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Abstract
Q is a semi-qualitative methodology to identify typologies of perspectives. It is appropriate to

address questions concerning diverse viewpoints, plurality of discourses, or participation pro-

cesses across disciplines. Perspectives are interpreted based on rankings of a set of state-

ments. These rankings are analysed using multivariate data reduction techniques in order to

find similarities between respondents. Discussing the analytical process and looking for prog-

ress in Qmethodology is becoming increasingly relevant. While its use is growing in social,

health and environmental studies, the analytical process has received little attention in the

last decades and it has not benefited from recent statistical and computational advances.

Specifically, the standard procedure provides overall and arguably simplistic variability mea-

sures for perspectives and none of these measures are associated to individual statements,

on which the interpretation is based. This paper presents an innovative approach of boot-

strapping Q to obtain additional and more detailed measures of variability, which helps

researchers understand better their data and the perspectives therein. This approach pro-

vides measures of variability that are specific to each statement and perspective, and addi-

tional measures that indicate the degree of certainty with which each respondent relates to

each perspective. This supplementary information may add or subtract strength to particular

arguments used to describe the perspectives. We illustrate and show the usefulness of this

approach with an empirical example. The paper provides full details for other researchers to

implement the bootstrap in Q studies with any data collection design.

Introduction
Q is a powerful methodology (also known as Q technique or Q-sort) to shed light on complex
issues in which human subjectivity is involved. Subjectivity is understood as how people con-
ceive and communicate their point of view [1]. Q helps to identify different patterns of thought
on a topic of interest, using a systematic procedure and an analytical process that is clearly
structured and well established [2,3]. The method is considered semi-qualitative and is appro-
priate to investigate diversity of discourses or to facilitate public participation, for example.

Typically, in order to implement Q methodology, respondents express their views by sorting
a set of statements frommost agree tomost disagree. This data collection method makes explicit
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the relative opinion of a respondent about every statement with respect to all other statements,
therefore the interpreted perspectives are wholistic and integrate trade-offs. The data analysis
reduces all responses to a few different factors, each factor being one perspective that represents
those who share similar views. Results can be used in further research, for example, to prove
hypotheses that correlate perspectives with behaviour or with other observed variables.

The use of Q method is growing remarkably across social, health, and environmental stud-
ies. It is used to identify typologies such as conservationist attitudes towards markets [4,5],
farmer environmental perspectives [6], opinions about new environmental legislation [7], sus-
tainability discourses [8], stakeholder views on energy from biomass [9], discourses on forest
management [10], or citizen views on climate change policy [11]. However, the analytical pro-
cess has received little attention in the last three decades, and further relevant information
could be extracted from the data by making use of recent statistical and computational
advances.

Few papers are concerned with exploring the analysis, internal validity, reliability, or exter-
nal replicability of Q studies. Arguably, Fairweather [12,13] makes the most relevant contribu-
tions to the discussion of external and construct validity. He investigates the internal
replicability of three studies by analysing sub-samples of responses and interpreting the sub-
sample results in comparison to the results of the entire sample [13]. He finds that interpreta-
tion across sub-samples may change remarkably in solutions of more than two factors or in
factors that have few highly representative respondents (flagged Q-sorts, see next section).
Additionally, an extensive test-retest reliability study has demonstrated how some views may
be more permanent than others [6].

Despite providing substantial evidence for discussion, these studies did not lead to improve-
ments in the analytical process, and the bootstrap has not yet been applied to Q. Since Stephen-
son [14] described and discussed the SE of factor scores, and beyond the standard Q analysis
detailed in Brown [2], no further procedures have been put forward to enhance the accuracy of
the results to the authors' best knowledge. Current methodological debates focus on the meth-
ods for extraction and rotation of factors, but tend to regard all other analytical decisions as
irrelevant or having little influence over the interpretation.

While this paper leaves aside the heated discussions about these two aspects, it focuses on
the calculation of measures of variability and argues that this estimation should receive further
attention because critical results depend upon them, and because of the limitations of the cur-
rent standard estimates. In the analysis, the standard error (SE) is estimated as a unique value
for all the statements within a factor, no confidence intervals (CI) can be calculated, and there
is no measure of variability for the factor loadings—the values that correlate each respondent
with the perspectives. This lack of uncertainty levels for all the results can be an area of con-
cern, especially for researchers with quantitative background.

To address this gap in reporting the level of confidence of results, we propose a novel ana-
lytic approach of bootstrap re-sampling in Q. Bootstrapped—data-based—measures of vari-
ability are considered superior to assumption-based measures because bootstrap estimates do
not assume normally distributed data [15]. We describe and illustrate how to estimate mea-
sures of variability specific to individual statements and to factor loadings. These measures of
variability can help exploring the stability and reliability of perspectives within the conditions
of the particular study and without the need to replicate it. The SE specific to each statement
and the bootstrapped estimates of the results contribute with more precise information to the
final interpretation of perspectives, which therefore could change slightly or thoroughly.

The key reasons to use the bootstrap in Q are threefold. It yields improved (more detailed
and precise) estimates of values and SEs. It provides measures of variability for results that the
standard analysis does not (either SE or CI for the values of respondents and of individual
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statements). These improved estimates and new measures of variability enhance the under-
standing of the data and of the level of confidence of the results, provide further support for
key analytical decisions (such as flagging or deciding on the number of factors to extract), and
may increase the accuracy of the interpretation. Finally, the bootstrap is less strict with viola-
tions of parametric assumptions, which may be encountered with Q data, such as non-continu-
ity of responses or not normal distributions. Bootstrap results may be reported if these make a
significant difference with respect to the standard results, if variability estimates are important
for the interpretation, or to communicate results with higher detail and precision.

Next in this paper, we summarise the standard analytical process of Q and identify the key
research decisions. Focusing on the first of these decisions, we explain the main theoretical con-
siderations to implement the bootstrap in Q. We develop an algorithm for its implementation
and provide general guidelines for its interpretation. This is followed by an application that
shows how additional, relevant insights are obtained. With the details that the paper provides,
other researchers can readily implement bootstrap in Q studies of any number of Q-sorts, of
statements, and any distribution shapes. In addition, functions to run bootstrap in Q are avail-
able in the R package 'qmethod' [16]. The final section discusses benefits and limitations of this
additional procedure, and suggests future directions for improvement.

The Standard Approach in Q Method
In simplified terms, in order to conduct a Q study the researcher uses explicit criteria to select a
set of statements from the concourse. The concourse is a hypothetical concept that conveys the
infinite set of possible expressions that refer to a topic of concern, from all different points of
view; it contains statements pertaining to multiple discourses [17]. The selected statements
(typically between 40 and 80) are written on one card each, and these cards are given to respon-
dents who rank them over a grid that represents a prearranged frequency distribution [18] (an
example of such grid is shown on top of Fig 1). Respondents follow a condition of instruction,
which frequently entails ranking the statements frommost agree tomost disagree. The grid is
usually shaped as a quasi-normal distribution, based on the assumption that fewer statements
are considered of highest agreement and of highest disagreement [2], although there is total
flexibility with regards to its shape and size.

The methodology is exploratory because it is not focused on estimating the frequency and
distribution of perspectives within a population, but rather on mapping the plurality of these
perspectives, whether or not they are minority ones. The group of respondents is a representa-
tion of the population diversity rather than a representative sample of the population. This pur-
posive sampling approach enables to uncover patterns that may not be detected otherwise
because they may be unrelated to observable demographic characteristics [19]. Identifying all
perspectives regardless of their proportional representation may be particularly important in
research questions where highly influential individuals have a strong effect on others' opinion
or behaviour, for example.

The analysis reduces the data to a few summarizing factors, based on principal components
analysis (PCA) or centroid factor analysis (FA; centroid is a rare form of FA, used exclusively
in Q methodology, which results are similar—but non-identical—to those of standard FA or
PCA). Each factor is a perspective that represents respondents with similar views. When PCA
is used, the term component would be more accurate, however in Q literature factor is generally
used for either case, thus this paper follows the convention.

Abundant literature describes how to perform a complete Q study (e.g [18,20]) and most
studies that use the method also explain it (e.g. [21]). Van Exel & de Graaf [22] and Watts &
Stenner [23] are accessible options to start with, and Dziopa & Ahern [24] provide a structured
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outline of the key elements to be reported in a study, which may facilitate its assessment and
replication. Brown [2] gives full details of the analytical process and Stenner et al. [25] and
Brown et al. [19] provide a comprehensive historical account of the methodology, which dates
back to 1935.

Fig 1. The standard analytical process in Qmethodology.

doi:10.1371/journal.pone.0148087.g001
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The analytical process
The basic analytical principle is to correlate the entire responses of individuals. The process
reduces the data to a few typical responses, based on PCA or centroid FA. Distinctively, instead
of correlating variables (as in regular PCA and FA), in Q the respondents are correlated in
order to elucidate relationships between them. The standard data-reduction method is followed
by a set of analytical steps specific to Q methodology. The final results consist of a small num-
ber of sets of sorted statements (typically called the factors) that are different from each other
and that synthesise the perspectives existing among respondents.

The key terms to understand the process of analysis in Q are Q-sorts, factors, factor loadings,
z-scores, and factor scores (the precise naming can vary depending on the source). The distribu-
tion of statements by a single respondent—the response—is called a Q-sort. When ranking the
statements according to the given condition of instruction, each statement is assigned a value
that corresponds to the column in which the respondent places it. For example, in the distribu-
tion at the top left of Fig 1, the statement of most disagreement would receive a value of −2. A
Q-sort is thus the array of values that a respondent implicitly gives to statements.

A factor is the weighted average Q-sort of a group of respondents that responded similarly,
and it represents an archetypical perspective: how a hypothetical best-representative respon-
dent of those with similar views would sort the statements. Although no respondent may be a
perfect representative of a factor, typically each respondent is more similar to one factor than
to the rest. The correlation of each Q-sort with each factor is given by the factor loadings,
which range from −1 to +1. A respondent is most similar to the factor with which it has the
highest loading.

The ranking of statements within each factor is given by the scores (z-scores and factor
scores), which indicate a statement's relative position within the factor. The z-score is a
weighted average of the values that the Q-sorts most closely related to the factor give to a state-
ment, and it is continuous. Factor scores are integer values based on z-scores and they are used
to reconstruct the Q-sort of a factor, which is then interpreted.

Fig 1 illustrates the analytical steps for a study ofm number of Q-sorts and n number of
statements as it is described in the literature [2]. It shows the steps necessary to analyse the raw
Q-sorts (top left of Fig 1) in order to finally obtain the few summarizing factors built upon
statement factor scores (top right of Fig 1). The process of analysis has two main parts: reduc-
ing data (steps A-D) and obtaining statement results (steps E-G).

From data to factors. The first part (steps A-D) is the standard data reduction in multi-
variate analysis. The data collected are structured in a two-dimensional matrix (step A) with
statements and Q-sorts. Cell values in this matrix are the value of the column in the grid where
the respondent placed the statement. Next, Q-sorts are correlated (instead of variables, as it is
common in multivariate methods; B). From this correlation matrix, unrotated factors are
extracted using PCA or centroid FA (C). Among the unrotated factors, the first few explain
most of the variance of the initial correlation matrix and thus only a few factors are selected
and rotated. Factors are rotated in order to make the data structure clearer. Rotation in Q can
be mathematically optimal, such as varimax, or manual (judgemental), the latter occurring
when the researcher has relevant knowledge about a given respondent. This step results in a
matrix of factor loadings that correlate Q-sorts with the rotated factors (D).

The second part of the analysis (steps E-G) is specific to Q and reconstructs the archetypical
response of each factor, based on the raw data and on the factor loadings. It consists of three
steps: flagging the Q-sorts that will define each component (E), calculating the scores of state-
ments for each factor (F), and finding the distinguishing and consensus statements (G).
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Only the most representative Q-sorts for each factor are used for subsequent calculations;
these Q-sorts are identified and flagged (E). The purpose of flagging is to maximise differences
between factors [1] and it may be done either automatically or manually. Automatic pre-flag-
ging is based on two criteria: that the loading is significantly high [2], and that the loading is
much larger than the loadings of the same Q-sort for other factors; the square loading for a fac-
tor is higher than the sum of the square loadings for all other factors [26]. Some Q-sorts may
be considered confounding because they load highly in more than one factor. Further flags can
be manually added or eliminated after examining the loadings.

The z-scores (defined above) indicate the relationship between statements and factors: how
much each factor agrees with a statement. Factor scores are obtained by ordering statements by
z-score, and matching the statements to the array of possible values in the original distribution
(F). For example in Fig 1, the array is (−2, −1, −1, 0, 0, 0, 1, 1, 2). In conventional distributions
which reference values are zero in the central column, and negative and positive for disagree-
ment and agreement respectively, the sign of the z- and factor scores approximately represents
the agreement or disagreement of the given factor with the statement. Absolute magnitude of z-
and factor scores indicate the salience of statements within a factor.

General characteristics of the factors. In addition, overall characteristics are obtained for
each factor: the number of flagged Q-sorts, composite reliability (Eq 1), eigenvalues, percentage
of explained variance, and SE of z-scores (Eq 2). The composite reliability of a factor f is calcu-
lated as [2]:

rf ¼
0:8 p

1þ ðp� 1Þ0:8 ð1Þ

Where p is the number of Q-sorts flagged for the factor. The value 0.8 is the customary
value used in Q methodology for the average reliability coefficient, which is the expected corre-
lation between two responses given by the same person ([2], pp.211 and 244).

The SE of z-scores for a factor f is calculated as [2]:

SEf ¼ sf
ffiffiffiffiffiffiffiffiffiffiffiffi
1� rf

q
ð2Þ

Where s is the standard deviation of the distribution (of the array of values of the grid).
Two additional matrices indicate the similarity between the z-scores of each pair of factors.

These are the correlation coefficients and the standard errors of differences between factors i
and j (SEDij, based on the SE) [2]:

SEDij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

i þ SE2
j

q
ð3Þ

Both the composite reliability and the variability explained give indication of the strength of
a factor, although they are rarely used for interpretation. However, the SE and SED are impor-
tant because they determine between consensus and distinguishing statements (see below), and
this is very frequently used in the interpretation. However, as seen in Eqs 1–3, all three indica-
tors are based primarily on the number of defining Q-sorts (p) and no other indicator of vari-
ability—aside from the array of scores in the grid—is used to calculate them.

In the final step (G), the statements that distinguish factors and those that are consensus are
identified, based on whether a statement's z-scores across factors are statistically different. A
statement is distinguishing for a factor if it ranks in a position that significantly differs from its
rank in other factors. The threshold for a difference to be considered significant is given by the
SEDij for each pair of factors (multiplied by 1.96 for p-value< .05, and 2.58 for p-value< .01)
([2], p.245). If the difference in z-scores is larger than the threshold, then the statement
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distinguishes factor i from j. The distinguishing statements and their position in the distribu-
tion are key to interpret the factor.

Those statements which are not distinguishing for any of the factors are consensus. Consen-
sus statements may arise for various reasons, for example, they reveal what the common
ground is among perspectives, they are ambiguous, or they are taboo and therefore respondents
do not want to express engagement.

As seen above, the simplified calculation of the SE and SED, and the fact that Q studies are
usually of small samples may raise concerns over the robustness or reliability of the numerical
results, particularly among researchers with a quantitative background. The SED values are of
high importance because they are used to determine distinguishing and consensus statements,
therefore enhancements in their calculation may also improve the accuracy of results.

Key methodological considerations
The numbered text in Fig 1 indicates the key decisions that a researcher makes along the stan-
dard analytical process. The sample used in the analysis (decision number 1) may (rarely) vary
if some particular Q-sorts are excluded, or to implement internal replicability methods such as
the ones explored by Fairweather [13] and the bootstrap presented in this paper. On the
method for extraction of factors (2), there is discussion among practitioners of Q about
whether to use PCA or the centroid method. Both are widely used and they yield similar results
[1,18]. Regarding the decision on the number of factors to extract (3), the various possible cri-
teria are extensively described in the Q and PCA literatures (more details are given in [18], and
a synthetic summary in [21]). The following is a non-exhaustive list of criteria used to deter-
mine the number of factors: the variability explained by factors, at least two Q-sorts loading
significantly, eigenvalues higher than a threshold, results from parallel analysis, visual inspec-
tion of the screeplot, the factor is theoretically relevant and meaningful, interpretability, and
parsimony (which can be pre-assessed upon inspection of the correlation matrix between fac-
tors, highly correlated factors being very similar). The technique for rotation (4) depends on
the aim and on the previous knowledge that the researcher has about respondents. It can be
manual rotation if the researcher identifies one or a few important Q-sorts around which the
rotation revolves. Otherwise, mathematically optimal solutions are used, such as varimax.
These rotations may fit the data equally well, and a decision criteria can be to choose the rota-
tion that results in higher interpretability. The final decision is whether to flag Q-sorts to calcu-
late scores or instead whether to use all the Q-sorts (5). The former choice predominates
because it yields more clearly distinctive factors, and flagging may be done automatically or
manually.

Methods: Bootstrapping Q
The bootstrap applies to the first decision in Fig 1, and it consists in drawing resamples from
the original sample multiple times and in analysing each of these resamples [27]. A (non-
parametric) resample is a random set of observations in which some observations from the
original sample may be repeated and others may be absent. For example, given an initial sam-
ple of Q-sortsm = (m1,m2,m3,m4), a resamplem' is drawn for each bootstrap repetition. The
resamplem' contains a random array of elements fromm and, because the random selection is
with replacement, a given element ofmmay not appear or may appear more than once in the
resample, e.g.m' = (m1,m1,m1,m4). With each resamplem', a full analysis is performed. This
process of resampling and analysing is repeated multiple times. The results from all the resam-
ples for a given statistic (such as the factor loading for the first Q-sort and factor) constitute an
estimation of the distribution of this statistic, from which relevant measures of centrality and
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of variability can be calculated (such as mean and standard deviation). These measures are
alternative estimates of the results for the original sample.

The bootstrap is used across disciplines to obtain estimates for various results in PCA, such
as eigenvalues and eigenvectors [28,29], loadings [30,31], and also to help deciding on the
number of components to extract [32,33]. Some authors provide detailed explanations about
bootstrapping PCA [15,34,35] and its performance is compared against other methods to esti-
mate measures of variability, with a growing consensus about the benefits of using bootstrap in
PCA [15,30]. The bootstrap is also considered an adequate approach to calculate standard
errors for mathematically complicated processes—such as Q analysis—because it requires no
theoretical calculations [27].

For Q, we suggest a non-parametric bootstrap resampling with replacement of Q-sorts, for
three main reasons. First, we consider the bootstrap more adequate for Q than other methods
of internal replicability, namely cross-validation and the jackknife [36], because it allows more
repetitions with smaller samples—which is usually the case in Q studies—and therefore may
provide more accurate estimation of SEs. The jackknife would be appropriate to assess highly
influencing Q-sorts. Second, the assumptions of the non-parametric version of the bootstrap
are less strict than those of the parametric version [15,35]. Third, we discard conducting the
bootstrap by resampling statements for two main theoretical reasons specific to Q. A Q-sort is
interpreted as a whole, and eliminating a statement would imply that the relative nature of the
score given to each statement is lost. Besides, each step would miss statements from the whole
set and, in the process of obtaining factor scores, matching the full array of scores to an incom-
plete array of statements would inflate the variability.

Q methodology datasets are generally small (usually below 80 respondents). While discuss-
ing the appropriateness of data-reduction techniques for small samples is beyond the scope of
this paper (see, e.g. [37]), we explored the performance of bootstrapping Q under different
sample sizes by means of simulation. Simulation results suggest that the bootstrap produces
highly accurate estimates of the true measures of spread with samples of 45 respondents and
above.

The higher the number of repetitions, the better the approximation will be to the true esti-
mates. The number of repetitions may be limited by computing capability and the literature
suggests that at least 50 repetitions are necessary and 200 are satisfactory to calculate SEs [27],
and that at least 1,000 are necessary to estimate CIs [38]. A rule of thumb when bootstrapping
PCA is to perform a number of repetitions at least 40 times the size of the sample [38].

With respect to other decisions in Q analysis, the extraction and rotation methods of choice
are to be used consistently in all the bootstrap repetitions. We also suggest automatic flagging
(or otherwise a fixed manual set of flags) for all the repetitions. This is because manually
inspected flagging and manual rotation in each repetition may not be plausible due to compu-
tational limits and, arguably, to the incomparability of individually manipulated repetitions.

The alignment problem
An essential consideration when bootstrapping PCA is that variability estimates can be arbi-
trarily inflated due to the alignment problem [31,35]. This problem occurs because factor
extraction and rotation are purely mathematical procedures that overlook the underlying theo-
retical concept behind each factor. These mathematical procedures are aimed at fitting the
sampled data optimally, therefore they may give different results when using slightly different
data, as explained below.

The alignment problem is intuitively similar to the parameter identification problem in
regression and it has two main consequences. First, axis reflection (or sign indeterminacy or
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sign swap) refers to the fact that factor loadings can arbitrarily change sign in subsequent boot-
strap repetitions, even though the absolute magnitudes of the loadings remain within the
underlying distribution space. A way of assessing whether reflection is a problem is by looking
at histograms of bootstrapped factor loadings for a given observation and factor: they may be
bimodal when the problem occurs [29]. Second, the factors extracted are usually ordered
according to the percentage of variability that they explain. When two or more factors explain
a similar amount of variability, axis reordering or interchange (order swap) may happen in
some of the bootstrap repetitions. As a consequence, this issue would introduce values which
do not belong to the underlying distribution.

In order to solve both sources of inflated variability, it is assumed that the underlying distri-
bution is similar to that of the analysis of the initial sample and thus the results of each boot-
strap repetition are inspected and corrected if necessary towards matching the initial results. A
simple and robust solution is to reflect and reorder factors when necessary [31], which solve
respectively the two sources of variability.

We develop an algorithm to bootstrap Q as illustrated in Fig 2. This algorithm starts by per-
forming the analysis with the original sample to obtain the target matrix of loadings, which is
used subsequently to apply the corrections. For each bootstrap step, a resample is drawn, the
factor loadings of the resample are calculated, and then the correction of the alignment prob-
lem is implemented (darkest area in Fig 2). This correction begins by building a correlation
matrix between the loadings of the target matrix and the loadings of the bootstrapped resam-
ple. If no alignment problem occurred, the coefficients in the diagonal should all be positive
and closer to 1 than all other coefficients.

To test for axis reordering for a given factor, the absolute correlation coefficients outside the
diagonal are compared to the absolute coefficient in the diagonal. If the diagonal coefficient is
smaller than any of the others, then factors need reordering. For the given position, the boot-
strapped factor with the highest correlation coefficient is chosen. After reordering (if needed),
a new correlation matrix is built between the reordered factors and the target factors. To test
for axis reflection (sign swap), only the correlations in the diagonal are examined: negative
coefficients indicate reflection and these are corrected by inverting the sign of the loadings in
the bootstrapped factor.

Another alternative suggested to correct the alignment problem in PCA bootstrap is orthog-
onal Procrustes rotation for optimal reflection of the factor loadings, using the loadings of the
initial sample as target matrix [35,39,40]. Reordering-reflection and Procrustes may also be
used together [15]. In the experiments run for this paper, both approaches give similar results
and Procrustes provide only slightly smaller variability measures. We suggest the reordering-
reflection approach because it is more intuitive and transparent.

Resampling the Q-sorts
As a consequence of resampling Q-sorts instead of statements, the bootstrap in Q presents its
distinctiveness within the literature on the bootstrap in PCA. In order to implement bootstrap
in PCA, typically observations are resampled and variables are correlated. The initial array of
observations o = (o1, o2, o3, o4) is resampled into, e.g., o' = (o1, o1, o1, o4), while the variables v =
(v1, v2, v3, v4) remain the same. The PCA of a resample o' begins by correlating variables and
the extraction of components results in a matrix of component loadings with variables v as
rows and factors as columns. In a bootstrap step, all the variables in v are represented and rep-
resented only once. The alignment problem is then corrected, using the loadings from the anal-
ysis of the initial sample as the target matrix. Each row in the target matrix corresponds to the
same row in the resampled matrix of loadings.
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Fig 2. Algorithm for bootstrapping Qmethodology.

doi:10.1371/journal.pone.0148087.g002
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By contrast, in bootstrapping Q analysis, respondents (Q-sorts) are correlated instead of
variables. The initial array of Q-sortsm = (m1,m2,m3,m4) is resampled into, e.g.m' = (m1,m1,
m1,m4). The extraction of factors results in a matrix of loadings with the resampled setm' of
Q-sorts as rows and factors as columns. The corrections for the alignment problem compare
the matrix of loadings from the resamplem' and the target matrixm row by row, and they are
sensitive to the order of the rows in each matrix. As a consequence ofm 6¼m', the resampled
matrix of factor loadings is incomparable with the initial target matrix—by pairing different Q-
sorts in the comparison, the correction methods would give spurious results. The solution that
we adopt for bootstrapping Q is to reorder the rows in the target matrix in every bootstrap rep-
etition, resulting in a target matrix with an adapted array of rows, e.g.m� = (m1,m1,m1,m4),
so thatm� =m'.

Interpretation of the bootstrap results
The main statistics of interest estimated with the bootstrap are the z-score and its SE value for
each statement and factor. The former is calculated as the mean of the z-scores obtained in all
bootstrap iterations for a given statement and factor, and the latter is calculated as the standard
deviation [27]. Additionally, in order to give an overall view of the internal robustness of the
results, the bootstrap results may be compared with those of the initial sample in two ways.
First, for a given statistic, the bootstrap estimate of bias is the difference between the value of
the standard results and the bootstrap estimate. Second, whole factors may be compared by
correlating the arrays of standard and bootstrap z-scores.

The SE of z-scores and, to a lesser extent, their bootstrap estimate of bias are useful to
understand whether the position of a statement is stable. Also, this statement-specific SE allows
researchers to conduct further inferential tests for determining more accurately than with the
standard procedure whether a statement is distinguishing or consensus.

The bootstrap estimates of levels of confidence have two important potential consequences
for the interpretation of results, depending on the position of unstable statements in the distri-
bution and on whether they were considered as distinguishing in the standard analysis. First,
the description of factors may be nuanced after increasing or decreasing the emphasis of cer-
tain statements. Second, in more severe cases the factors may be thoroughly altered due to key
statements changing their position remarkably or showing large instability.

The position of a statement in a factor may be unstable or uncertain if either the z-score SE
or the bootstrap estimate of bias of factor scores are large. In this situation, the opinion that
those representing the factor have about this statement is ambiguous, thus its position in the
factor may be unclear and this should be reflected in the interpretation. Likewise, statements
that present very stable positions have a very reliable meaning; respondents' engagement with
the statement is homogeneous within the factor in which statement is stable. If the interpreta-
tion is based only on factor scores, a stable statement can also be affected if the statements
above or below in the factor ranking are unstable and with similar z-score values. Particular
attention should be paid if any statements that are distinguishing in the standard results are
unstable after the bootstrap. In order to synthesise this information for the interpretation, we
suggest a classification of the most relevant statements according to their salience and stability
(Table 1).

Analogous to the interpretation of bootstrap estimates for statements, for Q-sorts the mag-
nitude of the mean and the SE of factor loadings indicate respectively how much a respondent
defines a factor and how stable it is as a definer. The frequency with which a Q-sort is flagged
in the bootstrap is another measure of stability. A Q-sort may be an ambiguous representative
of a factor if it is flagged in a medium proportion of the steps.
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In sum, the following are possible sources of instabilities (and vice-versa for stabilities) to be
detected with the bootstrap:

1. Unstable statements which SE is large or that change position in the factor.

2. Distinguishing statements that are not distinctive any more.

3. Ambiguous Q-sorts that are flagged inconsistently for a given factor. For example, if they
are automatically flagged approximately between 20% and 80% of the bootstrap repetitions.

Results and Discussion
The bootstrap can be implemented with any Q dataset and here we exemplify it with the well-
known Lipset dataset with which Brown illustrates his detailed description of the analytical
process in Q (Lipset 1963; Stephenson 1970, both in [2], p.205). In this dataset,M = 9 respon-
dents placed N = 33 statements in a symmetric distribution with values ranging [−4, 4]. Ste-
phenson drew these statements based on Lipset's study on value patterns on democracy. In his
illustration, Brown extracts three factors using centroid extraction, manual rotation, and man-
ual flagging.

For the bootstrap illustration, we perform Q analysis using PCA and varimax rotation to
extract three factors, and we compare the results from a standard (full sample) analysis using
PCA and varimax, with those from the bootstrap. The full Q analysis has been coded in R sta-
tistical language [16,41]. To validate the coding, the results of the standard analysis as imple-
mented in R were contrasted with those obtained with the same options in PQMethod [42], a
software commonly used for Q analysis. Both yield the exact same results at the three decimals
(see details in [16]).

We use PCA for extraction because its computation is readily available in R and its results
do not differ much from centroid extraction results (differences between both methods for the
Lipset dataset for the factor loadings are of |.08| on average). We use varimax rotation because
it is commonly used in Q studies and because different manual rotations in each repetition
may raise concerns of incomparability. We draw 2,000 resamples and perform the full analysis
for each of them, using the algorithm in Fig 2. Then we calculate the corresponding estimates
and SE for all the statistics of interest.

Q-sort loadings
The bootstrap results for Q-sorts (Table 2) show that the factor loading variability is outstand-
ingly high for Q-sorts FR9 and US8 (for both, SE> .2 in all factors). The frequency of flagging
is the fraction of the bootstrap repetitions in which the given Q-sort was automatically flagged
(following the standard criteria, explained above). The high variability of these two Q-sorts is
consistent with their ambiguous frequency of flagging in the bootstrap.

Table 1. Classification of statements in Q according to interpretative power.

Stability (variability, SE of z-score)

High Low

Salience (magnitude
of z-score)

High Highest interpretative power, very
reliable

Meaningful within the factor but its relative position is fuzzy

Low Reliable but not particularly meaningful
to interpret the factor

Lowest interpretative power, less reliable (although its instability and
disengagement might have a relevant conceptual explanation)

doi:10.1371/journal.pone.0148087.t001
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High flagging frequencies of seven Q-sorts indicate that these are clearly definers of the fac-
tors in which they are flagged. In contrast, FR9 and US8 are ambiguous representatives of one
or more factors, because their frequency of flagging is spread across factors. High SE are also
highlighted in the table, which coincide with the information extracted from the frequency of
flagging. This information can help researchers to make analytical decisions when manual
rotation or manual flagging are being considered. For example, Q-sorts with ambiguous flag-
ging frequency may be excluded from flagging, or Q-sorts with small loading but also small SE
could be flagged.

Statement scores
Fig 3 shows the z-scores of the standard analysis, and the bootstrap estimates and the SE for
statements. The bootstrapped z-scores are the means of z-scores of all 2,000 iterations and the
SEs are the standard deviations. Following Table 1, the statements that are more powerful for
interpretation are those with the highest absolute scores and smallest SE (e.g. statement n1 in
factor 1). The statements are ranked in Fig 3 based on their cumulative SE for all the three fac-
tors. Statements at the bottom have smaller cumulative SE and so they are generally more
stable.

The size of the error bar (which represents the SE) and its overlap with other error bars indi-
cates whether the position of a statement is defined with precision. The comparison of the
error bars of a statement within a given factor indicates whether the statement position in the
factor is stable. Pairs of statements that have largely overlapping error bars may be interpreted
as both being of similar salience. Similarly, comparing the error bars of the same statement
across factors indicates whether the statement is distinguishing or not. Where the distribution
of a statement is remarkably far from the distribution of the same statement in another factor,
that statement distinguishes both factors. For example, even though the value of statement n24
for factor three is rather different from its value for the other two factors, the error bars are rel-
atively large therefore its distinctiveness needs to be taken with due caution. By contrast, state-
ment n25 is clearly a consensus statement. Statement n32 clearly distinguishes factor two from
the other factors. In addition, the plot can help detecting whether most unstable statements do

Table 2. Comparison of standard and bootstrap results for Q-sort factor loadings.

Standard factor loading c Bootstrapped factor loadings (& SE) d Flagging frequency e

Q−sorts F1 F2 F3 F1 F2 F3 F1 F2 F3

US1 .19 .77 −.17 .15 (.14) .77 (.20) −.20 (.17) .01 .91 .06

US2 −.07 .83 .11 −.08 (.12) .83 (.16) −.02 (.11) .00 .98 .02

US3 .81 −.02 −.09 .81 (.15) −.01 (.14) −.05 (.15) .98 .01 .01

US4 .78 .23 .27 .76 (.19) .19 (.14) .20 (.19) .93 .01 .03

JP5 −.83 .15 .03 −.84 (.15) .14 (.10) −.01 (.11) .96 .01 .01

CA6 .15 −.18 .88 .11 (.13) −.12 (.20) .81 (.21) .02 .08 .87

UK7 .14 −.35 .74 .11 (.10) −.25 (.19) .69 (.31) .01 .13 .83

US8 −.09 .66 −.17 −.06 (.21) .62 (.25) −.22 (.35) .04 .72 .22

FR9 .20 −.18 −.45 .16 (.23) −.07 (.22) −.56 (.36) .11 .11 .59

Note: F, factors. Boldfaces:
c
flagged Q-sorts

d SE >.2
e frequency of flagging in the bootstrap >.8.

doi:10.1371/journal.pone.0148087.t002
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cluster in any side of the distribution, which could have a theoretical explanation. Also, the var-
iability (SE) of a statement can be evenly distributed among the factors (e.g. statement n25), or
the statement can be particularly unstable for a given factor (e.g. statement n24 for factor three),
which could have a theoretical explanation.

Table 3 shows the bias estimates and the comparison of factor scores between the standard
and the bootstrapped results. The estimate of bias of z-score (standard z-score minus

Fig 3. Statement z-scores: standard analysis, bootstrap estimates and SE.

doi:10.1371/journal.pone.0148087.g003
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bootstrapped z-score) is quite high for some statements (z> |0.20|), however this does not
directly imply that these statements change position in the factor (factor scores). A statement's
position also depends on the z-scores of statements which rank right above and below it, and
on the size of the column with the same values in the grid. For example in the first factor, state-
ment n7 with an estimate bias of 0.39 does not change its factor score, whereas statement n15

Table 3. Comparison of bootstrap and standard results for statements.

Statement z−score bias estimatea Factor scoresb

F1 F2 F3 F1 Sd. F1 Bt. F2 Sd. F2 Bt. F3 Sd. F3 Bt.

1 0.22 −0.07 0.33 4 ** ** −2 ** 1 **

2 0.03 0.01 −0.37 0 1 −3 ** −2

3 −0.26 −0.15 −0.02 −3 * −1 −1

4 0.06 −0.16 0.52 2 −3 ** ** 2

5 −0.06 −0.03 0.08 −1 −2 −1 3 ** **

6 0.13 0.27 0.49 0 ** ** 3 3

7 −0.39 0.04 −0.17 −4 ** ** 1 ** ** −2 ** −3 **

8 −0.26 −0.02 0.08 −3 * 0 −1 −2

9 0.23 −0.25 −0.48 2 ** ** −3 −2 −1 0

10 −0.39 −0.07 −0.33 −4 ** ** −1 −2

11 −0.18 0.18 0.20 −2 ** ** 2 2 1

12 0.10 −0.06 −0.32 1 0 −1 0

13 0.19 0.33 0.26 3 3 1 * *

14 −0.23 0.10 0.35 −2 −1 0 0 −1

15 0.00 0.00 −0.65 −1 * −2 2 * * −4 **

16 −0.23 −0.26 0.37 −3 −4 4 ** **

17 −0.01 −0.06 0.02 0 −1 0

18 0.15 −0.19 −0.07 1 −2 ** ** 1 2

19 0.14 −0.18 0.20 3 * * −2 ** ** 1 * 0 *

20 −0.05 −0.11 −0.05 −1 −1 0

21 0.14 0.28 −0.08 2 4 −3 ** **

22 −0.04 −0.06 −0.65 −2 0 −2 −1

23 0.07 0.14 −0.33 0 −1 2 ** ** −1

24 0.21 0.00 −0.73 2 1 −4 ** −3 **

25 0.03 0.16 0.36 1 1 2

26 0.25 0.06 0.31 3 * 1 1

27 −0.16 0.20 −0.11 −2 −1 2 0 1

28 0.13 0.32 0.45 0 ** ** 3 4

29 −0.05 −0.02 −0.18 −1 0 −2

30 0.11 −0.35 0.16 1 −4 ** ** 2

31 −0.13 −0.20 0.29 −1 0 −2 * −3 0 −1

32 0.23 −0.22 0.22 4 −3 ** ** 3

33 0.02 0.38 −0.12 1 ** ** 4 ** ** −3 ** −4 **

Note: Sd. standard factor scores, Bt. bootstrap factor scores (shown only if different from the standard result). Boldfaces:
a bias estimates > |0.20| and
b statements which position changes in the bootstrap. Significance of the distinctiveness of a statement:

* p < .01

** p < .05.

doi:10.1371/journal.pone.0148087.t003
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with an estimate bias of 0.00 changes one position due to the large bias estimate in a statement
contiguous in the ranking, n14, which has a large SE. Arguably, there is not necessarily a strong
correlation between the bias estimate and the size of the SE. Both values are complementary
information for the interpretation of a statement.

The comparison between standard and bootstrapped values shows that six, two, and four-
teen statements have a different factor score respectively in each factor. From those statements
selected as distinguishing in the standard analysis (with stars), one, one and five statements
change their position respectively in each factor. Changes are all of just one position, which
entails that in some cases the statement remains in the mid ground (e.g. statement n19 in factor
three), that its salience is less emphasised (e.g. n2 in factor three), or that its salience is more
emphasised (e.g. n31 in factor two). Also, applying the standard criteria to identify distinguish-
ing statements over the bootstrap results reveals that, in general, less statements are distin-
guishing. The bootstrap confirms that some statements are very relevant for the interpretation
(e.g. n1; or others that remain distinctive after the bootstrap), but other statements change their
position in the distribution in such a way that they become less distinguishing (e.g. n7 between
factors one and three).

In sum, statements that have small SE or that do not change their factor scores neither their
classification as distinguishing or consensus are most reliable and can be used confidently in
the interpretation. Statements that do not fulfil some of these conditions may be interpreted
with due care, and this lack of reliability could also have a theoretical explanation. For example,
if a statement has a large SE for a given factor, this indicates that those respondents within the
given perspective do not have a homogeneous view about that statement (e.g. statement n24 in
factor three). This additional information provides new valuable insights to interpret the
perspectives.

Conclusions
With the aim of elaborating more robust and reliable Q studies, this paper contributes to Q
methodology by providing means to enhance the accuracy of the results. The paper explains
how to calculate specific levels of confidence which the standard analysis does not offer, and
provides guidelines on how to use this new information to improve the interpretation. To do
so, we indicate where in the analytical process of Q researchers make decisions, in which sensi-
tivity analyses can be performed. Focusing on the first of these decisions, the paper describes a
novel implementation of the bootstrap in Q and explains important considerations specific to
this particular case of the bootstrap in multivariate analysis. Details are given for the bootstrap
to be implemented in Q studies of any number of Q-sorts, of statements, and any distribution
shapes. The explanation is illustrated with an empirical application.

The bootstrap approach provides deeper and more accurate understanding of the data and
of the robustness of perspectives, which may increase the confidence of researchers in the
results. The approach quantifies the level of confidence associated to each statement and Q-
sort for each of the factors. This information may nuance and in some cases change meaning-
fully the interpretation of perspectives with respect to an interpretation based on the standard
results. Acknowledging ambiguity is particularly relevant if any of the statements selected as
distinguishing in the standard analysis shows large variability after the bootstrap. On the con-
trary, statements that might initially be overlooked can present a very precise and distinguish-
ing position in a given factor, hence become reliable definers of it.

Bootstrapping Q opens new methodological and empirical avenues for future research. This
paper illustrates bootstrap with PCA and varimax rotation, yet the centroid method for the
extraction of factors and manual flagging could potentially be implemented. The former
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involves further solvable computational complexity. The feasibility of the latter can be explored
by applying a set of manually flagged Q-sorts that is fixed throughout the bootstrap. Also,
expanding the bootstrap to a systematic sensitivity analysis by varying the number of factors
(e.g. [26]) can help deciding on the number of factors to extract. This sensitivity analysis can
shed light about the existing range of perspectives, by showing whether the factors excluded are
sub-views of factors actually included or whether they are remarkably different and conceptu-
ally relevant. Additionally, an index that synthesises the stability information for each factor
may be useful to compare factors within and across studies. Further, the performance of the
bootstrap under different sample sizes may under different sampling circumstances may be
investigated with further simulation studies. Last but not least, extensive empirical application
of the bootstrap to several real datasets may help establishing acceptability thresholds.

Generally speaking, the process of analysis and interpretation of Q methodology can be
enhanced using further quantitative developments. In addition to the bootstrap implemented
here, other techniques in statistics have been put forward in the last decades (e.g. new methods
to select the number of factors) and computational capacity has increased enormously, yet
their application in Q is underexplored. These advances have a large potential to make Q a
more solid and reliable method for the identification of the existing viewpoints and decision-
making styles, in order to better understand and manage critical issues involving diverse
human perspectives.
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