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Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities,
delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are
often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including
grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a
neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse.
Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased
density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for
microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies
examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link
between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further
examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain
changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with
markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their
overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain
structure in schizophrenia.
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This article is part of a themed section on Inflammation: maladies, models, mechanisms and molecules. To view the other articles
in this section visit http://dx.doi.org/10.1111/bph.2016.173.issue-4
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Microglial activation and brain changes in schizophrenia BJP
Introduction
Brain structural abnormalities are widely reported in schizo-
phrenia across all stages of the illness. Although such abnor-
malities are widespread, the most consistent findings have
been ventricular enlargement (Olabi et al., 2011), grey matter
(GM) loss in prefrontal, temporal and subcortical structures
(Ellison-Wright and Bullmore, 2009; Fornito et al., 2009), as
well as white matter (WM) tracts connecting these regions
(Bora et al., 2011; Zalesky et al., 2011). Longitudinal studies
have shown that grey matter loss is particularly accelerated
in the early stages of schizophrenia and psychosis, which
has led to suggestions that the initial phase of illness may
be characterized by neuroprogression or a disturbance of
neurodevelopmental processes (Pantelis et al., 2003a,b;
2005; 2007). However, although such structural brain studies
are informative, they are also inherently limited, as themech-
anisms thatmight underlie such changes remain unknown. A
number of factors might affect the brain changes seen in
schizophrenia, including medication, substance use, life-
style, genetic and pathophysiological processes. Although
the relative contributions of these factors remain controver-
sial (see commentary by Zipursky et al., 2013), evidence for
structural brain abnormalities in medication-naïve patients
(e.g. Fusar-Poli et al., 2013) and cohorts characterized by low
substance use (e.g. Jung et al., 2011) points to a role for these
considerations in the primary disease processes. One such
candidate pathophysiological mechanism that has received
increasing attention is microglial-mediated neuroinflamma-
tion. However, despite theoretical proposals linking neuroin-
flammation or microglial pathology with brain structure and
function in schizophrenia, there are few reviews that have
comprehensively examined evidence for this relationship.
Understanding the neurobiological mechanisms for the
structural brain changes in schizophrenia would open a new
paradigm for treatment of psychosis and schizophrenia and
would pave the way towards more targeted treatments for
the disorder.

This review focuses on inflammation in schizophrenia
and its relationship to structural brain changes. A compre-
hensive description of the structural brain changes in
schizophrenia was beyond the scope of this review and has
been extensively covered elsewhere (Ellison-Wright and
Bullmore, 2009; Fornito et al., 2009; Olabi et al., 2011). We
provide a case for inflammation in schizophrenia, followed
by a comprehensive review of studies examining the role of
microglial dysfunction. Both imaging and neuropathological
studies will be reviewed due to the complimentary nature of
the information they provide. Subsequently, we address the
link between microglial dysfunction and brain changes
through a review of recent, primarily rodent, studies investi-
gating a potential interaction between microglial activation
and neuronal/white matter dysfunction.We discuss potential
mechanisms involved in this interaction and propose direc-
tions for future research.
A case for inflammation in schizophrenia
There are multiple lines of evidence supporting the notion of
inflammation in schizophrenia, including epidemiological, bio-
molecular and genetic studies, and clinical trials of adjunctive
anti-inflammatory treatments. Substantial epidemiological data
implicates prenatal inflammatory disturbances in the develop-
ment of schizophrenia (Yolken et al., 2009; Brown, 2011). These
data are derived from population studies linking influenza epi-
demics to schizophrenia in adult offspring and birth cohort
studies that have identified various immune-related genetic var-
iants and infectious agents (e.g. herpes, toxoplasmosis and
rubella) that confer an elevated risk for the disorder (Yolken
et al., 2009; Brown, 2011). Studies identifying an association
between maternal levels of cytokines (e.g. TNF-α and IL-8) and
risk for schizophrenia (Buka et al., 2001; Brown et al., 2004) sug-
gest that pro-inflammatory cytokines may also represent poten-
tialmediators between prenatal exposure and risk. Biomolecular
studies have consistently reported elevated levels of pro-
inflammatory factors such as IL-6, IL-1β, TNF-α, calprotectin
and C-reactive protein, and altered immune cell function, in
plasma and serum of schizophrenia patients (Foster et al.,
2006; Miller et al., 2011; Fineberg and Ellman, 2013). In addi-
tion, immune system-related genes such as themajor histocom-
patibility complex (MHC) have been associated with
schizophrenia and are among the most robust hits in genome-
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wide association studies in the disorder (Consortium SPG-WAS,
2011; Consortium SWGotPG, 2014). Taken together, there is
converging evidence implicating a potentially exaggerated
and/or chronic immune response in the aetiology of schizo-
phrenia. Furthermore, adjunctive treatments with anti-
inflammatory agents, such as aspirin, oestrogens, fatty acids
andN-acetyl cysteine, have been efficacious in some individuals
(Amminger and McGorry, 2012; Sommer et al., 2014).

While inflammatory processes are implicated in the path-
ophysiology of schizophrenia, the effect of immune-related
gene mutations and peripheral cytokines on the CNS is still
elusive. While it is possible for peripheral cytokines to cross
the blood–brain barrier and invade the CNS (Banks, 2009),
the brain itself may be subjected to an inflammatory assault
via the activation of microglia, the brain’s innate immune
cells (Munn, 2000; Monji et al., 2009). Indeed, as microglial
cells have been shown to participate in pro-inflammatory cas-
cades and modification of neuronal synapses (Moran and
Graeber, 2004; Tremblay et al., 2010), synaptic pruning (Zhan
et al., 2014) and white matter connections (Ignarro et al.,
1993; Chew et al., 2013), microglial-mediated inflammatory
processes have been proposed as a potential mechanism for
the structural brain changes identified in schizophrenia
(Munn, 2000; Monji et al., 2009). Furthermore, treatments
that modulate their activity may improve symptoms of
schizophrenia. For example, oral minocycline, an antibiotic
that reduces microglial activation (Kobayashi et al., 2013),
has efficacy in ameliorating symptoms of schizophrenia
(Miyaoka et al., 2008; Levkovitz et al., 2010; Miyaoka et al.,
2012). Findings from animal studies showing that
minocycline can cross the blood–brain barrier suggests that
it acts directly on microglia to ameliorate symptoms (Dean
et al., 2012). Antipsychotics have also been shown to inhibit
microglial activation by suppressing inflammatory and oxi-
dative reactions (Kato et al., 2011). In particular, in vitro and
in vivo evidence has demonstrated that pretreatment with
typical and atypical antipsychotics reduces LPS- and
interferon-induced secretion of cytokines such as TNF-α,
SOD and NO from activated microglia (for review, see Kato
et al. (2011)).

Despite these proposals, the nature of the microglial
abnormalities in schizophrenia is far from established, and
few studies have directly examined the relationship between
microglial pathology and brain structure in this disorder.
Characterizingmicroglial pathology and its relationship with
brain structure at various stages of schizophrenia is a neces-
sary step in developing a framework that unites microglial
dysfunction, a proposed aetiological theory of schizophrenia
(Monji et al., 2013) and the well-documented disturbances in
the grey matter (Byne et al., 2007; Fornito et al., 2009; Bora
et al., 2011; Mileaf and Byne, 2012) and white matter
(Uranova et al., 2011; Zalesky et al., 2011; Kubicki and
Shenton, 2014; Uranova et al., 2014) underlying this disorder.
Figure 1
Microglial cell transitioning from ramified to amoeboid (activated
state). The TSPO receptor is up-regulated from the intermediate
(‘activating’) stage of microglial activation, while CD11b, HLA-DR and
Iba-1 reach peak up-regulation in the amoeboid state. Activated mi-
croglia release a variety of pro-inflammatory and neurotrophic factors
that are used to identify microglia in the M1 andM2 states respectively.
Microglial cells – a brief introduction
Microglial cells, discovered by Pio Del Rio-Hortega, represent
the first line of immune defence in the CNS against insults
and foreign invaders (Kettenmann et al., 2011). Microglia
derive from progenitors of myeloid lineage and invade the
brain from the embryonic yolk sac via the circulatory system
668 British Journal of Pharmacology (2016) 173 666–680
(Ginhoux et al., 2010; Schulz et al., 2012; Nayak et al., 2014).
After infiltrating the CNS parenchyma, microglial cells transi-
tion into a ramified state, which possess a small soma with
long motile processes.

Under healthy physiological conditions, ramified microg-
lia actively survey the entire brain for pathogens or debris
(Nimmerjahn et al., 2005). Upon detecting a threat, microglia
rapidly shift phenotype, morphology and function, tradi-
tionally defined as ‘microglia activation’. Activated microglia
acquire an amoeboid morphology, with swollen cell bodies
and short processes to enable migration to the pathogen site
(Kettenmann et al., 2011) (Figure 1). It has been suggested
that microglial activation may correspond to the binary acti-
vation profile of peripheral monocytes, characterized by
M1/M2 phenotypes (Mantovani et al., 2005). The M1 pheno-
type arises in response to inflammation and is accompanied
by the release of TNF-α, IL-6, IL-1β, ROS and glutamate,
whereas theM2-type microglia serve to resolve the inflamma-
tory response and express IL-4, IL-13, IL-25, IL-1ra, insulin-
like growth factor 1 (IGF1), BDNF and COX1 (Réus et al.,
2015). However, caution is warranted when applying this bi-
nary profile to microglia, as studies have shown that the gene
expression profile of microglia differs from theM1/M2 profile
of peripheral monocytes (Chiu et al., 2013; Yamasaki et al.,
2014). In particular, microglia are highly plastic and may
operate on a spectrum ranging from pro-inflammatory to
neurotrophic phenotypes depending on the local microenvi-
ronment (Biber et al., 2014).

The dynamic functions of microglial cells have emerged
mostly through rodent studies of immune challenge and
CNS damage. These dynamic cells help maintain a range of
homeostatic functions in the healthy brain, including
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neuronal cell death, neuronal survival, synaptogenesis and
synaptic pruning (Nayak et al., 2014). During activation,
microglia up-regulate a variety of molecules involved in anti-
gen presentation, phagocytosis of cellular debris and cyto-
kine production (Meda et al., 1995; Nakamura et al., 1999;
Mack et al., 2003; Lauterbach et al., 2006; Neher et al., 2011;
Brown and Neher, 2014). Microglial cells are not only acti-
vated under most pathological conditions and the drivers of
repair but can also exacerbate a disease process depending
on their activation profile (Napoli and Neumann, 2010).
Furthermore, mutant microglia can cause behavioural symp-
toms of both obsessive–compulsive disorder and autism spec-
trum disorder in genetic mouse models, which resolved upon
correction of the microglial genetic mutation (Chen et al.,
2010; Derecki et al., 2012). Their neurotoxic and neuroprotec-
tive capacities suggest microglia are ‘double-edged swords’,
which has prompted interest in their potential role in neuro-
psychiatric disorders such as schizophrenia (Frick et al., 2013).
Microglial activation in schizophrenia –
evidence from neuropathological studies
Post-mortem studies in schizophrenia have primarily focused on
assessing microglial cell number or density rather than
microglial activation. The assessment of microglial number in
post-mortem samples is performed using immunohistochemical
staining methods, which involve labelling microglial cells and
counting these cells blinded to diagnosis utilizing stereological
sampling techniques. The density of microglial cells is then
obtained as counts per unit area. Overall, these studies have pro-
duced mixed results. While some studies have found increased
microglial cell number in several brain regions in schizophrenia
(Radewicz et al., 2000; Wierzba-Bobrowicz et al., 2005; Fillman
et al., 2013; Rao et al., 2013), others found no difference (Table 1;
Steiner et al., 2006; Steiner et al., 2008; Busse et al., 2012).

These differences could be attributed to methodological
variations including different methods of visually identifying
and counting microglial cells and the use of different immu-
nohistochemical markers. The majority of studies examining
microglial density use either HLA-DR or ionized calcium-
binding adaptor molecule 1 (Iba-1) to label microglial cells.
Both these markers, however, have a similar immunohisto-
chemical staining profile, in that they label both activated
and quiescent microglia (Steiner et al., 2006; Steiner et al.,
2008) in addition to lymphocytes and peripheral monocytes
(Kelemen and Autieri, 2005). It is instructive nonetheless to
note that two studies examining the microglial density in
white matter and conducted in the same brain region, the
dorsal lateral prefrontal cortex (DLPFC), yielded conflicting
results (Fillman et al., 2013; Hercher et al., 2014). The main
methodological difference between these studies was the
immunohistochemical marker used to label microglia, with
Fillman et al. (2013) using HLA-DR and finding increased
microglial density, while Hercher et al. (2014) used Iba-1
and found no increase. An alternative explanation for this
discrepancy is that the studies differed in the visual selection
process of microglial cells during the counting stage. In par-
ticular, Hercher counted only immunostained cells that were
not encircling blood vessels, due to the fact that the cells
encircling blood vessels are more likely to be peripheral
monocytes rather than brain-resident microglial cells.
Although the marker used by Fillman et al. (2013) similarly
labels both monocytes and microglia, they did not follow
the strategy by Hercher et al. (2014) of eliminating potential
monocytes from their cell counts, thereby, potentially
overestimating microglia numbers. Of course, this would
not change the results unless schizophrenia patients have
increased peripheral monocytes compared with controls, an
intriguing possibility that has yet to be assessed due to the
lack of a suitably sensitive immunohistochemical marker.

Other technical difficulties that may account for the dis-
crepancies between neuropathological studies of microglia
in schizophrenia are differences in post-mortem interval, brain
pH (correlated in Hercher et al., 2014, with microglial den-
sity), as well as differences in age, clinical variables, illness
duration and medication history in the post-mortem samples
used. Owing to the paucity of detailed ante-mortem clinical
information (Sundqvist et al., 2008), only two studies
examined a potential correlation between clinical variables
and microglial density, with one study finding no correlation
(Arnold et al., 1998), while another found that increased
microglial density was confined to the paranoid schizophre-
nia subgroup (Busse et al., 2012). Antipsychotic medication
is another variable that may affect microglial numbers; how-
ever, the results of the studies examining this association are
mixed. Two studies found no correlation between lifetime
antipsychotic dosage and microglial density (Steiner et al.,
2006; Rao et al., 2013), while another study found a negative
correlation (Arnold et al., 1998). Finally, while the majority of
post-mortem studies include secondary analyses controlling
for demographic variables, sample sizes may be insufficient
for such analyses, and thus, caution should be exercised
when interpreting these results (Fornito et al., 2008).

Another problem for neuropathological studies is that the
immunohistochemical markers (HLA-DR and Iba-1) label both
quiescent and amoeboidmicroglia; therefore, it is difficult to as-
sess microglial activation. Attempts have been made to assess
microglial activation through morphological characterization
of these cells; although this is limited by the subjective nature
of this classification. In their qualitative study, while no group
differences were found in microglial density, Hercher et al.
(2014) found that 15% of brains with schizophrenia showed
an increased number of activated microglia, identified by their
amoeboid morphology. Rao et al. (2013) performed a similar
morphological characterization of microglial cells and found
that the cell body of these cells in the frontal cortex (FC) of
schizophrenia patients was more defined and their processes
were less fine, indicating that microglia were potentially show-
ing some degree of activation in patients, although not fully
amoeboid. This morphological difference indicates that mi-
croglia from schizophrenia patients may be in a different state
of activation when compared with controls, which may con-
stitute a normal response to neuronal pathology or hint at an
underlying, potentially genetic or epigenetic microglial
dysfunction.

To overcome the subjective nature of these studies, alterna-
tive methods to quantify microglial activation include the use
ofmarkers such as [3H]-PK11195, [3H]-PBR28 andCD11b, which
(unlike HLA-DR and Iba-1) are up-regulated exclusively on the
surface of activated microglial cells (Banati et al., 2000; Frick
et al., 2013; Kreisl et al., 2013). The earliest post-mortem study
using the [3H]-PK11195 ligand found decreased binding on
British Journal of Pharmacology (2016) 173 666–680 669



Table 1
Microglial density/number in schizophrenia from post-mortem studies

Study Sample Marker
Brain
region Density/no.

Cytokine
levels

Age mean
(SCZ/HC)
(years)

Illness duration
mean ± SD
(range) (years)

Kurumaji et al.
(1997)

13 patients
10 controls

PK11195 Putamen; VA1,
superior parietal
cortex

↓ activation N/A 77/63 N/A

Arnold et al.
(1998)

23 patients
10 controls

CD-68 TC; FC; OC ≈ N/A 80/75 55 ± 9

Bayer et al.
(1999)

14 patients
13 controls

HLA-DR FC; HPC 4/14 SCZ
positive for
HLA-DR

N/A 64/58 (7–43)

Radewicz et al.
(2000)

12 patients
11 controls

HLA-DR DLPFC; STG ↑ N/A 80/70 N/A

Wierzba-
Bobrowicz
et al. (2005)

9 patients
6 controls

HLA-DR FC; TC ↑ N/A 56/56 24 (N/A SD) (10–35)

Steiner et al.
(2006)

16 patients
16 controls

HLA-DR DLPFC; HPC;
ACC; MDT

≈ N/A 55/58 23 ± 10 (3–39)

Steiner et al.
(2008)

16 patients
10 controls

HLA-DR DLPFC; HPC
ACC; MDT

≈ N/A 53/54 21 ± 12 (1–41)

Busse et al.
(2012)

17 patients
11 controls

HLA-DR HPC ≈ except between
paranoid versus
residual SCZ
(↑ in paranoid)

N/A 52/56 19 ± 10 (2–34)

Kreisl et al.
(2013)

45 patients
47 controls

[3H]PBR28 DLPFC ↑ BP in SCZ
(after controlling
for binding
affinity)

N/A 55/42 N/A

Fillman et al.
(2013)

37 patients
37 controls

HLA-DR DLPFC ↑ density in
WM
≈ in GM

↑ IL-6 and
IL-8 ≈ in
Cox2 or IL-1

51/51 28 ± 14

Rao et al.
(2013)

10 patients
10 controls

CD11b and
HLA-DR

FC ↑ Cd11b mRNA and
protein

↑ IL-1b, TNF-α,
NF-κB (but
not IL-1r) gene
and protein
expression

50/59 N/A

Hercher et al.
(2014)

20 patients
20 controls

Iba-1 DLPFC ≈ in WM N/A 45/45 24 ± 10.9

≈
No between-group difference.

↑Increased in schizophrenia.
↓Decreased in schizophrenia.
VA1, visual area 1; CD-68, cluster of differentiation 68; TC, temporal cortex; OC, occipital cortex; ACC, anterior cingulate cortex; MDT, mediodorsal
thalamus; HPC, hippocampus; SCZ, schizophrenia.

BJP L E Laskaris et al.
microglial cells in patients (Kurumaji et al., 1997), while subse-
quent studies reported increased binding (Kreisl et al., 2013;
Rao et al., 2013). A notable factor in the Kurumanji study is that
it included an unusually high proportion of patients (7/13) that
had been off antipsychotics for 40days or more prior to their
death. Kreisl et al. (2013) found significantly increased binding
of [3H]-PBR28 in theDLPFCof schizophrenia patients, after con-
trolling for genetically determined binding affinity. This study
illustrates the difficulty in devising immunohistochemical
markers that are both specific to microglia and equally
670 British Journal of Pharmacology (2016) 173 666–680
applicable across populations. However, in keeping with this
study, Rao et al. (2013) found increased microglial activation in
the frontal cortex using CD11b. They also found increased
expression of pro-inflammatory cytokines IL-6, TNF-a and NF-
κB in these patients, which may also be indicative of increased
microglial activation, given that pro-inflammatory cytokines
are released by activated microglia (Kettenmann et al., 2011).
Interestingly, Fillman et al. (2013) also found increased levels
of IL-6, IL-8 and IL-1β in the white matter of patients with
schizophrenia, which provides further evidence that



Microglial activation and brain changes in schizophrenia BJP
pro-inflammatory cytokine gene expression is increased in post-
mortem brains of patients with schizophrenia. Therefore, evi-
dence from post-mortem studies suggests that there is increased
microglial activation in the frontal cortex of schizophrenia
patients as assessed by protein quantification (Kreisl et al., 2013;
Rao et al., 2013), which is accompanied by increased expression
of pro-inflammatory cytokines in the same region (Rao et al.,
2013), as well as in white matter (Fillman et al., 2013).

As we have seen however, there are conflicting results
regarding themeasurement ofmicroglial density and number
in schizophrenia, whichmay be because increased inflamma-
tion and microglial number occur only in a subgroup of
patients with schizophrenia and that given the small sample
sizes of earlier post-mortem studies, it was difficult to discern
the existence of such a subgroup. There is support for this
hypothesis from a recent study by Fillman et al. (2013), who
found that schizophrenia patients could be divided into a
high and low inflammatory group on the basis of their gene
expression levels of pro-inflammatory cytokines. A subgroup
of patients with a higher inflammatory profile (potentially
consisting of patients in a particular stage or state of the
illness) may exhibit increased microglial cell number and
activation. Further evidence for the existence of a patient sub-
group with a high inflammatory profile stems from the study
by Busse et al. (2012), which showed that there was a signifi-
cant difference in microglial number between patients with
paranoid versus residual schizophrenia. This may indicate
that patients experiencing active psychosis (paranoid schizo-
phrenia group) may show a greater microglial proliferation
than the patients in a non-acute or quiescent state (residual
schizophrenia group). It is also instructive to note that in
the study by Busse et al. (2012) five out of the 17 patients with
paranoid schizophrenia committed suicide, whereas none of
the patients with residual schizophrenia took their own life,
which again indicates that the paranoid schizophrenia group
demonstrated both increased level of illness acuity and
increased microglial number (Busse et al., 2012). Further-
more, when suicide was examined as a factor within the para-
noid group, it was found to be non-significant, suggesting
that suicide was not the driving factor behind the increased
microglial number. Rather, a possible driver for the increase
in microglial number may have been illness acuity, medica-
tion cessation or symptom severity; although this hypothesis
was not examined in their study (Busse et al., 2012). Suicide
has been associated with increased microglial number in
patients diagnosed with depression and schizophrenia, inde-
pendently of their respective diagnosis (Steiner et al., 2008),
suggesting that factors associated with suicide such as illness
acuity or stress may have driven the microglial changes.
Indeed, it has been proposed that microglial activation may
be most apparent during acute illness relapses, which would
also be consistent with the timing of structural brain changes
(Cropley et al., 2013; Cropley and Pantelis, 2014).

In summary, the investigation of microglia in post-mortem
brains in schizophrenia is at a relatively early stage. The post-
mortem determination of microglial density suffers from
potential confounds such as sampling bias towards violent
death and variation in methodological techniques across lab-
oratories, which may explain the mixed findings. Encourag-
ing steps have been taken recently towards assessing
microglial activation rather than density, which include the
use of immunohistochemical markers specific to microglial
activation (Kreisl et al., 2013; Rao et al., 2013) as well as cyto-
kine quantification in the brain as a corollary of microglial
activation (Fillman et al., 2013; Rao et al., 2013). These studies
have all shown an increase in microglial activation in post-
mortem brains of patients with schizophrenia, which com-
plement the positive findings seen in neuroimaging studies
of microglial activation in this disorder discussed below
(van Berckel et al., 2008; Doorduin et al., 2009).
Microglial activation in schizophrenia –
evidence from PET studies
PET using specific radioligands for the 18-kDa translocator
protein (TSPO) allows quantification of activated microglia
in vivo (Banati et al., 2000). TSPO is expressed primarily on
the mitochondrial membrane of microglia and to a lesser
extent on reactive astrocytes in the CNS (Chen and Guilarte,
2008; Lavisse et al., 2012). The relative contribution of
microglia and astrocytes to the TSPO signal remains unclear
but may depend on the timing and nature of the neuronal
insult (Cosenza-Nashat et al., 2009). Importantly, TSPO
expression is negligible in the healthy brain but is increased
in activated microglia (Ching et al., 2012) and, therefore,
has been used as an indicator of microglial activation and
neuroinflammation (Banati et al., 2000). However, TSPO
up-regulation does not exclusively indicate classically acti-
vated microglial cells, which are amoeboid, phagocytic and
release pro-inflammatory cytokines (Banati, 2002). Rather,
its expression has also been associated with partially acti-
vated microglia, which appear less ramified with thicker and
shorter processes (Marshall et al., 2013).

A number of radioligands have been developed to exam-
ine TSPO. The most commonly used is isoquinoline
carboxamide, [11C]-(R)-PK11195, which has shown increased
binding inmultiple sclerosis and autoimmune encephalomy-
elitis (Shah et al., 1994; Vowinckel et al., 1997; Banati et al.,
2000). However, this tracer has been reported to produce
low penetration into the target tissue and low specificity, in
part due to its lipophilic nature, which promotes binding
within fatty structures of the brain (Petit-Taboué et al., 1991;
Shah et al., 1994; Chauveau et al., 2009). To overcome these
limitations, over 40 second-generation tracers for TSPO have
been developed, with some yielding higher binding affinity
and lower liphophilicity compared with [11C]-(R)-PK11195,
such as [18F]-FEPPA and [11C]-PBR28 (Imaizumi et al., 2008;
Wilson et al., 2008; Fujimura et al., 2009). Despite improved
signal, inter-subject variability in the rs6971 polymorphism
can alter the binding affinity of second-generation tracers.
Therefore, PET studies using these ligands require plasma
assays or genetic testing to control for differences in TSPO
polymorphisms (Kreisl et al., 2010; Owen et al., 2012).

Five studies have applied PET imaging with TSPO li-
gands to assess microglial activation in schizophrenia
(Table 2). The earliest report was by van Berckel et al.
(2008), who examined [11C]-(R)-PK11195 ligand binding
to TSPO in recent-onset patients. They found increased li-
gand retention in the whole-brain grey matter of recent-
onset patients compared with healthy controls. This suggests
that an active immune pathology, characterized by increased
TSPO expression, exists at the early stage of the illness. A
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Table 2
PET studies examining microglial activation in schizophrenia

Study Sample
Mean age
(years)

Mean DOI
(years) Radioligand BP results Correlations

van Berckel et al.
(2008)

10 patients 24 3.1 [11C]-(R)-
PK11195

↑ BP in whole
brain in patients10 controls 23

Banati and Hickie
(2009)

16 patients 39.4 3months–30
years (range)

[11C]-(R)-
PK11195

↑ BP 15 of 28
regions. More
marked on the
right side.

8 controls 37.6

Doorduin et al.
(2009)

7 recovering
from psychosis

31.3 5.3 [11C]-(R)-
PK11195

↑ BP in the HPC
of patients.

7 controls 26.8 30% ↑ BP in
whole-brain
GM and WM.

Takano et al.
(2010)

14 patients 43.9 18.8 [11C]-
DAA1106

≈ in BP Relationship between
BP and age, DOI,
duration of drug
treatment and
positive symptom
scores in patients.

14 controls 42.5

Kenk et al.
(2015)

16 patients 42.5 14.8 [18F]-FEPPA ≈ in BP Positive correlation
between BP and
number of acute
crises in the striatum.

27 controls 43.5

≈No between-group difference.
↑Increased in schizophrenia.
↓
Decreased in schizophrenia.

DOI, duration of illness.
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later study by Banati and Hickie (2009) applied regions of in-
terest to examine the spatial distribution of [11C]-(R)-PK11195
binding in patients with schizophrenia. This approach iden-
tified increased binding in a subset of patients within 15 of
28 regions investigated, suggesting widespread pathology. In
contrast, Doorduin et al. (2009) reported a focal increase in
[11C]-(R)-PK11195 binding potential (BP) in the hippocampus
(HPC) of patients recovering from an acute psychotic epi-
sode. Regional discrepancies between studies may indicate a
marked variation in TSPO expression in people with schizo-
phrenia, possibly related to patient characteristics, such as
symptom acuity.

More recently, Takano et al. (2010) used a second-
generation ligand for TSPO and did not detect a difference
in [11C]-DAA1106 BP between chronic patients and healthy
controls but found a positive correlation between BP and pos-
itive symptom severity. Kenk et al. (2015) recently replicated
these results in a larger sample (16 schizophrenia and 27
healthy controls). Notably, the mean illness duration was
18.8 years in Takano et al. (2010) and 14.8 years in Kenk
et al. (2015), in contrast to former studies (3.1 years in van
Berckel et al., 2008, and 5.3 years in Doorduin et al., 2009).
These findings suggest that TSPO expression may differ as a
function of illness duration or illness stage. This notion is
supported by trajectories of brain loss observed in schizo-
phrenia, which progresses faster around illness inception
672 British Journal of Pharmacology (2016) 173 666–680
and plateaus later after 4–5 years (Takahashi et al.,
2009a,2009b; Cropley and Pantelis, 2014).

These studies implicate microglial activation in some
individuals with schizophrenia; in particular, those in
the early stages of schizophrenia and with increased
symptom acuity. However, positive findings were pro-
duced by studies using [11C]-(R)-PK11195 and tended to
target individuals with shorter illness durations. Therefore,
it is difficult to determine whether discrepant findings
across studies were due to illness duration or the specific
radioligand utilized. This could be addressed in a future
study that directly compared microglial activation between
recent-onset and chronic patients with schizophrenia,
using the same radioligand. Furthermore, differences in
signal detection across studies may be due to a variation
in the region-of-interest selection during image processing.
In particular, four of the five studies either examined
whole-brain BP or applied coarse regions of interest to
detect patterns of activation, which may lack specificity.
Voxel-based methods may be more suited to capturing the
spatial distribution of microglial activation. Lastly, TSPO
expression may be attributed to microglial or astrocytic cell
expression, as well as microglia across various activation states
and phenotypes; therefore, in vivo PET studies would benefit
from markers specific to microglia phenotype and activation
state to identify precise therapeutic targets.
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Linking microglia to brain changes: the search
for mechanisms

Microglia dysfunction may involve both M1/inflammatory and
M2/neuroprotective profiles, which would have wide-ranging
implications in the protection of the CNS and its development
andmaintenance. In particular, a balance between these twopro-
files has been shown to be crucial for the recovery of the brain
from acute injury (Bodhankar et al., 2015; Han et al., 2015). How-
ever, little is known regarding impaired M2 polarization and its
effect on the CNS, particularly with respect to schizophrenia.
Microglia in a pro-inflammatory state are recognized to contrib-
ute to neuronal and axonal degeneration in humanneurodegen-
erative diseases (Schmitz and Chew, 2008; Bernstein et al., 2009;
Ilieva et al., 2009). The ‘neuroinflammatory hypothesis’ states
that the cytotoxic effects of persistent microglial activation
might cause secondary neuronal degeneration, decreased
neurogenesis and synaptic dysfunction, and thus, disease pro-
gression (Munn, 2000). This hypothesis has been used to explain
the progression of not only schizophrenia (Munn, 2000; Monji
et al., 2009), but other neuropsychiatric syndromes including
bipolar disorder (Stertz et al., 2013), delirium (Cerejeira et al.,
2010), Alzheimer’s disease (Rojo et al., 2008) and normal ageing
(Bilbo et al., 2012). However, there are few empirical studies that
address this issue. In vivo, increased [11C]-(R)-PK11195 binding in
dementia was reported to overlap with regions showing progres-
sive atrophy on MRI scans (Cagnin et al., 2001) and, further, tis-
sue loss indexed by volumetric brain changes in relapsing
multiple sclerosiswas associatedwithperiods of active inflamma-
tion preceded by an initial volume increase (Cheriyan et al.,
2012). Together, these findings implicate microglial activation
and inflammatory processes in structural brain changes.

In schizophrenia, both neuropathological and MRI studies
suggest that greymatter alterations aremost pronounced in fron-
tal and temporal regions (Glantz and Lewis, 2000; Fornito et al.,
2009; Olabi et al., 2011; Konopaske et al., 2014). This overlap
extends to studies of microglial dysfunction, with increases
reported in the DLPFC and superior temporal gyrus (STG)
(Radewicz et al., 2000; Wierzba-Bobrowicz et al., 2005; Banati
and Hickie, 2009; Rao et al., 2013). Similarly, grey matter alter-
ations have been detected in frontal and subcortical structures,
such as the HPC (Uranova et al., 2007; Whitford et al., 2007;
Andreasen et al., 2011; Uranova et al., 2011; Fung et al., 2014),
which also show microglial activation (Doorduin et al., 2009;
Fillman et al., 2013). These studies support the notion that struc-
tural brain changes co-occur withmicroglial dysfunction in both
white and grey matter. However, findings from studies examin-
ing microglial cells (Arnold et al., 1998; Steiner et al., 2008;
Takano et al., 2010; Busse et al., 2012; Hercher et al., 2014; Kenk
et al., 2015) and structural brain change (Ikeda et al., 2004;
Eastwood and Harrison, 2005; Connor et al., 2009; Mitelman
et al., 2009) are mixed, involve multiple brain regions and have
not been examined in the same sample; therefore, the spatial
overlap remains tentative. Crucially, anatomical co-occurrence
of microglial alterations and brain pathology does not imply
that the two are necessarily functionally related. This assess-
ment is critical and should be examined in future studies in or-
der to elucidate whether microglial dysfunction contributes to
the morphological changes seen in schizophrenia.

Very few studies in schizophrenia have addressed a possi-
ble association between inflammatory processes and
structural brain changes in the same sample. Most of these
studies examined a potential interaction between peripheral
cytokine levels and the changes in white and/or grey matter
in schizophrenia. Specifically, decreased anti-inflammatory
cytokine levels have been associated with smaller hippocampal
volume (Bossu et al., 2015), while increased pro-inflammatory
cytokines were associated with decreased prefrontal cortical
thickness (Cannon et al., 2015), reduced grey matter volume
(Fillman et al., 2015), as well as decreased white matter integrity
(Prasad et al., 2014). The finding that decreased anti-
inflammatory cytokines are associated with reduced brain vol-
ume may indicate a deficiency in the M2/neurotrophic role of
microglia in schizophrenia. Conversely, the finding that in-
creased pro-inflammatory cytokines are associatedwith reduced
cortical thickness and white matter integrity implicates the M1
pro-inflammatory phenotype. These findings are supported by
associations between genetic polymorphisms of these cytokines
and alterations in the structure (Meisenzahl et al., 2001; Papiol
et al., 2005; Kalmady et al., 2014) and function (Papiol et al., 2007;
Fatjo-Vilas et al., 2012) of the brain in schizophrenia. While these
studies are informative, they did not examine microglial function.
To our knowledge, the only study that examinedmicroglial activa-
tion (TSPO) and regional grey matter volume (MRI) did not find
any association between the two (Kenk et al., 2015). However, the
association between microglial activation and brain changes
may exist in an ‘inflammatory’ subset of patients (e.g. Fillman
et al., 2013) and vary as a function of illness severity or duration.
Therefore, further clinical studies are required to clarify the exis-
tence of a link between various functions of microglia and struc-
tural brain changes in subgroups of schizophrenia patients.

Despite the paucity of clinical studies directly examining
microglial activation in association with structural brain
changes, recent animal models have addressed this link. Below,
we focus on a range of animal models of schizophrenia that:
(i) investigate the association between microglial activation
and behavioural impairments of schizophrenia and (ii) explore
the impact ofmicroglial dysfunction on the brain.While rodent
models cannot capture the full scope of the disorder, they can be
used to model certain features or endophenotypes and, unlike
clinical studies, allow for the investigation of mechanisms.

A number of animal studies indicate an association
between microglial activation and a range of schizophrenia
endophenotypes such as sensorimotor gating measured by
pre-pulse inhibition (PPI) and working memory deficits.
These studies employ a pre- or postnatal infection paradigm
that involves the exposure of rodents to pro-inflammatory
agents such as human immunodeficiency virus (HIV; Paris
et al., 2015), polyinosinic-polycytidylic acid (poly I:C;
Ribeiro et al., 2013; Van den Eynde et al., 2014) and GM-CSF
(Zhu et al., 2014). Notably, the rodents in all these studies ex-
hibited at least one behavioural correlate of schizophrenia,
specifically impaired PPI (Ribeiro et al., 2013; Liaury et al.,
2014; Zhu et al., 2014; Paris et al., 2015) and cognitive deficits
(Ribeiro et al., 2013; Liaury et al., 2014; Van den Eynde et al.,
2014), in conjunction with increased microglial density or
activation. Both the behavioural impairments and microglial
activation were then reversed upon treatment with atypical
antipsychotics (Ribeiro et al., 2013) or treatments targeting mi-
croglia and inflammation (e.g. minocycline (Zhu et al., 2014).
In one study, the rodent strain itself demonstrated spontane-
ous symptoms of schizophrenia that were then alleviated by
British Journal of Pharmacology (2016) 173 666–680 673
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similar treatments (Liaury et al., 2014). Taken together, these pre-
clinical studies: (i) support the epidemiological evidence for an
association between prenatal/perinatal infection and an in-
creased risk of schizophrenia and (ii) imply a causative role
for microglia in mediating this process, as treatments targeting
microglia (e.g. minocycline) are successful in alleviating both
microglial activation and behavioural impairments.

It is noteworthy that some of these animal studies show that
microglial activation does not arise instantaneously in response
to the infectious agent but rather grows steadily throughout the
lifespan, reaching a peak in late adolescence and early adult-
hood, which coincides with the emergence of behavioural im-
pairments (Ribeiro et al., 2013; Van den Eynde et al., 2014).
These studies indicate that a pre- or perinatal infection may
serve to prime rather than explosively activatemicroglia, which
then interact with cells in the developing nervous system lead-
ing to a subtle rearrangement of synaptic circuitry thatmay over
time result in behavioural impairments in adolescence. These
studies point to a subtle role formicroglia and provide a compel-
ling argument for schizophrenia emerging within an overarch-
ing neurodevelopmental context. Future studies are required
to elucidate whether the symptoms of schizophrenia arise from
an acute inflammatory reaction, a chronic low-grade microglial
response or an interplay between the two states played out
against the background of the developing nervous system.

While the above studies address a potential interaction
between microglial activation and behavioural impairment,
they do not address the mechanism by which microglial acti-
vation can mediate brain pathology. This question is
addressed by the following set of preclinical studies that illus-
trate a wide variety of potential mechanisms by which
microglial dysfunction may contribute to brain changes and
behavioural deficits in schizophrenia. Three main findings
emerge from animal studies investigating the effect of
microglial activation on grey matter. The most replicated
finding is decreased hippocampal neurogenesis in response
to microglial activation (Furuya et al., 2013; Mattei et al.,
2014). Pro-inflammatory cytokines (TNF-α and IL-1β) were
shown to mediate the relationship betweenmicroglial activa-
tion (M1 phenotype) and hippocampal neurogenesis (Mattei
et al., 2014), which implicates a disruption of this inflammatory
cascade in schizophrenia. Importantly, both studies linking
microglial activation to neurogenesis, resulted in behavioural
impairments analogous to schizophrenia, including PPI (Mattei
et al., 2014) and working-memory deficits (Furuya et al., 2013).

In addition to neurogenesis, microglial activation has been
shown to decrease reelin expression in the HPC, which was
accompanied by impairments in working-memory and motor
skills (Ratnayake et al., 2012). Interestingly, decreased reelin
expression has been reported in post-mortem studies of schizo-
phrenia (Eastwood and Harrison, 2003) and may underlie
impaired neuronal migration and connectivity during develop-
ment (Folsom and Fatemi, 2013). Finally, and in support of
impaired connectivity in schizophrenia, aberrant synapse forma-
tion was found in response to microglial activation (Sargin et al.,
2009). With regard to white matter, several studies report that el-
evatedmicroglial cells are accompanied bymyelin and oligoden-
drocyte loss particularly in the frontal cortex (Zhang et al., 2008;
Morita et al., 2014; Zhang et al., 2014), which were reversed by
the administration of the antipsychotics quetiapine (Zhang
et al., 2008) and olanzapine (Zhang et al., 2014). The association
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between microglial activation, myelin and oligodendrocyte loss
in these animal models may underlie connectivity impairments
observed in schizophrenia (Zalesky et al., 2011). These findings
are in contrast to results from post-mortem studies predominantly
showing morphological deficits rather than reduced oligoden-
drocyte number (Uranova et al., 2011). However, such studies
did not examine oligodendrocyte number in conjunction with
microglial activation. Nonetheless, these rodent models demon-
strate a wide variety of mechanisms by which microglial activa-
tionmay induce grey andwhitematter deficits in schizophrenia.

Given the diverse mechanisms through which microglial
activation affects the brain, it is plausible that the changes in
the brain in response to microglial dysfunction will be similarly
complex. The role of synaptic pruning in neuronal circuitry is of
particular interest in a neurodevelopmental context (Carr, 2015;
Riccomagno and Kolodkin, 2015). However, few studies have
addressed the link between microglial dysfunction, synaptic
impairment and whole-brain connectivity. One notable
exception is Zhan et al. (2014), who examined synaptic plastic-
ity in CX3CR1 (fractalkine receptor)-knockout mice. Thesemice
exhibited a transient reduction in microglial number, which
resulted in impaired synaptic pruning and concomitant func-
tional dysconnectivity as shown through MRI in the adult
knockout mice. This indicates that microglia abnormalities are
sufficient to cause circuit-level functional dysconnectivity,
mediated through abnormal synaptic maturation. Although
this study does make significant inroads in associating
microglial dysfunction with synaptic plasticity, it is noteworthy
that this rodent model produced social interaction deficits,
which are seen in a variety of psychiatric disorders including
schizophrenia, suggesting that the process may be relevant to a
number of psychiatric and neurological conditions and depend
on specific circuits that are disrupted (Ratnayake et al., 2012).

Furthermore, it is possible that microglial cells are them-
selves responding to a pre-existing brain pathology and, there-
fore, the direction of this relationship remains unclear. For
example, myelin damage in a mouse was shown to induce
microglial activation, while bothmyelin damage andmicroglial
activation were alleviated by administration of the antipsy-
chotic quetiapine (Zhang et al., 2008b). This indicates that
the pathology of white matter may be the primary factor trig-
gering an inflammatory-degenerative process. This ‘chicken
or egg’ question is further complicated by studies demonstrat-
ing neuronal damage in the absence of microglial activation.
For example, Hou et al. (2013) demonstrated that chronic keta-
mine exposure in mice was associated with increased oxidative
stress, decreased hippocampal neurogenesis and cognitive and
sensorimotor symptoms analogous to schizophrenia, notably
without microglial increase. As ketamine is an NMDA receptor
antagonist and the hypofunctioning of the NMDA receptor is a
key aetiological theory of schizophrenia (Moghaddam and
Javitt, 2012), this study indicates that microglial activation
may represent one of many pathogenetic mechanisms
underlying neuronal damage.
Summary and road map
Neuroimaging and neuropathological studies have revealed
microglial activation or dysfunction in some schizophrenia
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patients. The existence of a neuroinflammatory subset could
contribute to the mixed findings across studies, as sample
sizes may have been insufficient to expose such a subset.
The ‘neuroinflammatory’ hypothesis proposes that this
group of patients would undergo progressive brain changes
as a result of microglial dysfunction. However, the relation-
ship between microglial activation and brain abnormalities
remains unclear, as there are limited clinical studies address-
ing this link. Nonetheless, animal models of schizophrenia
have addressed potential mechanisms that may underlie this
relationship and implicate decreased neurogenesis and reelin
expression, as well as reduced oligodendrocyte number and
myelination in response to microglial activation.

What emerges from these preliminary investigations is that
microglia are highly diverse cells, serving both pro-inflammatory
and neuroprotective functions. Therefore, disruptedmicroglia in
schizophrenia would likewise have diverse and wide-ranging
consequences for brain function. In light of this complexity, fu-
ture studies should focus on elucidating the functions of
microglia during healthy neurodevelopment, which would pro-
vide a foundation for understanding microglial dysfunction in
relation to key developmental windows of relevance to schizo-
phrenia and other neurodevelopmental disorders. Furthermore,
microglial markers could be developed that identify microglia
across different activation states and phenotypes. This could
determine the relative contribution of theM1/pro-inflammatory
and M2/neurotrophic phenotypes to the pathophysiology of
schizophrenia. In particular, the effect of the M1 and M2
microglial activation states on neurons could be examined in
relation to microglial functions such as synaptic pruning and
strengthening. Such molecular investigations may shed light
on the manner in which microglial activation is associated with
the macroscopic structural brain changes in schizophrenia. Fur-
thermore, given that MHC class proteins are expressed on neu-
rons, as well as microglia (Boulanger and Shatz, 2004), immune
system markers capable of identifying neurons could determine
potentially shared mechanisms between CNS and immune sys-
tem pathways, which may have implications for the proposed
inflammatory hypothesis of schizophrenia. In particular, schizo-
phrenia may not be primarily a disorder of inflammation but
arise from disturbances of overlapping downstream molecular
pathways, common to both the immune system and CNS.

Future PET and post-mortem studies could address unre-
solved questions pertaining to microglia in schizophrenia.
Firstly, increased sample sizes in patients with carefully docu-
mented clinical characteristics could clarify whether a subset
of patients exhibit microglial dysfunction. These studies
could address the characteristics of a ‘neuroinflammatory’
subset; in particular, the relative contribution of genotype,
illness severity and duration, medication history and age.
Secondly, more work is required to establish a link between
microglial dysfunction and brain changes in schizophrenia.
This could be achieved through longitudinal and multimodal
imaging studies concurrently measuring microglial activa-
tion and structural brain changes. In doing so, these studies
can determine whether microglial activation precedes or
follows structural brain change, which may point to potential
novel therapeutic targets. Furthermore, given microglia modify
neuronal synapses; diffusion imaging could be used to identify
connectivity impairments in conjunction with PET in order to
elucidate a potential association between microglial activation
and connectivity. Finally, treatment intervention studies could
address whether microglia play a casual role in brain changes
by utilizing a variety of novel drugs targeting microglial cells
and assessing their effect on microglia-specific markers and
brain structure in schizophrenia.
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