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Original Article

Background: We investigated the incidence of ischemic heart dis-
ease (IHD) in relation to accumulated exposure to particulate matter 
(PM) in a cohort of aluminum workers. We adjusted for time vary-
ing confounding characteristic of the healthy worker survivor effect, 
using a recently introduced method for the estimation of causal target 
parameters.
Methods: Applying longitudinal targeted minimum loss-based esti-
mation, we estimated the difference in marginal cumulative risk of 
IHD in the cohort comparing counterfactual outcomes if always 
exposed above to always exposed below a PM2.5 exposure cut-off. 
Analyses were stratified by sub-cohort employed in either smelters 
or fabrication facilities. We selected two exposure cut-offs a priori, at 
the median and 10th percentile in each sub-cohort.
Results: In smelters, the estimated IHD risk difference after 15 years 
of accumulating PM2.5 exposure during follow-up was 2.9% (0.6%, 
5.1%) using the 10th percentile cut-off of 0.10 mg/m3. For fabrication 
workers, the difference was 2.5% (0.8%, 4.1%) at the 10th percen-
tile of 0.06 mg/m3. Using the median exposure cut-off, results were 
similar in direction but smaller in size. We present marginal inci-
dence curves describing the cumulative risk of IHD over the course 
of follow-up for each sub-cohort under each intervention regimen.

Conclusions: The accumulation of exposure to PM2.5 appears to result 
in higher risks of IHD in both aluminum smelter and fabrication work-
ers. This represents the first longitudinal application of targeted mini-
mum loss-based estimation, a method for generating doubly robust 
semi-parametric efficient substitution estimators of causal parameters, 
in the fields of occupational and environmental epidemiology.

(Epidemiology 2015;26: 806–814)

Studies of the health effects of occupational exposures can be 
misleading due to time-varying confounding, a component 

of the healthy worker survivor effect.1,2 Robins and colleagues3,4 
have developed methods, known as G-methods, designed to 
generate unbiased estimates in the presence of time-varying 
confounders on the causal pathway. Although developed in 
the mid-1980s and applied in other settings,5,6 it was not until 
recently that methodologies, such as the parametric G formula,8 
inverse probability weighting of marginal structural models,9 
and G-estimation of accelerated failure time models,10 were 
applied to address this problem in occupational studies.

These methods adjust for time-varying confounding by 
building prediction models for either the exposure assignment 
or the disease outcome. An alternative approach is to model 
both processes, giving the investigator two opportunities to 
correct for the time-varying confounding. Such methods are 
known as doubly robust, referring to the fact that they provide 
unbiased results if either of the two processes are modeled cor-
rectly.11 Longitudinal targeted minimum loss-based estima-
tion (TMLE)12 is a more recently developed G-method which 
provides a doubly robust substitution estimator that allows for 
flexible modeling of selected likelihood components.13,14

Particulate matter (PM) with an aerodynamic diam-
eter of less than 2.5 μm (PM2.5) is recognized as a major 
contributor to the global burden of heart disease, with the 
strongest evidence for direct cigarette smoke and air pol-
lution sources.15,16 We apply longitudinal TMLE to esti-
mate the incidence of ischemic heart disease (IHD) under 
hypothetical interventions on accumulated exposure to 
PM2.5 in a large population of actively employed aluminum 
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manufacturing workers. Earlier research on heart disease in this  
cohort17,18 demonstrated a positive association between IHD 
incidence and current exposure to PM2.5 using both conven-
tional survival methods and inverse weighted marginal struc-
tural models.

Unlike most occupational cohorts,19 time-varying infor-
mation on personal characteristics, such as cigarette smoking, 
body mass index (BMI), as well as measures of underlying 
cardiovascular health were available for this study. Variables 
on the causal pathway between exposure at an earlier time 
period and heart disease can serve as confounders of the effect 
of accumulated exposure on risk of heart disease.20 Work-
ers with better health tend to accrue more exposure through 
the preferential movement of workers with worse health to 
both lower exposed jobs as well as out of the work force.1,2 
If poorer health was caused by prior exposure, standard sta-
tistical methods will not generate consistent estimates of the 
effect of accumulated exposure.21 We therefore investigated 
the relation between accumulated exposure to PM2.5 and IHD 
using longitudinal TMLE in this dataset in an attempt to esti-
mate the causal effect of exposure absent the biasing influence 
of the healthy worker survivor effect.

METHODS

The Study Population and Outcome
Hourly workers employed at one of 11 US aluminum smelters 
and fabrication facilities for more than 2 years between Janu-
ary 1, 1996, and December 31, 2012, who were also enrolled 
in the company health plan, were eligible for inclusion in the 
analysis. Before 2003, we assumed that all employed workers 
were enrolled in the company health plan; 97% of them filed 
a claim during this period. After 2003, when the company 
changed providers, active worker rolls were checked against 
an eligibility roster to determine enrollment. Eligible workers, 
regardless of hire date, were followed for incidence of IHD 
after a 2-year washout period, implemented to remove preva-
lent cases of heart disease from the cohort. Follow-up for each 
worker began at the later of January 1, 1998, or 2 years after 
hire and ended at termination of employment.

Workers were assigned to the smelter or fabrication sub-
cohorts if they had ever held a job in the respective facility types. 
The analysis was stratified due to differences in composition 
and level of PM2.5 between the two. Incident IHD was defined 
by any of the following events: (1) insurance billing claim for 
a indicative procedure, such as revascularization, angioplasty, 
or a bypass, (2) face-to-face visit with a provider with a rel-
evant International Classification of Diseases (ICD) diagnosis 
code, (3) hospitalization for more than 2 days with the relevant 
ICD admitting code, or (4) matching record of death from the 
National Death Index with a relevant cause of death.

All research protocols were approved by the Office for 
the Protection of Human Subjects at the University of Califor-
nia at Berkeley.

Exposure Assessment
The details of the exposure assessment have been previously 
described by Noth et al.22 Each job was associated with a 
time-invariant exposure level to total particulate matter (TPM) 
based upon 8,385 personal samples collected by the company 
at 11 facilities between 1980 and 2011. Within eight of the 
facilities, additional samples were collected by our research 
team to determine the %PM2.5 in the TPM. The %PM2.5 was 
then multiplied by the TPM estimate to determine the mean 
concentration of PM2.5 associated with a particular job. Addi-
tional modeling and expert judgment were used to generate 
estimates of TPM and %PM2.5 from jobs without measured 
values. Each worker’s assigned exposure for a given year was 
the exposure level associated with the job held on January 1st 
of that year.

Each job was assigned a confidence level by indus-
trial hygienists and researchers reflecting the method used 
to determine the exposure level. As in previous analyses,17,18 
this analysis was restricted to subjects who ever held a job 
with a high confidence level. This indicates that at least one of 
the worker’s TPM estimates that determined PM2.5 exposure 
concentrations was based upon a measurement (i.e., not mod-
eled). Exposure was treated as a binary variable to ensure that 
counterfactual intervention regimens were well represented in 
the cohort. Binary exposure was defined by a cut-off at either 
the median or 10th percentile of all PM2.5 exposures across 
follow-up time within each sub-cohort.

Covariates
Human resource records were the source for worker’s age, 
sex, race, facility location, time since hire, job title, and job 
grade. Claims files from the primary health care provider 
were used to identify dates of diagnosis for four conditions 
associated with cardiovascular risk: diabetes, hypertension, 
dyslipidemia, and obesity. Claims files were also parsed by a 
proprietary algorithm (DxCG Software; Verisk Health, Salt 
Lake City, UT) to compute a “risk score.” The risk score 
estimated an individual’s future likelihood of using medical 
services and served as a time-varying measure of overall 
worker health. The continuous measure was converted into 
deciles for the analysis. The risk score has been shown to 
predict a variety of health outcomes including mortality in 
the higher deciles.23,24 Smoking and BMI information was 
collected at occupational medicine clinics on site at each 
location.

Statistical Methods
Longitudinal TMLE allows for the estimation of cumulative 
incidence of disease in a cohort following a specified inter-
vention regimen.12 We used a dichotomous definition of expo-
sure; PM2.5 levels above a cut-off were defined as “exposed” 
and those below the cut-off as “unexposed.” A priori, we chose 
two cut-offs calculated separately in each sub-cohort, one at 
the median exposure and one at the 10th percentile. We esti-
mated the effect of remaining at work and in the same PM2.5 
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exposure category throughout follow-up until retirement age 
on the IHD incidence in the cohort.

We compared the estimated cumulative incidence of 
IHD in the worker population if, during each year of follow-
up, they had all been exposed above the cut-off to the estimated 
cumulative incidence in the same population if always exposed 
below the cut-off. Both intervention regimens included an 
intervention that prevents censoring. We defined censoring in 
this population as leaving work before normal retirement age: 
younger than 55 years old. Workers whose histories were trun-
cated due to end of administrative follow-up or leaving work 
when older than 55 years retained these truncated histories 
under all intervention regimens. While predictive factors of 
the outcome may also affect the probability that workers leave 
work after retirement age, an attempt to prevent censoring due 
to this cause would not be sufficiently supported in the data 
because too few workers would remain at work, as well as 
having questionable relevance in the real world.25,26

A description and derivation of the statistical proper-
ties of the longitudinal TMLE was written by van der Laan 
and Gruber.12 This procedure uses representations of the tar-
get parameter and influence curve first proposed by Bang and 
Robins.27 A more detailed explanation of the estimator prop-
erties and the analysis procedure is contained in the eAppen-
dix (http://links.lww.com/EDE/A928). Our target parameter 
of interest is the mean cumulative incidence of IHD at each 
specific time point t = …1 15, , , among workers following a 
defined intervention regimen, a , where t = 1 indicates the first 
year of follow-up (third year of work). For instance, following 
intervention regimen, 1  represents exposure to PM2.5 above 
the cut-off and being uncensored at each time point. The tar-
get parameter is E Y t

a ( )( )  for a  equal to 1  or 0 , where Y t( )  
is an indicator of heart disease diagnosis prior to year t and 
the a  subscript indicates that this is a counterfactual outcome 
under intervention regimen a . Each estimation procedure 
was performed separately for each intervention regimen, sub-
cohort and time t = 1,…15.

First, for a given t, we estimated the true exposure assign-
ment mechanism, or the probability of workers being exposed 
above a cut-off at time point k, given the observed past, includ-
ing the treatment and censoring history and other measured 
covariates, which we denote g kE ( ).  We similarly generated an 
estimate for the censoring mechanism g kC ( ) , which estimated 
the probability of a worker younger than 55 years leaving work 
in time period k given the observed past. For each of the four 
estimation procedures (two sub-cohorts with two binary expo-
sure definitions), fits of the g models gE

and gC
 were gen-

erated using all person-years where, at time k, the worker had 
followed the regimen of interest up to time point k −1.

We then estimated a series of k t= …, ,1  nested condi-
tional regressions, each predicting the probability of outcome 
at any time point between k and t. Successive regressions 
were nested in that each predicted either the outcome of the  
previous ( )k +1 th regression or the observed failure event. 

Each was individually targeted toward the parameter of inter-
est, ensuring that the estimator of the mean outcome under 
this regimen is consistent when the g models are consis-
tently estimated, even when the outcome regressions are all  
misspecified.14 The final result is a marginal estimate of the 
cumulative incidence of IHD among the cohort after t years of 
follow-up had regimen a  been followed by all workers.

We fit main-term logistic regressions for each of the 
exposure, censoring, and outcome models, inserting as pre-
dictors all listed covariates as measured at the end of the most 
recent time period as well as 1-year lagged measurements 
of diagnoses indicators, risk score, and binary exposure. For 
higher values of t, there were few subjects at risk, which cre-
ated the potential for overfitting of the outcome model. We 
used bi-directional stepwise regression by Akaike Information 
Criterion to perform variable selection for outcome models 
with fewer than 250 cases28 while forcing risk score and cur-
rent exposure into the model. This allowed for more parsimo-
nious models and higher variance in model error, needed to 
make the targeting step effective.

We performed this series of iterative regressions sepa-
rately for each time period (t = 1,...,15) to create estimates of 
the cumulative incidence of disease among the whole popula-
tion at time t. These 15 estimates were then used to create 
marginal incidence curves which estimate the experience of 
the cohort over the entire length of follow-up under the speci-
fied intervention regimen. We then calculated rate ratios and 
differences and corresponding confidence intervals, using 
influence-curve based variance estimates,12 comparing the 
regimens with exposures above the cut-off to the regimens 
with exposures below. The analysis was performed using the 
ltmle29 package in R version 3.0.2 (R Foundation, Vienna, 
Austria).

Complete information was not available on all of the 
covariates of interest for all workers. Smoking status was 
missing for 51% of person-years, BMI for 23%, marital status 
for 2%, and risk score for 15%. We used multiple imputation 
to impute values for these missing data in five datasets with 
the proc mi procedure in SAS 9.3 (SAS Institute, Cary, NC), 
and included all measured covariates in the prediction model. 
Results from these five analyses were combined using Rubin’s 
rules30,31 to calculate adjusted point estimates and variances.

RESULTS
The original cohort contained 16,991 subjects working in 
smelters and fabrication facilities (140,179 person-years). 
The restriction to include only workers in whom confidence of 
exposure measurement was high resulted in 13,529 workers 
and 112,293 person-years, roughly 80% of the original cohort. 
The analyses were based on the smelter sub-cohort of 5,527 
workers (46,723 person-years) and the fabrication sub-cohort 
of 7,211 workers (61,375 person-years). The 680 workers who 
worked in both a smelter and fabrication facility were included 
in both sub-cohorts. In smelters, the median PM2.5 concentration 

http://links.lww.com/EDE/A928
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was 1.77 mg/m3 and the 10th percentile was 0.16 mg/m3. In 
fabrication, the median PM2.5 concentration was 0.20 mg/m3  
and the 10th percentile was 0.06 mg/m3.

The baseline demographic characteristics by facility 
type and exposure categories as defined by cut-offs are shown 
in Tables 1 and 2. In both smelters and fabrication facilities, 
workers exposed above the median have lower frequencies 
of cardiovascular risk factors and other measures of overall 
health than workers exposed below, although the rates of IHD 
are similar or slightly higher among the exposed. The mean 
risk score decile among the smelter workers exposed above 
the median cut-off was 4.6 versus 5.0 for those exposed below 
the median. At the 10th percentile cut-off, these differences 
become more stark, with a mean risk score of 4.7 for those 
exposed above and 5.7 below. In the fabrication, workers had 
mean risk scores of 4.9 among those exposed above and 5.3 

below for the median cut-off and 5.1 above and 5.2 below for 
the 10th percentile cut-off.

Table  3 presents the smelter and fabrication worker 
populations and incident disease counts by year of follow-
up, with and without the restriction to those following the 
intervention regimen of staying in the same exposure cat-
egory (for the median cut-off). This restriction resulted in 
the loss of 14% of the person-years and 12% of the incident 
cases from the fabrication analysis and in the loss of 17% 
of the person-years and 16% of the incident cases from the 
smelter analysis.
Figures 1, 2, 3 and 4 contain the marginal cumulative inci-
dence curves estimated for each of the four exposure groups. 
Each curve estimates the percentage of the cohort that would 
remain undiagnosed with heart disease by the end of follow-
up had all workers followed the intervention regimen.

TABLE 1.  Smelter Worker Cohort Demographics, Time Varying Covariates, and Outcomes by PM2.5 Exposure Cut-off and 
Exposure Level at Baseline

PM2.5 Cut-off Median (1.77 mg/m3) 10th Percentile (0.16 mg/m3)

TotalExposure Status at Baseline Above Below Above Below

N 2,808 2,618 4,914 512 5,426

Person-years 21,241 18,772 35,827 4,186 40,013

Follow-up years, median (IQR) 8 (5–12) 7 (4–12) 7 (4–12) 9 (5–13) 8 (4–12)

Demographics

 � Male (%) 96 93 95 92 94

 � White (%) 87 84 85 91 86

 �A ge, median (IQR) 42 (34–51) 45 (36–52) 43 (34–51) 47 (42–53) 44 (35–51)

 �E ver been married (%)a 85 84 84 85 84

Time varying covariates

 �T ime since hire, median (IQR) 8 (2–24) 13 (2–25) 8.5 (2–25) 22 (6–27) 13.5 (2–25)

 � Proportion of year off work, 

mean (%)

4 4 4 3 4

 � High job grade (%) 36 32 33 45 34

 � Hypertension (%) 13.50 13.70 13 16 14

 � Diabetes (%) 4.00 5.00 4.40 5.50 4.50

 � Dyslipidemia (%) 11 14 12 16 12

 �C linically obese (%) 1.30 1.00 1.20 0.60 1.10

 �R isk score decile, median (IQR)a 4 (2–7) 4 (3–7) 4 (2–7) 5 (3–8) 4 (2–7)

 � BMI, median (IQR)a 28.3 (25–32) 28.9 (26–32) 28.6 (26–32) 28.4 (26–32) 28.6 (26–32)

 � Smoking status: current (%)a 25 28 27 27 27

 � Smoking status: ever (%)a 38 33 35 33 35

 � Smoking status: never (%)a 38 39 38 40 38

 �C umulative exposure ((mg/m3)a 

years), median (IQR)

19.2 (6–62) 5.1 (3–18) 12.6 (5–44) 3.4 (1–5) 27.2 (4–41)

 �C urrent exposure((mg/m3)a 

years), median (IQR)

3.3 (2.0–3.4) 0.6 (0.3–1.5) 2.3 (1.1–2.6) 0.12 (0.07–0.16) 2.1 (0.6–2.6)

Outcomes of interest

 �I ncident IHD, n (%) 212 (7.5) 191 (7.3) 364 (7.4) 39 (7.6) 403 (7.4)

 �C ensored, n (%) 443 (15.7) 439 (16.8) 813 (16.5) 69 (13.5) 882 (16.2)

aAmong workers with recorded values. Marital status was measured in 98% of smelter workers, risk score in 80%, BMI in 71%, and smoking status in 40%.
IQR indicates interquartile range.
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Table 4 contains the average treatment effects and rate ratios 
at year 15 for each of the four groups. The average treatment 
effect is the difference between the cumulative incidence of 
IHD predicted for a cohort always exposed above the cut-
off and that for the same cohort always exposed below the 
cut-off. At year 15, the smelter worker sub-cohort, if con-
stantly exposed above the median cut-off of 1.77 mg/m3 while 
remaining at work until 55 years, would experience a 2.1% 
(95% confidence interval = −1.3%, 5.5%) higher incidence 
of IHD compared with the same cohort if constantly exposed 
below the cut-off. For the 10th percentile cut-off of 0.16 mg/m3  
in the smelter sub-cohort, the cumulative incidence of IHD 
would be higher by 2.9% (0.6%, 5.1%). Among the fabrica-
tion cohort, the estimated average treatment effect was 0.9% 
(−1.6%, 3.5%) for the median cut-off of 0.20 mg/m3 and 2.5% 
(0.8%, 4.1%) for the 10th percentile cut-off of 0.06 mg/m3. The 
unadjusted average treatment effect estimates in the smelter 

sub-cohort were 0.0% and 0.7% for the median and 10th per-
centile respectively, and 1.8% and 0.2% for the median and 
10th percentile in the fabrication sub-cohort.

The estimation of marginal cumulative incidence also 
allows us to calculate causal risk ratios for the same expo-
sure groups, by taking the ratio of the two incidences. Among 
the smelter sub-cohort, the average causal risk ratio (averaged 
over the 15 years of follow-up) was 1.4 (0.8, 2.4) at the median 
cut-off and 1.8 (1.0, 3.1) at the 10th percentile cut-off. Among 
the fabrication facility sub-cohort, the average causal risk 
ratio was 1.1 (0.8, 1.6) at the median cut-off and 1.5 (1.1, 1.9) 
at the 10th percentile cut-off.

DISCUSSION
These results provide evidence that increased risk of IHD is 
associated with cumulative occupational exposure to PM2.5 in 
both the fabrication and smelter sub-cohorts. Prior analyses, 

TABLE 2.  Fabrication Worker Cohort Demographics, Time Varying Covariates and Outcomes by PM2.5 Exposure Cut-off and 
Exposure Level at Baseline

PM2.5 Cut-off Median (0.19 mg/m3) 10th Percentile (0.06 mg/m3)

Exposure Status at Baseline Above Below Above Below Total

N 3,344 3,777 6,612 509 7,121

Person-years 26,346 25,339 47,473 4,212 51,685

Follow-up time, median (IQR) 8 (5–14)  6 (4–11) 7 (5–12) 9 (5–14) 7 (5–12)

Demographics

 � Male (%) 88 74 81 82 81

 � White (%) 80 84 82 91 82

 �A ge, median (IQR) 42 (35–51) 45 (38–53) 44 (36–52) 45 (39–52) 44 (36–52)

 �E ver been married (%)a 80 74 77 76 77

Time varying covariates

 �T ime since hire, median (IQR) 8 (2–21) 13 (2–25) 9 (2–24) 14 (2–25) 9 (2–24)

 � Proportion of year off work, mean (%) 3 4 3 4 3

 � High job grade (%) 41 43 43 32 42

 � Hypertension (%) 10.70 11.90 11 16 11

 � Diabetes (%) 3.60 5.10 4.20 6.30 4.40

 � Dyslipidemia (%) 10 13 11 14 12

 �C linically obese (%) 0.90 1.00 0.90 1.20 0.90

 �R isk score decile, median (IQR)a 4 (2–7) 5 (3–8) 5 (2–7) 5 (3–8) 5 (2–7)

 � BMI, median (IQR)a 29.2 (26–33) 28.5 (25–32) 28.9 (26–33) 28.4 (26–33) 28.8 (26–33)

 � Smoking status: current (%)a 28 28 27 34 28

 � Smoking status: ever (%)a 30 30 30 28 35

 � Smoking status: never (%)a 42 43 43 38 42

 �C umulative exposure ((mg/m3)a years), 

median (IQR)

3.9 (1–9) 2.9 (0.3–3) 2.3 (0.7–5) 2.2 (0.2–1) 2.0 (1–5)

 �C urrent exposure ((mg/m3)a years), 

 median (IQR)

0.89 (0.25–0.97) 0.12 (0.07–0.14) 0.21 (0.14–0.45) 0.04 (0.04–0.06) 0.48 (0.12–0.37)

Outcomes of interest

 �I ncident IHD, n (%) 294 (8.8) 279 (7.4) 531 (8.0) 42 (8.3) 573 (8.0)

 �C ensored, n (%) 551 (16.5) 548 (14.5) 1,025 (15.5) 74 (14.5) 1,099 (15.4)

aAmong workers with recorded values. Marital status was measured in 95% of fabrication workers, risk score in 79%, BMI in 69%, and smoking status in 44%.
IQR indicates interquartile range.
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FIGURE 1.  Estimated cumulative survival from IHD and 95% 
confidence intervals, adjusted for measured baseline and time-
varying risk factors, among the smelter worker population if 
continuously exposed versus unexposed at the median cut-off 
of 1.77 mg/m3. The thick lines represent the point estimates, 
whereas the thinner lines represent the 95% confidence inter-
vals, with the line types (dotted vs. solid) indicating if the esti-
mate is for above or below the cut-off.

TABLE 3.  Worker Cohort Membership and Incident Ischemic Heart Disease Cases by Year of Follow-up and Facility Type for 
All Workers and Only Workers Exposed Consistently to Either Above or Below the Median (Fabricators: 0.19 mg/m3; Smelters: 
1.77 mg/m3) Level of PM2.5

Fabricators Smelters

All Workers
Workers With  

Constant Exposure All Workers
Workers With  

Constant Exposure

Time On 
Follow-up Subjects Incident Cases Subjects Incident Cases Subjects Incident Cases Subjects Incident Cases

1 7,121 80 7,121 80 5,426 39 5,426 39

2 6,623 75 6,246 70 5,044 56 4,656 53

3 5,824 63 5,346 56 4,498 47 3,962 41

4 5,380 52 4,758 50 4,047 35 3,404 31

5 4,685 57 4,015 49 3,639 45 2,955 38

6 3,716 35 3,061 30 3,153 35 2,452 30

7 3,193 42 2,579 36 2,731 31 2,064 26

8 2,757 28 2,197 21 2,417 23 1,800 19

9 2,536 27 1,996 24 2,185 23 1,582 16

10 2,289 22 1,761 13 1,912 23 1,353 14

11 1,916 13 1,443 12 1,563 13 1,066 9

12 1,774 20 1,324 16 1,173 10 792 8

13 1,501 25 1,090 21 927 9 633 5

14 1,313 26 950 20 725 10 498 7

15 1,057 8 763 6 573 4 396 4

Overall 51,685 573 44,650 504 40,013 403 33,039 340
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FIGURE 2.  Estimated cumulative survival from IHD and 95% 
confidence intervals, adjusted for measured baseline and time-
varying risk factors, among the smelter worker population if 
continuously exposed versus unexposed at the 10th percentile 
cut-off of 0.16 mg/m3. The thick lines represent the point esti-
mates, whereas the thinner lines represent the 95% confidence 
intervals, with the line types (dotted vs. solid) indicating if the 
estimate is for above or below the cut-off.
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using Cox models17 and inverse-probability weighted Cox 
marginal structural models,18 generated similar findings sup-
porting a detrimental effect of exposure, although the effect 
measures differed. In contrast with the conventional analysis 
and similarly to results from the inverse-probability weighted 
Cox marginal structural model, we observed stronger asso-
ciations in the smelters than in the fabrication. The TMLE 
estimate of the risk ratio returned smaller confidence inter-
vals than those from the inverse-probability weighted estimate 
of the hazard ratio. In three of the four point estimates, we 
estimated larger effects using targeted minimum loss-based 
estimates than unadjusted estimates.

We applied longitudinal TMLE to adjust for the time-
varying confounders on the causal pathway that characterize 
healthy worker survivor bias. The cohort demographics by 
exposure status (Tables 1 and 2) are consistent with the pres-
ence of this bias, and indicative of a pattern of behavior in 
which workers tend to be in lower-exposure jobs as cardiovas-
cular risk, job tenure, and age increase. If a portion of the car-
diovascular risk increase can be attributed to prior exposure, 
then the healthy worker survivor effect is operating and unbi-
ased estimation of causal effects can only be accomplished 
using methods that can account for this.8 Pathway analysis18 
was consistent with anecdotal evidence suggesting that the 
selection effects are stronger in the smelter environment 
where workers with high cardiovascular risk are ineligible for 
jobs with heat exposure.

We chose to use the TMLE procedure to generate esti-
mates of our target exposure–response parameter. Estimators 
based on the this methodology have several attractive char-
acteristics, relative to inverse probability weights or other g 
methods. The estimators are double-robust, in that they remain 
consistent if either the estimates of the outcome models (the 
series of iterated regressions) or the intervention models (gC 
or gA) are estimated consistently. These estimators are also 
efficient, in that if both the outcome models and the inter-
vention models are consistently estimated they will have the 
lowest variance among all competitive estimators. For a full 
explanation of these properties and a comparison of TMLE 
with other causal approaches to estimation, see chapter 6 in 
van der Laan and Rose.15

A sensitivity analysis demonstrated that including 
workers who never had a high-confidence exposure estimate 
reduced the effect estimates.17 Corporate industrial hygienists 
collect measurements more frequently in areas where high 
exposures are expected. Thus, subjects with high exposures 
were preferentially selected into our cohort, although many 
lower exposure jobs were still measured with high confidence. 
If workers in low confidence jobs were substantially different 
from the rest of the population with respect to unmeasured 
factors prognostic of IHD then the restriction could result in 
selection bias. That said, we are certain that the restriction 
reduced exposure misclassification, whereas there is no rea-
son to believe that the confidence measure is associated with 

0.88

0.92

0.96

1.00

0 5 10 15

Years on Follow−Up

Pe
rc

en
t I

H
D

 F
re

e

Intervention

Below Cut-off (95% CI)

Above Cut-off (95% CI)

FIGURE 4.  Estimated cumulative survival from IHD and 95% 
confidence intervals, adjusted for measured baseline and time-
varying risk factors, among the fabricator worker population if 
continuously exposed versus unexposed at the 10th percentile 
cut-off of 0.06 mg/m3. The thick lines represent the point esti-
mates, whereas the thinner lines represent the 95% confidence 
intervals, with the line types (dotted vs. solid) indicating if the 
estimate is for above or below the cut-off.
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FIGURE 3.  Estimated cumulative survival from IHD and 95% 
confidence intervals, adjusted for measured baseline and time-
varying risk factors, among the fabricator worker population if 
continuously exposed versus unexposed at the median cut-off 
of 0.20 mg/m3. The thick lines represent the point estimates, 
whereas the thinner lines represent the 95% confidence inter-
vals, with the line types (dotted vs. solid) indicating if the esti-
mate is for above or below the cut-off.



Epidemiology  •  Volume 26, Number 6, November 2015	 TMLE for Occupational PM2.5 and Heart Disease

© 2015 Wolters Kluwer Health, Inc. All rights reserved.	 www.epidem.com  |  813

these unmeasured factors.32 Therefore, we feel that our analy-
sis restricted to workers in whom exposure was assessed with 
high-confidence generates a less biased effect estimate than 
analysis of the full cohort.

Censoring is defined in this analysis as leaving work 
when younger than 55 years. Leaving work is likely affected 
by health status caused by prior exposure, resulting in informa-
tive censoring that is not amenable to adjustment using stan-
dard methods. Furthermore, we are interested in the effects 
of exposure that do not act through leaving work. The choice 
of age 55 years represents a compromise between capturing 
the full effect of the exposure and reducing the reliance of 
the procedure on those unusual individuals who stay at work 
past eligibility for a full retirement. Sensitivity analysis dem-
onstrated that the results were robust to the age cut-off; chang-
ing the age to 60 or 62 years did not substantially change the 
results.18 Continuing follow-up after work termination would 
give us the information needed to study the effects of PM2.5 on 
post-retirement health.

We observed higher crude rates of IHD among the fab-
rication workers, and the marginal cumulative incidence esti-
mates reflect this fact. As with any procedure, these estimates 
do not generalize to different populations with their own under-
lying risk and termination patterns. For example, heart disease 
rates among the fabrication workers, had they been exposed to 
the PM2.5 in the smelters instead, cannot be inferred. Although 
the two sub-cohorts exhibit similar rates of chronic diseases, the 
risk scores were higher among the fabrication workers.

These results provide evidence that increased risk of 
IHD is associated with occupational exposure to PM2.5 in 
both the fabrication and smelter sub-cohorts. We were able 
to adjust for possible time-varying confounders on the causal 
pathway through our use of the longitudinal TMLE procedure. 
We have not addressed the question of precisely when the bio-
logically relevant exposure occurred (i.e., if IHD risk during 
time t is more dependent on exposure at time t or on exposures 
accumulated prior to time t). This question would be answered 
by estimating the indirect effect of cumulative exposure that 
does not travel through current exposure, a target parameter 
that deserves future research.

We observed excess IHD risk associated with PM2.5 in 
both smelters and fabrication facilities where the composition 
and particle size distribution differ. In fabrication, the PM2.5 
is composed mostly of water-based metalworking fluids and 
in smelters, of inorganic materials, such as fluorides, alumina 
dust, metals, and related fumes.5,22 Thus, our findings suggest 
that the total mass of PM2.5 may be the common causal agent, 
although further study is needed to address this question. It is 
also possible that the observed relation between exposure to 
PM2.5 and IHD could be due in part to coexposures in these 
workplaces, such as noise and heat.

The goal of causal inference is to make inference about 
counterfactual quantities, and unbiased estimation can pro-
ceed only if several assumptions are met. While we have a 
rich dataset that captures many of the salient aspects of health 
upon which workers might base their employment decisions, 
our dataset is administrative and unmeasured confounding 
remains a distinct possibility. We believe that we have limited 
positivity violations; there were no combinations of covari-
ates that strongly predicted exposure status. The assumption 
of consistency, which is often subsumed by the use of non-
parametric structural equation models,34 may be more prob-
lematic. The dichotomization of exposure means that a range 
of different true exposure values and constituencies are con-
tained in a single category. Future research with this cohort 
will involve investigating the shape of continuous exposure 
response curves through the use of TMLE to estimate of the 
parameters of marginal structural models.

A third of the workers in the cohort were currently 
employed before start of follow-up. Due to the fact that these 
prevalent workers did not leave work, we might expect them to 
be less susceptible to the exposures of interest than those who 
did leave. Our effect estimates are specific to the population 
we study; a cohort of all workers followed since hire might be 
reasonably expected to demonstrate a larger effect size.35 In 
this study, follow-up was truncated at the termination of work, 
raising the possibility of collider bias due to informative cen-
soring.36 However, as with exposure, we believe we have mea-
sured key sources of this censoring. Our estimates are at risk 
for bias due to changes in follow-up time of the risk profile of 

TABLE 4.  ATE and RR of Occupational Exposure to PM2.5 by Facility Type and Cut-off Level

Facility Type

ATE RR

Cut-off Estimate (95% CI) Estimate (95% CI)

Smelter Median (1.77 mg/m3) 0.021 (−0.013, 0.055) 1.39 (0.81, 2.39)

Smelter 10th (0.16 mg/m3) 0.029 (−0.006, 0.051) 1.77 (1.03, 3.06)

Fabricator Median (0.20 mg/m3) 0.009 (−0.016, 0.035) 1.14 (0.80, 1.63)

Fabricator 10th (0.06 mg/m3) 0.025 (0.008, 0.041) 1.45 (1.13, 1.86)

The ATE is the difference between the cumulative incidence of ischemic heart disease predicted for a cohort subject to continuous exposure above the cut-off and the incidence 
predicted for the same cohort subject to constant exposure below that cut-off, where in both cohorts workers work until retirement age. The RR is the ratio between the two cumulative 
incidences.

ATE indicates average treatment effects; CI, confidence interval; RR, risk ratios.
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newly hired workers, as those hired later could be followed up 
for fewer years due to administrative censoring.

For the sake of simplicity and computational efficiency, 
we chose to proceed with main-term logistic regression with 
limited variable selection. Both the efficiency and the unbi-
asedness of the targeted minimum loss-based estimator rely 
on consistently estimated models, so estimation could be 
improved with more flexible modelling procedures, such as 
cross-validated ensemble learners.37 By implementing mul-
tiple imputation, we assumed missingness at random for 
the missing variables as well as a specific model form for 
the imputation model. Violations of this assumption or mis-
specification of the imputation model could result in bias.  
A sensitivity analysis showed that the results were robust to 
the removal of the smoking and BMI variables, indicating that 
they function as limited confounders in this dataset.

We applied TMLE in a longitudinal study to account 
for time-varying confounding and generated doubly-robust, 
efficient, substitution estimators of our parameters of inter-
est. These parameters were used to create marginal incidence 
curves estimating the experience of the workforce if subjected 
to interventions on the exposure assignment and censor-
ing mechanisms. Our analysis supports a causal connection 
between an accumulation of occupational exposure to PM2.5 
and the subsequent incidence of IHD.
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