz B, Yu J, Brand RE, Hartman DJ, Liu Y. Early prediction 
of cancer progression by depth-resolved nanoscale maps of nuclear architecture from unstained 
tissue specimens. Cancer Res. to be published. 10.1158/0008-5472.CAN-15-1274

44. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. Doppler optical coherence tomography. 
Prog Retinal Eye Res. 2014; 41:26–43.

45. Fercher A, Hitzenberger C, Sticker M, Moreno-Barriuso E, Leitgeb R, Drexler W, Sattmann H. A 
thermal light source technique for optical coherence tomography. Opt Commun. 2000; 185:57–64.

46. Brezinski, ME. Optical Coherence Tomography: Principles and Applications. Academic; 2006. 

47. Sheppard C, Connolly T, Gu M. The scattering potential for imaging in the reflection geometry. 
Opt Commun. 1995; 117:16–19.

48. Sheppard CJR, Connolly TJ, Lee J, Cogswell CJ. Confocal imaging of a stratified medium. Appl 
Opt. 1994; 33:631–640. [PubMed: 20862058] 

Uttam and Liu Page 34

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Uttam S, Alexandrov SA, Bista RK, Liu Y. Tomographic imaging via spectral encoding of spatial 
frequency. Opt Express. 2013; 21:7488–7504. [PubMed: 23546131] 

50. Wolf E. Three-dimensional structure determination of semitransparent objects from holographic 
data. Opt Commun. 1969; 1:153–156.

51. Yaqoob Z, Choi W, Oh S, Lue N, Park Y, Fang-Yen C, Dasari RR, Badizadegan K, Feld MS. 
Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and 
self phase-referencing. Opt Express. 2009; 17:10681–10687. [PubMed: 19550464] 

52. Sheppard CJR, Cogswell CJ. Three-dimensional image formation in confocal microscopy. J 
Microsc. 1990; 159:179–194.

53. Saleh, BAE.; Teich, MC. Fundamentals of Photonics. Wiley; 2007. 

Uttam and Liu Page 35

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Stylized depiction of spectral interference due to sample back-scattering and common-path 

reference.
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Fig. 2. 
Behavior of the refractive index profile within the coherence gate. (a) Subresolution shift 

within the coherence gate (indicated by the difference between the solid and dashed lines) 

for increasing (red) and decreasing (blue) refractive index profiles. It is the parameter used 

to model subresolution offset. (b) Subresolution change in shape within the coherence gate 

(indicated by dashed and solid lines) for increasing (red) and decreasing (blue) refractive 

index profiles. It is the parameter used to model mean spatial frequency.
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Fig. 3. 
Correlating the behavior of the exact and simplified forms of each term in Eq. (25) at optical 

depth zopl(z) = 4 μm, using the refractive index model defined in [Eq. (26)]. The parameters 

of the refractive index model are n0 = 1.4, Δn = 0.01, and s ranging from −3 to −2.3 in the 

log-scale, indicating a slowly varying refractive index profile. (a) Normalized scatter plot of 

the first term of Eq. (25) along the y-axis and its simplification along the x-axis. The 

normalization factor for both axes is 1.019 × 107 m−1. (b) Normalized scatter plot of the 
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second term of Eq. (25) along the y-axis and its simplification along the x-axis. The 

normalization factor for both axes is 0.0025 m−1.
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Fig. 4. 
Simple refractive index profile model with an increasing value of the shape parameter.
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Fig. 5. 
Effect of si(zopl(z)) on Fourier phase for changing values of the s, n0, and Δn parameters. 

The shape parameter s is expressed in the log-scale. (a) Increasing s for n0 = 1.4, Δn = 0.01, 

and z0 = 2.85 μm. (b) Increasing n0 for s = −2.3, Δn = 0.01, and z0 = 2.85 μm. (c) Increasing 

Δn for n0 = 1.4, s = −2, and z0 = 2.85 μm.
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Fig. 6. 
Plane-polarized light incident on a strong interface at an angle θi. The plane of incidence is 

in the y′–z′ plane. Parallel and perpendicular polarization of only the incident illumination is 

shown.

Uttam and Liu Page 42

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Optical-space reflection profile expressed in Eq. (28), corresponding to the refractive index 

model in Eq. (26) and plotted in Fig. 4, for increasing values of the shape parameter.
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Fig. 8. 

Behavior of  as a function of full width at half-maximum coherence length, ℓc, and 

central wavelength of the source spectrum, λc.
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Fig. 9. 
Behavior of the refractive index profile within the coherence gate in addition to those shown 

in Fig. 2. (a) Baseline shift (indicated by solid and dashed lines) for increasing (red) and 

decreasing (blue) refractive index profiles. (b) Interface increment (indicated by solid and 

dashed lines) for increasing (red) and decreasing (blue) refractive index profiles.
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Fig. 10. 
Fourier phase profiles for fixed refractive index model parameters z0 = 2.85 μm, Δn = 0.01, 

and n0 = 1.4 and increasing shape parameter s. The optical depth corresponding to physical 

depth z0 = 2.85 μm is 4 μm.
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Fig. 11. 
Behavior of Fourier phase by varying the subresolution offset and shape for a fixed baseline 

shift and interface increment. Fourier phase is plotted in units of length and the shape 

parameter s is expressed in the log-scale. (a) Fourier phase as a 2D function of subresolution 

offset and shape. (b) Isolating the effect of subresolution offset on Fourier phase. (c) 

Estimating the subresolution shape from Fourier phase and subresolution offset for true 

shape parameter value of −2.7 in the log-scale.

Uttam and Liu Page 47

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Fourier amplitude profiles as a function of optical depth for (a) Δz0 ranges from −11 to 9 nm 

for s = −2.2 and (b) changing subresolution shape from −2.4 through −1.8 for Δz0 = −11 nm.
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Fig. 13. 
Behavior of Fourier phase by varying the baseline shift and subresolution shape for fixed 

subresolution offset and interface increment. Fourier phase is plotted in units of length and 

the shape parameter s is expressed in the log-scale.
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Fig. 14. 
Behavior of Fourier phase by varying the interface increment and shape for fixed baseline 

shift and subresolution offset. Fourier phase is plotted in units of length and the shape 

parameter s is expressed in the log-scale.
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Fig. 15. 
(a) Refractive index profile mapped to the optical-space, and (b) Fourier phase and STFT-

based estimates of the axial mean spatial frequency profile corresponding to the refractive 

index profile. Both are expressed in the log-scale. The optical depth range is limited to 

(1μm, 9μm) to avoid simulation-based boundary artifacts.
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Fig. 16. 
(a) Refractive index profile in optical-space with localized refractive index change and 

heterogeneity, respectively at optical depths zopl(z0) = 5.3 μm and zopl(z0) = 7.7 μm, and (b) 

corresponding depth-resolved changes in Fourier phase. Fourier phase is plotted in units of 

length.
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