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Background: Neurocognitive testing is widely performed for
the assessment of concussion. Athletic trainers can use
preseason baselines with reliable change indices (RCIs) to
ascertain whether concussed athletes’ cognitive abilities are
below preinjury levels. Although the percentage of healthy
individuals who show decline on any individual test is
determined by its RCI’s confidence level (eg, 10% false-positive
rate using an RCI with an 80% confidence interval), the
expected rate of 1 or more significant RCIs across multiple
indices is unclear.

Objective: To use a Monte Carlo simulation procedure to
estimate the normal rate (ie, base rate) of significant decline on 1
or more RCIs in multitest batteries.

Results & Conclusion: For batteries producing 7 or more
uncorrelated RCIs (80% confidence intervals), the majority of
normal individuals would show significant declines on at least 1
RCI. Expected rates are lower for tests with fewer indices, higher
inter-RCI correlations, and more stringent impairment criteria.
These reference points can help testers interpret RCI output for
multitest batteries.
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Key Points

� Clinicians evaluating concussed athletes often rely on the results of multiple tests or subtests to determine whether
the athletes remain impaired.

� Base rates (ie, false-positive rates) of impairment are higher across multiple tests than for single tests, yet joint base
rates of impairment are often not published.

� This simulation study illustrates how the properties of a test battery affect the expected base rates of impairment on
1 or more indices within the test battery.

� These data can be referenced when making decisions about how to set cut scores for determining impairment in the
context of postconcussive evaluations.

F
ormal assessment of concussed athletes is common-
place in sports medicine, and a number of assess-
ment tools are available to quantify symptoms,

cognitive impairments, and other injury sequelae.1–4

Computerized neurocognitive tests (CNTs) are especially
popular for assessing neuropsychological abilities,5,6 with
nearly 40% of athletic trainers reporting use of a CNT in
their concussion-management protocols in 2009–2010.5

The vast majority (85.9% to 94.7%) of athletic trainers
who use CNTs perform preseason assessments so that
concussed athletes’ postinjury scores can be compared with
their individual premorbid estimates of ability.5,7 The CNT
programs facilitate the comparison of postinjury scores
with baseline scores using output about the significance of
reliable change indices (RCIs), which estimate the extent to
which changes in athletes’ performance are statistically
unusual after taking into account measurement error
inherent to a test. In addition to CNTs, RCI cutoffs have
been published for other concussion tests, including the
Sport Concussion Assessment Tool 3 (SCAT3)8,9 and
paper-and-pencil tests of psychomotor speed.10

Yet there is little published guidance about how to
interpret RCI output for batteries with multiple indices. For
any RCI, the expected false-positive rate is determined by

the confidence interval (CI) applied to that RCI. For
example, an RCI with a 90% confidence level should
classify 5% of normal, healthy individuals as significantly
declined from baseline (and, likewise, 5% as significantly
improved). Similarly, 80% and 95% CIs should classify
10% and 2.5%, respectively, of normal individuals as
significantly declined on average. Clinicians should select
thresholds for significance according to their preferences
for balancing sensitivity and specificity, with more lenient
criteria expected to identify more impairment in concussed
athletes (ie, increasing sensitivity) while inevitably also
falsely identifying more healthy individuals as impaired (ie,
diminishing specificity).

Although the specificity for 1 RCI is predictable, the
base rates (ie, rates of abnormal scores in the normal
population) of significant decline across sets of RCIs have
not been well documented. This is a problem because
clinical decisions usually involve interpreting the results
of multiple indices simultaneously, and the base rates of
impairment for 1 or more RCIs considered together should
be higher than the rate for individual RCIs. Knowing the
joint probability of producing various numbers of
significant indices in a set is critical to making informed
clinical decisions for any test battery, as the neuropsy-
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chology literature has documented. For example, among
community participants who completed a comprehensive
neuropsychological assessment (comprising an average of
24 tests producing 43 scores), 71.9% of individuals
showed at least 1 impaired score using a 1-standard
deviation cutoff for impairment.11 For a shorter neuro-
psychological battery (Wechsler Adult Intelligence Scale–
III) with only 4 composite (index) scores, 24% of healthy
individuals produced at least 1 abnormal index score
(below the 10th percentile).12 These rates depend on a
number of factors, including the number of indices in the
battery, their intercorrelations, and the impairment thresh-
old for each measure. Supporting this principle in the
context of concussion testing, 2 published studies on the
Immediate Post-Concussion Assessment and Cognitive
Testing (ImPACT) battery demonstrated that 22.2% to
46% of healthy individuals produced at least 1 signifi-
cantly declined RCI out of 5.13,14

The aim of our study was to estimate the base rates of
significant decline in 1 or more of a set of RCIs simulating
a range of conditions that match most concussion-
assessment batteries. This was achieved using a Monte
Carlo simulation method that has been found to accurately
estimate overall impairment base rates in other neuropsy-
chological batteries.11,12,15 By varying the number of
indices per battery, the correlations among indices, and
the criteria for significance, the relationship between these
factors and test specificity was illustrated. I discuss these
data in the context of the advantages and costs of applying

different impairment criteria for concussion-management
decisions.

METHODS

Data were simulated using a modified version of the
Monte Carlo procedure described by Crawford et al.12

Broadly, Monte Carlo simulation involves repeated random
sampling from 1 or more data sets to estimate the
probability of an event of interest. For the current study,
this required simulating data sets to match important
aspects of potential concussion-assessment batteries (eg,
number of indices) and observing how often certain
outcomes occurred across simulations. Specifically, the
aim was to identify how varying the length of a test battery
(conceptualized as the number of indices being interpreted)
and the impairment criteria (eg, 80% versus 90% CI)
influences the proportion of normal individuals deemed
impaired on 1 or more indices in the battery. In order to best
estimate these base rates for a particular set of measures,
one needs to know the correlations among the measures (in
this case, RCIs), which have not been published for the
available concussion-assessment batteries. Thus, the pri-
mary aim of this analysis was to demonstrate the
relationship among test battery length, impairment criteria,
and base rates of impairment rather than to definitively
estimate the true base rates for any particular assessment
tool.

A routine was developed using the mvrnorm function in
R16 (package MASS, R Foundation for Statistical
Computing, Vienna, Austria) to produce a series of
multivariate random normal data sets of N ¼ 100 000
individuals each for a range of conditions. In particular,
for each iteration of the procedure, the number of tests/
RCIs (from 1 to 15), correlations among RCIs (from 0 to
0.9 in 0.1 increments), and criteria for significance (z ¼
1.282, 1.645, and 1.960) were varied until all combina-
tions of these factors were simulated. The z-score cutoffs
were selected to match the most commonly used cutoffs
for significant RCIs in the concussion-assessment litera-
ture (corresponding to 80%, 90%, and 95% confidence
intervals, respectively). For each data set produced, the
percentage of individuals with 1 or more, 2 or more, or 3
or more RCIs meeting the criteria for significant decline
was computed. Because the base rates of interest are a
result of the number of indices considered, the impairment
cutoff for each index, and the correlations among the
indices, it is not necessary to produce data with the same
properties (eg, subtest means) to obtain valid estimates of
the joint probabilities of impairment, nor is it important to
actually compute RCIs from the data to estimate the joint
probabilities of significance for different numbers of
indices.

RESULTS

Figure 1 illustrates the relationship among test battery
length, impairment criteria, and the expected false-positive
rate for RCIs that are uncorrelated. As expected, the
estimated rate of impairment increased substantially as the
number of subtests/RCIs in the test battery increased and as
the threshold for classifying scores as impaired became
more lenient. For example, in a battery with 5 uncorrelated
RCIs and at a confidence level of 80%, 41% of healthy

Figure 1. Expected percentage of normal, healthy individuals who
would be classified as impaired on uncorrelated reliable change
indices (RCIs), stratified by number of indices in a test battery and
number of RCIs required to classify an individual as impaired.
Abbreviation: CI, confidence interval.
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individuals would be expected to produce at least 1 RCI
indicating a decline from baseline, with only 8% of
individuals declining significantly on 2 or more tests and
1% declining on 3 or more tests. Once the number of
indices increases to 7, the majority of normal individuals
(52%) would be expected to show 1 or more significant
declines when using RCIs with 80% CIs. For any given test
battery, these rates decrease as one tightens the threshold
for significance of each index in the battery (eg, for the
given example of a test that produces 5 RCIs, the
percentage of healthy individuals showing significant
decline on 1 or more subtests falls to 23% and 12% when
using a 90% or 95% CI for each RCI, respectively). Note
that the percentages reported also reflect the expected base
rates of significant improvement on retesting.

Figure 2 illustrates the role of inter-RCI correlations on
the expected false-positive rates across a set of RCIs (using
80% CIs for each). To the extent that RCIs within a test
battery are more correlated with each other, the base rates
would be reduced. For example, in a set of RCIs correlated
with each other at r ¼ 0.2, the majority of healthy
individuals would show a decline on at least 1 RCI in a
set of 9 or more indices, whereas at a correlation of 0.4, a
battery would need to produce at least 13 indices before the
base rate of decline (on at least 1 RCI) rises over 50%.

CONCLUSIONS

This study illustrates an important and perhaps over-
looked fact in the interpretation of multiple RCIs within a
concussion test battery: that the percentage of normal,

healthy individuals who are expected to show significant
decline on at least 1 RCI in a multiple-test battery is higher
than that percentage for individual RCIs. In particular, for a
test battery that produces 7 or more uncorrelated RCIs,
most normal individuals would demonstrate significant
impairment on at least 1 RCI with 80% CIs for each. This
concern is not unique to concussion tests or neuropsycho-
logical tests and rather is a statistical truism whenever one
aggregates findings across a set of tests. The principle is the
same as the inflated type I error rate resulting from multiple
statistical comparisons but is easily forgotten in the context
of clinical decisions. Although this language emphasizes
the interpretation of RCIs given their widespread use for
concussion assessment, the data also apply to the
interpretation of single (eg, postinjury) scores.

As shown in Figure 2, the impairment rates should be
lower when the indices are more highly correlated. For
illustrative purposes, a wide range of correlations was
modeled, but in real data sets, these correlations are likely
relatively modest (ie, ,0.3 on average). This is because
indices with high correlations are unlikely to contribute
uniquely to concussion assessment (and therefore to
warrant separate inclusion in a battery) and because the
difference scores that make up RCIs likely have lower
maximum correlations with each other given that difference
scores are often less reliable than single scores.17

Authors13,14 of the limited number of published studies on
this topic have reported that 22.2% to 46% of healthy
participants produce at least 1 (out of 5) significantly
declined RCIs on ImPACT.

Sports medicine professionals should be aware of this
principle and the data provided to make informed decisions
about the most appropriate cutoff for impairment given the
number of indices produced by their concussion-testing
protocol and their goals for balancing sensitivity and
specificity. Especially for longer test batteries, this may
mean (1) selecting wider CIs around each RCI or (2)
requiring more than 1 significant RCI before declaring an
athlete below baseline. For users of commercialized CNTs
who cannot select different CIs, option 2 may be their only
choice. Interpretive guidelines have been published for
ImPACT,18 but it will be valuable for researchers to more
routinely publish these base rates for a variety of common
test batteries, including multimodal batteries that include
cognitive, balance, and other measures.

These findings highlight the importance of reporting the
rates of impairment across sets of indices and including
uninjured control athletes, as both the sensitivity and
specificity of a test determine its potential to contribute
useful clinical information. However, few researchers have
reported the sensitivity of CNTs across a set of RCIs;
variable estimates ranged from values near the estimated
rates of impairment reported here (42.9%)19 to significantly
greater values (78.6% to 90%).20,21 It will be valuable for
future investigators to identify the sources of variability in
sensitivity rates (eg, differences in sample demographics,
injury definition, or injury severity) to best determine the
predictors of a poor neurocognitive outcome after concus-
sion and the conditions under which neurocognitive testing
is more or less informative for making concussion-
management decisions. Building the evidence base around
neurocognitive tests with an emphasis on clinically relevant
metrics will undoubtedly further advance their clinical

Figure 2. Expected percentage of normal, healthy individuals with
1 or more impaired indices by number of indices and their
intercorrelations (using a z ¼�1.282 cutoff for impairment, akin to
an 80% confidence interval). The r value presented on the right side
of each line denotes the correlation between the indices (reliable
change indices) in each simulated data set.
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utility and appropriate use in concussion-management
programs.
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