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Microglia are critical nervous system-specific immune cells serving as tissue-resident macrophages influencing brain
development, maintenance of the neural environment, response to injury and repair. As influenced by their environment,
microglia assume a diversity of phenotypes and retain the capability to shift functions to maintain tissue homeostasis. In
comparison with peripheral macrophages, microglia demonstrate similar and unique features with regards to phenotype
polarization, allowing for innate immunological functions. Microglia can be stimulated by LPS or IFN-γ to an M1 phenotype
for expression of pro-inflammatory cytokines or by IL-4/IL-13 to an M2 phenotype for resolution of inflammation and tissue
repair. Increasing evidence suggests a role of metabolic reprogramming in the regulation of the innate inflammatory response.
Studies using peripheral immune cells demonstrate that polarization to an M1 phenotype is often accompanied by a shift in
cells from oxidative phosphorylation to aerobic glycolysis for energy production. More recently, the link between polarization
and mitochondrial energy metabolism has been considered in microglia. Under these conditions, energy demands would be
associated with functional activities and cell survival and thus, may serve to influence the contribution of microglia activation
to various neurodegenerative conditions. This review examines the polarization states of microglia and their relationship to
mitochondrial metabolism. Additional supporting experimental data are provided to demonstrate mitochondrial metabolic
shifts in primary microglia and the BV-2 microglia cell line induced under LPS (M1) and IL-4/IL-13 (M2) polarization.
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Introduction
The innate immune response of the body recruits a number
of different cells to initiate a response to a novel stimulus
such as a pathogen. These various cells of the immune system
communicate and cooperate in a complex fashion to success-
fully complete their assigned tasks to clear the invading factor
and return the system back to homeostasis. Such cells include
circulating lymphocytes (T-cells, B-cells, NK cells) and
monocytes that can develop into either dendritic cells or
macrophages. They also include tissue associated bone
marrow-derived mast cells (effector cells of allergic reactions)
and tissue-specific macrophages. Within this arsenal, cells
that phagocytose the initiating factor serve in a workhorse-
type capacity. In the periphery, these actions are primarily the
function of bone marrow-derived polymorphonuclear leuco-
cytes that constantly circulate in the blood and in tissue-
specific macrophages that originate as monocytes from stem
cells in the bone marrow. Once the macrophage has phago-
cytosed the material, it initiates intracellular processes that
ensure the destruction of such engulfed material. As this
function relates to the clearance of invading microbes, the
cell can accomplish this task in two main ways, aerobically or
anaerobically. The phagocyte can produce oxygen-based
chemicals that, by being reactive, can disrupt the microbe.
This is often considered as an oxidative burst or respiratory
burst. Alternatively, the cell can kill the microbe without
oxygen by either increasing the acidity of the internal envi-
ronment or by depriving the microbe of iron to inhibit
metabolism.

Tissue-specific macrophages can be found in virtually all
tissues of the body and are representative of distinct classes

(Gautier et al., 2012). In the CNS, microglia function as resi-
dent mononuclear phagocytes. In comparison with periph-
eral tissue macrophages and antigen-presenting dendritic
cells that originate from bone marrow-derived monocytes
(Parwaresch and Wacker, 1984; Fogg et al., 2006), microglia
are derived from primitive yolk sac myeloid progenitors that
actively seed the brain parenchyma during mid-embryonic
development (Alliot et al., 1999; Ginhoux et al., 2010).
Similar to other tissue-specific resident macrophages, micro-
glia represent 10–15% of the total cell population within the
brain parenchyma (Carson et al., 2006) and display a level of
morphological heterogeneity across regions (Lawson et al.,
1990; Mittelbronn et al., 2001; Harry and Kraft, 2012). As
resident cells of the brain, microglia are involved in regula-
tory processes critical for tissue development, architectural
refinement, maintenance of the neural environment,
response to injury and subsequent remodelling/repair.
Similar to macrophages, microglia mount an immune
response to pathogens, monitor for tissue changes and main-
tain tissue homeostasis by clearing pathogens, dying cells,
debris or aberrant proteins (Gehrmann et al., 1995;
Bruce-Keller, 1999; Stevens et al., 2007; Wake et al., 2009;
Nagamoto-Combs et al., 2010; Sierra et al., 2010; Tremblay
et al., 2010; Olah et al., 2011; Paolicelli et al., 2011). It is
thought that through such capacities, microglia play a role in
brain development and in various neurological and neurode-
generative disorders (Kettenmann et al., 2011).

Under normal conditions, microglia assume a neural-
specific phenotype (Schmid et al., 2009) and retain a relative
quiescent surveillance phenotype for constant monitoring of
the brain parenchyma (Davalos et al., 2005; Nimmerjahn
et al., 2005). Maintaining microglia in a relatively quiescent

Tables of Links

TARGETS

Enzymesa

Akt

AMPK

Arg-1, arginase 1

Caspase-1

Histone demethylase

HK, hexokinase

iNOS

PI3K

GPCRsb

CCR2

Catalytic receptorsc

NLRC4 (IPAF)

NLRP1

NLRP3

TLR

LIGANDS

CCL2 IL-6

CCL17 IL-10

CCL20 IL-13

CCL22 IL-18

CCL24 Il-21

CX3CL1 IL-23

CXCL13 IL-33

IFN-γ LPS

IL-1β NO

IL-3 TGF-β

IL-4 TNF-α

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://
www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are
permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (a,b,cAlexander et al., 2013a,b,c).

650 British Journal of Pharmacology (2016) 173 –649 665

R Orihuela et al.BJP

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=285
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1540&familyId=474&familyType=ENZYME
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=250#1244
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1617
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=869
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=890
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=253#1250
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=672
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=59
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=317#1782
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=317#1768
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1770&familyId=317&familyType=CATALYTICRECEPTOR
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=316#1754
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=771
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4998
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=797
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4975
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=808
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4980
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=798
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4983
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=775
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4987
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=856
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4978
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=3645
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=5880
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4968
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=5019
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4974
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=2509
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4994
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=5060
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=4996
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2635
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/


state is, in part, due to signals derived from neuronal- and
astrocyte-derived factors (Cardona et al., 2006; Neumann
et al., 2009; Ransohoff and Cardona, 2010). This role is attrib-
uted to expression of several receptors on microglia including
triggering receptor expressed on myeloid cells-2, signal-
regulatory protein CD172 (SIRP1A) the chemokine CX3CL1,
colony-stimulating factor 1 receptor and CD200R (Wright
et al., 2003; Kierdorf and Prinz, 2013). Healthy neurons
accomplish regulatory tasks via secreted and membrane
bound signals including CX3CL1 (Hoek et al., 2000; Barclay
et al., 2002; Sunnemark et al., 2005; Lyons et al., 2007),
CD200 (Hoek et al., 2000; Frank et al., 2006), neurotransmit-
ters (Pocock and Kettenmann, 2007), neurotrophins and
CD22 (Mott et al., 2004), which acts on the CD45R for nega-
tive regulation of microglia via inhibition of p44/45 MAPK
(Tan et al., 2000). In addition, within the normal CNS envi-
ronment, microglia express high levels of microRNA-124,
reducing expression of CD46, major histocompatibility
complex-II (MHC-II) and CD11b serving to maintain the cells
in a quiescent yet, surveillance state (Conrad and Dittel,
2011).

M1 polarization state of macrophages
and microglia
Macrophages respond to endogenous stimuli generated fol-
lowing infection or injury and demonstrate both pathogenic
and protective roles (Mills, 2012; Boche et al., 2013; Wynn
et al., 2013). Upon appropriate stimulation, classically acti-
vated, pro-inflammatory (M1) macrophages serve in the first
line of defence of the innate immune system occurring often
within the first few hours or days. Microglia share phenotypic
characteristics with peripheral monocytes. This allows for
innate immunological functions. They recognize harmful
stimuli using a full array of immune receptors, such as toll-
like receptors (TLRs), nucleotide-binding oligomerization
domains (NODs), NOD-like receptors and many scavenger
receptors (SRs; Ransohoff and Perry, 2009; Ransohoff and
Brown, 2012). Within injured tissue, microglia exist in
various states of activation and retain the capability to shift
their functional phenotype during the inflammatory
response (Stout et al., 2005; Graeber, 2010). With injury, resi-
dent microglia or macrophages infiltrating from the circula-
tion become polarized towards a pro-inflammatory (M1)
phenotype upon exposure to pro-inflammatory cytokines
IFN-γ, TNF-α and cellular or bacterial debris. These cells then
produce pro-inflammatory cytokines (TNF-α, interleukin (IL)-
1β, IL-12), present antigen, and express high levels of induc-
ible NO (iNOS) for NO production (Gordon and Taylor, 2005;
Villalta et al., 2009). This action is geared to kill the offending
foreign pathogen and polarize T-cells to mount an adaptive
immune response. In many experimental models, the M1
response is characterized following exposure to bacterial-
derived products such as, LPS or signals associated with infec-
tion such as IFN-γ (Martinez and Gordon, 2014). In the
absence of microorganisms, a similar, but sterile inflamma-
tory response occurs often as a result of trauma, ischaemia-
reperfusion injury or chemical exposure (Chen and Nunez,
2010; Shechter and Schwartz, 2013; McPherson et al., 2014).
Like peripheral macrophages, microglia respond by produc-
ing M1 associated factors such as, pro-inflammatory
cytokines (IL-1α, IL-1β, IL-6, IL-12, IL-23, TNF-α),

chemokines, redox molecules (NADPH oxidase, phagocytic
oxidase, iNOS), SRs (macrophage receptor with collagenous
structure), co-stimulatory proteins (CD40) and MHC-II
(Hanisch and Kettenmann, 2007; Henkel et al., 2009;
Ransohoff and Perry, 2009; Colton and Wilcock, 2010;
Varnum and Ikezu, 2012; Boche et al., 2013). Early work on
the MMGT12 murine microglia cell line (Briers et al., 1994)
and primary microglia provided a wide-ranging transcription
and functional profile using the M1/M2 differentiation spec-
trum (Michelucci et al., 2009). An extensive transcription
profile was examined including LPS or IFN-γ-induced M1
markers, such as IL-1β, IL-6, TNF-α, NOS2, COX-2, C-C
chemokines CCL2 and CCL20, and the receptor CCR2. Func-
tional aspects of the polarization showed that phagocytosis
was inhibited with M1 polarization. While the majority of
work is in rodent microglia, primary microglia obtained from
adult human brain can be induced to an M1 phenotype with
LPS + IFN-γ (Durafourt et al., 2012).

The outcome of a M1 polarizing event is dependent upon
a number of features, not the least of which is whether the
response includes a production of iNOS, reactive oxygen
species (ROS) or activation of NOD-like receptor family pyrin
domain-containing 3 (NLRP3) inflammasome complex
(Bordt and Polster, 2014; de Rivero Vaccari et al., 2014). The
NLRP3 inflammasome protein complex facilitates production
of active caspase-1 for generation of IL-1β and IL-18 from
precursor proteins (Netea et al., 2014). NLRP1, NLRP3 and
NLRC4 are primary complexes (Martinon et al., 2009) gov-
erning caspase-1 activation for proteolytic processing and
secretion of pro-inflammatory cytokines (Labbe and Saleh,
2008; Salminen et al., 2008) to activate the full cytokine
cascade. Limited data are starting to become available regard-
ing the role of inflammasome activation in CNS injury (de
Rivero Vaccari et al., 2014). A role for NLRP3 inflammasomes
in IL-1β release has been reported from LPS-primed prion-
infected microglia (Shi et al., 2012). In lentivirus-infected
microglia, NLRP3 inflammasome activation is an early aspect
of infection (Walsh et al., 2014). Chronic exposure to exog-
enous glucocorticoids primes microglia towards an exacer-
bated pro-inflammatory response and induces NLRP3 within
the hippocampus (Frank et al., 2013).

M2 polarization of macrophages
and microglia
While the initial response of macrophages to injury has been
known for some time, positive influences on tissue remodel-
ling have been recognized more recently (Longbrake et al.,
2007; Ruffell et al., 2009; Deng et al., 2012; Novak and Koh,
2013; Shechter and Schwartz, 2013; Shechter et al., 2013). In
the early 1990s, the concept of macrophage alternative acti-
vation was developed largely based on work showing a role
for IL-4 in the induction of an alternative (M2) activation
state (Stein et al., 1992) inducing expression of the anti-
inflammatory cytokines (Il4, Il10, Il13 and TGF-β) as well as,
arginase-1 (Arg1), CD206 and Chitinase-3-like-3 (Ym1 in
rodents) (Colton, 2009; Henkel et al., 2009). M2 macrophages
play a role in allergy response, parasite clearance, inflamma-
tory dampening, tissue remodelling, angiogenesis, immu-
noregulation and tumour promotion (Sica and Mantovani,
2012). Upon further study, subclasses of M2 activation have
been identified. The M2a activation state is induced by para-
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sitic products or associated signals (IL-4 and IL-13) with a
longer-term function for resolution and repair (Rutschman
et al., 2001; Gordon, 2003; Lawrence and Natoli, 2011; Mills,
2012; Wynn et al., 2013). In this case, signalling occurs
through IL-4 receptor α leading to inhibition of NF-κB sig-
nalling induced by M1 activation. M2b polarization is
observed with triggering of Fcγ receptors, TLRs and immune
complexes (Martinez and Gordon, 2014). M2c polarization
occurs in response to specific anti-inflammatory factors such
as, IL-10, TGF-β and glucocorticoids (Vodovoz et al., 1993;
Gordon, 2003; Martinez et al., 2008; Morris, 2009; Mills,
2012). Other cytokines induce M2 polarization such as IL-3
(Kuroda et al., 2009), IL-21 (Pesce et al., 2006) and IL-33,
(Kurowska-Stolarska et al., 2009) as well as the chemokines,
CCL2 and CXCL4 (Roca et al., 2009; Gleissner et al., 2010). In
addition, cells can shift from an M2b phenotype to a mixture
of M1 and M2a/b (Lisi et al., 2014). M2 polarization of micro-
glia is similar to peripheral macrophages (Fenn et al., 2012;
Liu et al., 2012; Chhor et al., 2013; Freilich et al., 2013), gen-
erating different mRNA profiles for IL-4 and IL-10 stimulation
including Arg1, Mmr, Ym1, found in inflammatory zone 1
(Fizz1) and Ppar (Michelucci et al., 2009). While these asso-
ciations have been demonstrated in vitro, M2 is induced in
vivo in sterile wounds in the absence IL-4 or IL-13 (Crane
et al., 2014) suggesting an alternative stimulus. In this model,
M2 macrophages were derived from M1 macrophages that
matured into repair macrophages within the tissue after
recruitment from the circulation (Italiani et al., 2014). Thus,
the inherent phenotype of the cells may differ as a function
of source and environment.

M2 macrophages facilitate resolution of inflammation
through anti-inflammatory factors (e.g. IL-10, IL-13, TGF-β),
VEGF, EGF, Arg1) to deactivate pro-inflammatory cell pheno-
types and re-establish homeostasis (Gordon, 2003; Gordon
and Martinez, 2010; Ortega-Gómez et al., 2013). This includes
production of IL-10 to down-regulate inflammatory cells,
extracellular matrix protecting proteins like Ym1/2, ornith-
ine, polyamines for wound repair and higher levels of recep-
tors associated with phagocytosis (Martinez et al., 2009).
IL-10 induces STAT3 and downstream genes including Il10,
Tgfb1, macrophage mannose receptor Mrc1 (Lang et al., 2002;
Gordon, 2003). Upon STAT6 activation, induction occurred
in Ym1, Mrc1 and Fizz1. Functional changes associated with
M2 activation include increased engulfment of apoptotic
cells by cells stimulated with IL-10 (Ghigo et al., 2001; 2004;
Benoit et al., 2008b; Michelucci et al., 2009). In contrast, mac-
rophages from IL-10 over expressing mice do not show
enhanced phagocytosis, but are unable to clear Coxiella bur-
netii infection. They exhibit an M2-type transcriptional pro-
gramme with increased mRNA levels for Arg1, mannose
receptor (Mr) and Ym1/2 and down-modulated inflammatory
markers (Meghari et al., 2008). Activation of the PPAR-γ char-
acterizes M2 polarization (Benoit et al., 2008a; Rajaram et al.,
2010). M2 cells express chemokines (CCL17, CCL22 and
CCL24) (Mantovani et al., 2004) and co-express macrophage
activation factor with CD68 or CD163 (Barros et al., 2013).
The specificity of these markers remains in question. For
example, CD163 is considered a M2-specific marker (Buechler
et al., 2000); yet, differential expression of CD163 has not
been observed in human disease (Barros et al., 2013) or polar-
ized macrophages (Kittan et al., 2013). In addition, the

primary ‘marker’ for M2, Arg1, is also induced in M1 mac-
rophages and expressed in some resident and mycobacteria-
infected macrophages (El Kasmi et al., 2008).

In a few studies, the effects , particularly on neuroprotec-
tion and repair, of M2 microglia have been demonstrated (see
Cherry et al., 2014a). Butovsky et al. (2006) suggested that
glatiramer acetate could induce microglia to express insulin-
like growth factor 1 for neuroprotective action. In a murine
experimental autoimmune encephalomyelitis (EAE) model of
multiple sclerosis, Ponomarev et al. (2007) reported a regula-
tory role for CNS-derived IL-4 in the induction of Ym1
protein and mRNA. This elevation occurred in the absence of
NO production. Clinical signs of EAE were exacerbated in
chimera mice deficient in IL-4 suggesting an association with
a diminished M2 microglia phenotype (Ponomarev et al.,
2007). Based upon the temporal expression of M1- and
M2-related factors in a mouse spinal cord injury model, Kigerl
et al. (2009) examined the effect of conditioned media from
bone marrow-derived macrophages on dorsal root ganglion
cell survival and neurite outgrowth. Conditioned media from
LPS + IFN-γ induced macrophages damaged neurons while
media from IL-4-induced macrophages-stimulated neurite
outgrowth. Additional studies are now being reported linking
the M2 microglia phenotype to diminished injury and poten-
tial repair; however, the strongest data still remain from
spinal cord injury models.

Polarization transitions
Injury-induced inflammatory processes are dynamic, demon-
strating spatial and temporal heterogeneity, with the possi-
bility that individual cells express transitional phenotypes. It
has been suggested that macrophages transition from a M1
phenotype to a more regulatory or anti-inflammatory M2
phenotypes to promote positive functional outcomes and
minimize scar tissue formation. Alternatively, subpopulations
of macrophages within an injury environment may express
specific phenotypes resulting in concurrent expression of M1-
and M2-related factors or mixed M1/M2 phenotypes
(Ziegler-Heitbrock et al., 2010; Pettersen et al., 2011; Wong
et al., 2011; Vogel et al., 2013). In vitro studies indicate that
human monocytes can polarize to a M1 phenotype then
mature into a M2 phenotype as a function of sequential
changes in culture conditions (Italiani et al., 2014). Following
exposure to classic M1 signals, TLR ligands or IFN-γ, M2
macrophages can be reprogrammed to express M1 genes
(Stout et al., 2005; Mylonas et al., 2009). Recent work suggests
that histone H3K27me3 demethylase Jumonji domain con-
taining three was essential for microglial M2 polarization and
M1 down-regulation (Tang et al., 2014). While a shift to an
M1 phenotype would be a relatively standard transition, it is
considered rare that once activated, peripheral M1 cells
would switch to an M2 phenotype. Rather, for peripheral
immune cells, it is thought that M1 stage cells become ter-
minal and die during the inflammatory response (Albina
et al., 1989). However, it has also been shown that inflamma-
tory monocyte-derived M1 macrophages can undergo pheno-
type conversion and become tissue-resident macrophages
(Hashimoto et al., 2013; Yona et al., 2013). Alternatively, any
apparent increase in M2 phenotype cells may be associated
with the loss of NO-producing cells and an increase in TGF-β
for amplification of M2 polarization. Thus, the question

652 British Journal of Pharmacology (2016) 173 –649 665

R Orihuela et al.BJP



remains as to whether M1 and M2 macrophages are pheno-
typically distinct subpopulations that, within different stages
of an inflammatory response, would perform different func-
tions (Auffray et al., 2007; Nahrendorf et al., 2007) or rather,
shift between functional phenotypes depending upon envi-
ronmental signals (Arnold et al., 2007; Crane et al., 2014).

Resident microglia versus
peripheral macrophages
Evaluation of the M1/M2 paradigm in the CNS becomes
complex as compared with other tissues due to the presence of
the blood–brain barrier (BBB) that prevents the infiltration of
blood-borne monocytes/macrophages. Physical injury or late-
stage disease states can lead to a disruption of the BBB allowing
monocyte-derived macrophages to infiltrate and influence the
injury and repair process. However, a directed response of
resident microglia alone can occur in the absence of infiltrat-
ing monocytes (Peng et al., 2008; Funk et al., 2011), which
may be more reflective of early stages of neurodegenerative
disorders. Distinguishing between in vivo signals of resident
microglia and infiltrating cells that assume a brain mac-
rophage phenotype remains a confounding factor in identify-
ing signals unique to the CNS. It has been suggested that
infiltrating cells would be more involved in severe inflamma-
tory injuries, while resident microglia would focus on main-
taining tissue homeostasis (Ginhoux and Jung, 2014). Thus,
characterization of the stage of an inflammatory response
would depend upon the contributing cell type for example
microglia versus infiltrating blood-borne monocytes.

While microglia and peripheral macrophages maintain
many similar features, they remain uniquely different. Com-
parison of non-activated microglia to peritoneal mac-
rophages identified a significant number of similarities in
gene transcript expression yet, also distinct differences. Of
the genes highly enriched in microglia, several were classified
as ‘sensome’ genes allowing cells to sense and interact with
the local environment (Hickman et al., 2013). These included
putative P2ry12, P2ry13, Tmem119, GPCR 34 (Gpr34), the
1-type lectin receptor Siglec-h, Trem2 and Cx3cr1. Additional
unique transcripts included the enzyme hexosaminidase B
(Hexb) and the antimicrobial peptides cathelicidin antimicro-
bial peptide (Camp) and neutrophilic granule proteins (Ngp).
While macrophages expressed a number of ‘sensome’ genes,
the enriched genes included those encoding for fibronectin,
CXCL13 and the endothelin B receptor in contrast to micro-
glia. In an elegant study set out to directly compare M1 and
M2 polarization capabilities of human microglia and blood-
derived macrophages gene expression (PCR array; 26 M1 and
11 M2 genes), microglia were observed to be more restricted
in their capacity to adopt an M2 phenotype and cytokine
profile, compared with macrophages (Durafourt et al., 2012).
Both macrophages and microglia showed a greater induction
of gene expression in response to M1, compared with M2
polarization. The majority of genes differentially regulated in
M1-polarized macrophages were also observed in M1 micro-
glia compared with their M2 counterparts. Some differences
were observed when comparing the M1- and M2-polarized
cell populations. Comparison of M1 macrophages with M1
microglia demonstrated that macrophages over-expressed
antigen presentation markers, CD1A, 1B and 1C. HLA-DM
expression was also increased in M2 macrophages compared

with M2 microglia. Upon M2 polarization, microglia and
macrophages were found to express similar genes with the
exception of CD64 that was observed in both M1 and M2
microglia.

Metabolism under polarization states
Increasing evidence suggests a role of metabolic reprogram-
ming in the regulation of the innate inflammatory response.
Modification of metabolic functions from a growth-
promoting capacity (M2) to a killing/inhibitory capacity (M1)
allows macrophages to respond with appropriate functions in
distinct contexts (Mills et al., 2000; Rodríguez-Prados et al.,
2010; Odegaard and Chawla, 2011; Biswas and Mantovani,
2012; Mills, 2012). Under normal oxygen conditions, cells
obtain energy via two different mechanisms. In the first,
glucose is converted to pyruvate via glycolysis, entering the
mitochondrial tricarboxylic acid cycle (TCA) to produce ATP
through oxidative phosphorylation (Dashty, 2013). Under
hypoxic conditions, anaerobic glycolysis converts pyruvate
into lactate. This metabolic switch is promoted by PI3K/Akt
signalling and inhibited by AMP-activated PK (AMPK)
(Hardie, 2007) and IL-10 (Murray, 2006). Recent evidence
suggests that immune cells have the ability to switch from
oxidative phosphorylation to aerobic glycolysis; not dissimi-
lar to the Warburg effect seen in tumour cells (Warburg, 1956;
Vander Heiden et al., 2009). In this shift, cells preferentially
use glycolysis rather than catabolic mitochondrial pathways
to conserve and generate metabolic resources that are neces-
sary to meet demands of cellular proliferation and activation
while, still producing a sufficient supply of ATP.

M1 polarization
In classically activated M1 macrophages and dendritic cells,
metabolism is shifted towards glycolysis and NO and citrul-
line production. This switch increases glucose uptake and
lactate production (Krawczyk et al., 2010; Rodríguez-Prados
et al., 2010) with activation of the pentose phosphate
pathway (PPP) and decreased mitochondrial oxygen con-
sumption (Haschemi et al., 2012). In M1 macrophages, the
Krebs cycle intermediate, succinate, regulates hypoxia-
inducible factor 1α to drive a sustained production of IL-1β
(Galvan-Peña and O’Neill, 2014). Increased glycolysis is per-
missive to quickly trigger microbiocidal activity and allows
cells to survive in a hypoxic environment.

A key feature of M1 macrophages is associated with their
production of ROS to facilitate killing of phagocytosed bac-
teria (West et al., 2011). Intracellular damage from ROS is
limited due to the increased generation of NADPH required
for maintenance of reduced glutathione (Kletzien et al., 1994;
Salvemini et al., 1999) and also NO production (Bredt and
Snyder, 1990; Knowles and Moncada, 1994). NO is synthe-
sized by oxidation of L-arginine by inducible NOS (iNOS)
using the electrons supplied by NADPH. At high concentra-
tions NO reversibly inhibits mitochondrial respiration by
competing with O2 in cytochrome c oxidase. With reduced
mitochondrial respiration ROS production, in the form of
superoxide anion (O2

−), is increased and converted into H2O2

by superoxide dismutase (SOD)3. This then diffuses into the
cytoplasm (Fukai et al., 2002). With prolonged production,
NO can react with O2

− to produce peroxynitrite (ONOO−),
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irreversibly inhibiting the electron transport chain (Bolaños
et al., 2004). NO inhibits the enzyme pyruvate dehydroge-
nase that converts pyruvate into acetyl CoA before entering
the Krebs cycle (Klimaszewska-Łata et al., 2014). Functionally,
M1-produced NO serves as an effector molecule with micro-
biocidal activity and the capacity to inhibit cell proliferation
(MacMicking et al., 1997). Using a screening strategy in mac-
rophages, it was shown that the specific modulation of gly-
colytic energy flux is critical to macrophage activation and is
likely to define cell polarization (Haschemi et al., 2012). In
this study, a number of non-protein nutrient kinases were
reported to have a contributory role including CARKL, a
sedoheptulose kinase of the PPP, for repression of LPS-
induced macrophage activation. In primary murine mac-
rophages, a decrease in CARKL expression accompanied M1
polarization with only a minimal increase in expression
observed following IL-4 or IL-13 (Haschemi et al., 2012).

The majority of the published data on the bioenergetics of
polarization states has been generated in peripheral immune
cells (Biswas and Mantovani, 2012; O’Neill and Hardie, 2013;
Pearce and Pearce, 2013) with only a few studies examining
microglia (Moss and Bates, 2001; Chenais et al., 2002;
Bernhart et al., 2010; Sohn et al., 2012; Voloboueva et al.,
2013; Gimeno-Bayon et al., 2014). The majority of microglia
studies were related to the generation of ROS (Innamorato
et al., 2009; Ferger et al., 2010; Bordt and Polster, 2014; Chen
et al., 2014). As in macrophages, microglia in the surveillance

state are likely to rely on oxidative phosphorylation metabo-
lism (Cherry et al., 2014b). Similar to other immune cells,
when stimulated with TLR agonists (e.g. LPS), microglia
switch from oxidative metabolism towards glycolytic
metabolism (Voloboueva et al., 2013; Gimeno-Bayon et al.,
2014). Voloboueva et al. (2013) showed that upon stimula-
tion by LPS (1 μg·mL−1, 3 h), BV-2 cells increased lactate pro-
duction concurrent with a decrease in mitochondrial oxygen
consumption and ATP production as measured using an
extracellular flux analyzer (Seahorse Bioscience, Billerica, MA,
USA). This shift was modulated by the mitochondrial
glucose-regulated protein 75/mortalin. Over expression of
75/mortalin attenuated LPS-induced oxidative and metabolic
responses, as well as, suppressed pro-inflammatory activa-
tion. From these findings the authors proposed that LPS-
induced elevations in glycolytic activity and lactate levels
contributed to the associated pro-inflammatory response.
When the LPS (100 μg·mL−1) stimulus was augmented by
IFN-γ (0.5 μg·mL−1) a 24-h exposure resulted in an increase in
NO formation and a metabolic reprogramming of BV-2 cells
based on increased glucose consumption, hexokinase
(HK) activity, glucose-6-phosphate dehydrogenase activity,
phosphofructokinase-1 activity, lactate dehydrogenase activ-
ity and lactate release, suggesting a potentiated glycolysis
(Gimeno-Bayon et al., 2014). Time-lapsed confocal imaging
of the inner membrane potential by the mitochondrial mem-
brane potential-sensitive dye TMRE showed that the cells

▶
Figure 1
LPS and IL-4/IL-13 stimulation of BV-2 cells. (A–D) LPS-induced M1 phenotype of BV-2 cells. BV-2 cells were plated in six-well tissue culture plates
for mRNA (2 × 105 cells per well) or in 24-well Seahorse plates (2.5 × 104 per well). 24 h post-plating, cells were exposed to LPS (100 ng·mL−1 final
concentration; 24 h) or media (Con). (A) Total RNA was isolated by Trizol and mRNA levels for M1-related genes determined by qRT-PCR
(Supporting Information). Threshold cycle values were determined, GAPDH was used for normalization, and the mean fold changes over saline
controls were calculated according to the 2−ΔΔC

T method. Data represent mean ± SEM (n = 6). (B) Representative example of a bioenergetics profile
(Seahorse Bioscience; Supporting Information) shows a normal response pattern for control BV-2 cells (2.5 × 104 cells per well) for basal respiration
(first three readings), and following addition of the mitochondrial stressors oligomycin (oligo; 0.75 μM), FCCP (0.75 μM) and rotenone (rot;
1 nM). LPS-exposed cells showed a decrease in basal respiration and were unresponsive to the different mitochondrial stressors, suggesting an
impairment of mitochondrial function. Calculation of (C) OCR and (D) ECAR as a percentage of control demonstrated a significant difference
between controls and LPS-exposed cells suggesting an increased extracellular acidification of the media. Data represent mean ± SEM calculated
as a percentage of control (six to seven individual wells across three independent experiments) (n = 3). *P < 0.05, significantly different from
control; Student’s t-test. (E–H) Response of BV-2 cells to LPS following inhibition of iNOS with SEIT. BV-2 cells (nitrite release; mRNA: 2 × 105

cells per well per six-well; 24-well Seahorse plate (2.5 × 104 per well) were pre-exposed to the iNOS-inhibitor, SEIT (S, 200 μM) for 1 h followed
by LPS (100 ng·mL−1, 24 h) exposure. (E) LPS-induced nitrite release into the media, as determined by Griess reaction, was significantly inhibited
by SEIT (S). *P < 0.05, significantly different from LPS alone; Student’s t-test. (F) Seahorse bioenergetics profile showed that inhibition of iNOS
partially blunted the mitochondrial impairment induced by LPS as demonstrated by the cellular response following FCCP. (G) Calculation of OCR
indicated a significant decrease with LPS exposure and a blunting of this effect with SEIT. (H) mRNA levels for M1-related genes as determined
by qRT-PCR showed no significant difference between cells exposed to LPS and those exposed to SEIT + LPS. Data represent mean ± SEM (n = 6).
*P < 0.05, significantly different from control; ANOVA with Bonferroni’s test. (I–K) LPS-induced polarization provokes a glycolytic burst in BV-2 cells.
(I–J) BV-2 cells (2.5 × 104 per well Seahorse plate) were exposed to the iNOS-inhibitor, SEIT (S; 1 h, 200 μM) or media (Con) followed by LPS
(100 ng·mL−1 final concentration; 24 h). (I) Cells showed an increase in ECAR following LPS. SEIT dosed cells showed a decrease in ECAR over time
as compared with controls suggesting a role for iNOS in maintaining elevated ECAR. (J) SEIT alone showed no effect on basal respiration (OCR).
(K) To examine mitochondrial function during the initial LPS-induced glycolytic burst, BV-2 cells were administered LPS (100 μg·mL−1 final
concentration) or media (Con) at the 20 min time point after recording basal respiration (line indicating dosing). No significant differences were
observed in response to oligomycin, FCCP or rotenone, indicating that cells maintained normal mitochondrial function during the initial glycolytic
burst. Data represent mean ± SEM calculated as a percentage of control (six to seven individual wells across three independent experiments) (n
= 3). (L–N) IL4/IL13 induction of M2 phenotype. 24 h post-plating, BV-2 cells (mRNA: 2 × 105 cells per well per well plate; 2.5 × 104 per well per
24-well Seahorse plate) were exposed to IL4/IL13 (10 ng·mL−1 final concentration of each) or media (Con) for 24 h. (L) Total RNA was isolated
by Trizol and mRNA levels for M2-related genes determined by qRT-PCR (Supporting Information). Threshold cycle values were determined,
GAPDH was used for normalization, and the mean fold changes over saline controls were calculated according to the 2−ΔΔC

T method. Data
represent mean ± SEM (n = 6). *P < 0.05, significantly different from control; Student’s t-test. (M) Seahorse bioenergetics profile shows no
significant effect of M2 polarization by IL4/IL13 as compared with media controls and (N) OCR and (O) ECAR were not altered with the addition
of IL4/IL13. Data represent mean ± SEM calculated as a percentage of control from seven independent wells from duplicate experiments.
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maintained their electron transport chain usage. In compari-
son, stimulation with IL-4 (0.5 μg·mL−1) for 24 h resulted in a
reduction of glucose consumption and lactate production.
The authors suggested that this shift is association with
phagocytic actions of the cells and the reduction in the need
for anabolic reactions. These data suggest that different meta-
bolic programming is associated with the different phenotype
states of microglia.

To provide specific experimental data on the bioenergetics
profile of microglia following polarization, we examined spe-
cific features of the profile under different polarization states
using a XF24 extracellular flux analyzer (Seahorse Bioscience;
see Supporting Information for detailed methods). In murine
BV-2 microglia cells, LPS (100 μg·mL−1; 24 h) exposure resulted
in an elevation in M1-related pro-inflammatory genes
(Figure 1A). Under this M1 stimulatory condition, the cells
shifted from a primary oxidative metabolic state towards
glycolytic metabolism (Figure 1B–D) and showed no evidence
of cell death. LPS-polarized BV-2 cells were unresponsive to the
mitochondrial stressors oligomycin, FCCP and rotenone,
highlighting the loss of mitochondrial function (Figure 1B).
Similar to findings in the work of Voloboueva et al. (2013)
shifting of BV-2 cells to a glycolytic metabolism decreased

mitochondrial oxygen consumption (OCR) (Figure 1C) and,
as a consequence of lactate release, the cells increased their
extracellular acidification rate (ECAR) (Figure 1D). Under the
stimulatory conditions induced by LPS, the data suggest that
in BV-2 cells, a switch to glycolysis appears to serve as a survival
response to maintain ATP levels, after inhibition of oxidative
phosphorylation by NO. This finding is similar to that
obtained by Everts et al., (2012) with dendritic cells (DCs).

The response of dendritic cells to LPS is characterized by a
rapid increase in glycolytic flux that occurs within minutes of
TLR activation, independent of NO (Everts et al., 2014). This
serves to stimulate de novo synthesis of fatty acids (FA) and
secretion of proteins critical for cell activation (Everts et al.,
2014). In comparison, a similar phenomenon was observed in
BV-2 cells. To examine the role of NO in the metabolic shift
of microglia, NO production in LPS-stimulated BV-2 cells was
blocked by pre-treatment with the iNOS-inhibitor S-ethyl-
isothiourea (SEIT). Pretreatment of cells with SEIT (S, 200 μM)
for 1 h prior to LPS (100 μg·mL−1, 24 h) exposure was effective
in inhibiting LPS-induced nitrite production (Figure 1E), par-
tially blunting mitochondrial impairment (Figure 1F and G).
The inhibition of iNOS, however, did not alter the LPS-
induced elevation in mRNA levels for M1-related genes
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(Figure 1H) and was ineffective in preventing the initial gly-
colytic burst observed within the first hour following LPS
(Figure 1I). Under these conditions, OCR was not altered with
the inhibition of NO (Figure 1J) suggesting an increase in
glycolytic metabolism while maintaining mitochondrial
function. Everts et al. (2014) reported that in DCs, the
increase in glycolysis and the stimulation of pyruvate flux
into the TCA contributes to an increased spare respiratory
capacity. In contrast, while BV-2 cells demonstrated an initial
glycolytic burst, there was no indication of an increase in
spare respiratory capacity (Figure 1K). However, similar to
peripheral immune cells such as, dendritic cells, the transi-
tion from oxidative phosphorylation to glycolysis in micro-
glia appears dependent upon NO.

BV-2 cells offer significant advantages over primary micro-
glia with regards to their ability to generate sufficient cells to
conduct biochemical studies. However, they are limited and
do have some significant differences as compared with
primary microglia. To confirm if the findings on mitochon-
drial bioenergetics observed in BV-2 cells would also be
observed in primary microglia, we conducted a focused inves-
tigation in primary murine microglia following exposure to
LPS (100 μg·mL−1, for 24 h). We demonstrated that under LPS
stimulatory conditions, the primary microglia replicated the
effects observed for BV-2 cells (Figure 2) including a loss of
mitochondrial function (Figure 2A), decreased basal respira-
tion (Figure 2C) and increased ECAR (Figure 2D).

Integration of the data on peripheral immune cells with
the limited data on microglia lead to the proposal of a two-
stage process during activation following TLR signalling
(Figure 3). It is proposed that, while in the initial stage, cells
are capable of utilizing both oxidative and glycolytic metabo-
lism yet, at the same time, activating the PPP. In the second
stage, microglia shift to rely on glycolytic metabolism for
survival and activation of the PPP.

M2 polarization
M2 macrophages use oxidative metabolism for the more
long-term functions involved in tissue repair and wound

healing (Biswas and Mantovani, 2012). The M2 phenotype
has also been considered as the ‘default’ polarization of resi-
dent macrophages (Murray and Wynn, 2011) with the pro-
duction of ornithine to promote cell proliferation and repair
through polyamine and collagen synthesis, fibrosis and tissue
remodelling functions (Pesce et al., 2009). In M2 mac-
rophages, glucose consumption is significantly lower as com-
pared with M1 (Rodríguez-Prados et al., 2010) and the
sedoheptulose kinase CARKL is critical for regulating the PPP
(Galvan-Peña and O’Neill, 2014). IL-4 induced M2 mac-
rophages utilize FA oxidation and oxidative respiration for
energy production (Odegaard and Chawla, 2011). Under
these conditions, arginine metabolism is shifted to ornithine
and polyamines (Mills et al., 2000). This contributes to
phagocytosis by regulating energy demands and membrane
fluidity.

Currently, there are limited data on the role of mitochon-
dria as associated with M2 activation of microglia.
Gimeno-Bayon et al. (2014) reported that IL-4-stimulated
(0.5 μg·mL−1; 24 h) BV-2 cells decreased glucose consumption
and lactate production. The authors suggested that this shift
was association with phagocytic actions of the cells and the
reduced need for anabolic reactions. When we examined the
response of BV-2 cells following stimulation with IL-4/IL-13
(10 μg·mL−1, 24 h), mRNA levels for a number of M2-related
genes were found to be elevated (Figure 1L). When the bio-
energetic state was examined upon such stimulation, the cells
were found to remain within an oxidative metabolic state
(Figure 1M) maintaining OCR and ECAR at levels similar to
non-stimulated cells (Figure 1N,O). These observations are in
contrast to peripheral macrophages where IL-4 stimulates
glucose uptake in addition to FA metabolism and mitochon-
drial biogenesis (Vats et al., 2006). When similar dynamics
were examined in primary murine microglia, it was found
that upon stimulation with IL-4/IL-13, cells remained within
an oxidative metabolic state (Figure 2B). They showed no
alteration in basal respiration and OCR (Figure 2C) and ECAR
(Figure 2D) were similar to non-stimulated cells. In peripheral
macrophages, inhibition of mitochondrial respiration inhib-

Figure 2
Representative mitochondrial function analysis of polarized primary microglia cells. Primary microglia cells were seeded in a Seahorse XF plate
(Seahorse Bioscience, Supporting Information) at a density of 1.25 × 105 cells per well and polarized in situ for 24 h with LPS (100 ng·mL−1) or
a combination of IL-4 and IL-13 (10 ng·mL−1 each). After signal stabilization (three measures) the cells were sequentially exposed to the
mitochondrial stressors oligomycin (0.75 μM), FCCP (0.75 μM) and rotenone (rot, 1 μM). (A) Representative bioenergetics profile demonstrates
a normal response pattern for control primary microglia. LPS-exposed cells showed a decrease in basal respiration and were unresponsive to the
different mitochondrial stressors, suggesting an impairment of mitochondrial function. (B) Following exposure to IL-4/IL-13, cells maintained a
bioenergetics profile similar to controls. Calculation of (C) OCR and (D) ECAR as a percentage of control showed that LPS exposure decreased basal
respiration, and increased extracellular acidification of the media, respectively, with no changes observed with IL-4/IL-13 exposure. Data represent
mean ± SEM calculated as a percentage of control (seven individual wells each condition). *P < 0.05, significantly different from control; Student’s
t-test. All studies were conducted under an animal protocol approved by National Institute of Environmental Health Sciences Animal Care and Use
Committee.
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its induction of arginase activity and minimizes the anti-
inflammatory effects of IL-4 on LPS-induced secretion of IL-6
and TNF-α (Vats et al., 2006). Ferger et al. (2010) found that
non-toxic doses of the mitochondrial electron transport
chain inhibitors, rotenone or 3-nitropropionic acid, impaired
IL-4 stimulation of M2-related genes and inhibited LPS-
stimulated IL-6 and TNF-α release. In contrast to peripheral
macrophages, primary microglia showed no inhibition of
IL-4 down-regulation of LPS-induced secretion of IL-1β
protein (Ferger et al., 2010). In mixed glia cultures, IL-4 was
found to enhance LPS-induced IL-1β production suggesting
that, under these conditions, IL-4 could activate the NLR
inflammasome (Cao et al., 2007).

Modifications of the innate immune response
The innate immune system is shaped and conditioned to
subsequent responses for days or months following activa-
tion or immunological signals (Netea et al., 2011;
Kleinnijenhuis et al., 2012). This has been associated with
increased non-specific resistance to infectious agents follow-
ing exposure to microbial agents. An augmented innate
immune response occurring upon a secondary infection or
challenge has been termed ‘trained innate immunity’ (Netea
et al., 2011) and a lymphocyte-independent shaping of

innate immunity has been termed ‘memory’ (Kurtz and
Franz, 2003; Kleinnijenhuis et al., 2012). Such a memory can
occur in macrophages previously exposed to IFN-γ with an
elevated response to LPS (Nathan et al., 1984; Bosisio et al.,
2002), potentially for a protective inflammatory response
(Netea, 2013; Quintin et al., 2014). In contrast, precondition-
ing can occur with the development of endotoxin tolerance
or hypo-responsiveness to a subsequent challenge as a
defence strategy to limit damage (Medzhitov et al., 2012).
One could consider that stimuli encountered by microglia on
a regular basis may serve to provide a pool of memory-like
cells enhancing performance upon a subsequent challenge.
LPS-induced tolerant macrophages express a transcriptional
profile similar to M2 polarization with Il10, Arg1, Ccl17 and
Ccl22 rather than a diminished M1 response, suggestive of a
reorientation of function (Biswas and Lopez-Collazo, 2009;
Porta et al., 2009). While inhibition of mitochondrial func-
tion can be influenced by LPS stimulation, the reverse also
occurs in that mitochondrial inhibition can influence the
level of stimulation induced by LPS (Park et al., 2013). Ques-
tions remain as to whether microglia resume a normal func-
tional phenotype once activated. If they conserve a memory
of past inflammatory activation, do they shift response to a
new challenge or react as naïve cells? Earlier work suggested

Figure 3
Schematic representation of LPS-induced BV-2 polarization. Activation of TLRs by LPS provokes dramatic changes in the metabolism of microglia,
inducing a glycolytic switch that decreases mitochondrial O2 consumption and increases extracellular acidification via production of lactate. As
observed in other immune cells (Everts et al., 2014), the data suggest that activation of microglia goes through two metabolic steps. In the first
step, immediately after LPS stimulation, glycolytic metabolism is enhanced independently of NO production, increasing intracellular glucose (Glc)
via glucose transporter (GLUT)-1 and GLUT-4 and production of several glycolytic enzymes. The PPP is induced via expression of its rate-limiting
enzyme, 6-phosphogluconate dehydrogenase (G6PD). The electron transport chain (ETC) remains functional and the cells rely on oxidative
phosphorylation and glycolysis for energy production. While LPS provokes a rapid glycolytic burst in microglia, there is little evidence of increased
oxidative phosphorylation for synthesis of new molecules, as observed in DCs (Everts et al., 2014). In the second stage, NADPH, generated
through the PPP, is used to produce ROS. H2O2 is then used as a bactericidal and also as a second messenger to modulate NF-κB. In the presence
of NADPH, iNOS oxidation of L-arginine (L-ARG) produces NO to inhibit Cytochrome c. In addition, HIF-1α inhibits pyruvate dehydrogenase
(PDH) and thus, the conversion of pyruvate into acetyl CoA, forcing a sole reliance on glycolysis for cell survival. As a consequence, mitochondrial
dysfunction provokes the generation of additional mitochondrial ROS that are transported to the cytoplasm activating NF-κB to exacerbate the
pro-inflammatory response. Abbreviations: 1,3-BFG, 1,3-biphosphoglycerate; ETC, electronic transport chain; FAO, fatty-acid oxidation; F6P,
fructose-6-phosphate; F-1,6P, fructose-1,6-biphosphate; G6P, glucose-6-phosphate; NADP+, oxidized form of NADPH; OXPHOS, oxidative
phosphorylation; PF1K, phosphofructose-1-kinase; R5P, ribose-5-phosphate; SOD3, superoxide dismutase 3.
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that oxidative metabolism primed macrophages for a less-
inflammatory mode of activation (Vats et al., 2006). Thus,
how this relates to mitochondrial functioning and shifts in
metabolism with polarization warrants further examination.

Disruption of mitochondrial function is linked to a range
of cellular effects in the nuclear genome including loss of
heterozygosity, chromosome instability and epigenetic modi-
fications (Veatch et al., 2009; Seoane et al., 2011). Thus, such
shifts in the microglial activation state could lead to a broader
cascade of effects as they relate to cell function over the
lifespan. Warburg (1956) initially suggested that respiratory
insufficiency was irreversible. However, the absence of cell
death with microglia M1 polarization and down-regulation to
a quiescent phenotype with return to homeostasis suggests
that microglia survive respiratory insufficiency. As an
example, 2-deoxy-glucose (2-DG), a glucose analogue that
blocks glycolysis by inhibiting HK activity, is capable of
blunting TNF-α and IL-6 production by inhibiting NF-κB
signalling in primary microglia (Wang et al., 2014). However,
inhibition of the glycolytic metabolism in M1 microglia,
during which the cell relies solely on glycolysis for survival,
could prove fatal. For example, Lyons and Kettenmann
(1998) reported that the substitution of glucose by 2-DG
under hypoxic conditions was lethal to 90% of cultured
microglia. In a more recent study, Vilalta and Brown (2014)
reported that 2-DG killed microglia when co-cultured with
neurons. Rather than directly inhibiting the glycolytic
metabolism, an alternative approach would involve prevent-
ing the metabolic switch or in enhancing oxidative metabo-
lism. Something similar has been observed in DCs with the
anti-inflammatory cytokine, IL-10 (Krawczyk et al., 2010) and
may be translated to microglia. A better understanding of the
inflammatory-associated metabolic state and changes that
occur with a polarization shift should help identify appropri-
ate targets for modulating and regulating actions of
microglia.

Future directions

Translation to chronic conditions
The current review focuses primarily on cellular responses
initiated upon acute or short-interval exposures. It is from
such models that experimental data support an association
between the activation state and cellular bioenergetics. These
events are likely to reflect those that occur in brain or spinal
cord injury with traumatic events or stroke. However, gaining
a better understanding of the acute response capability of
microglia may become critical for understanding associations
with neurodegenerative diseases. This will require a better
understanding of the complex nature and heterogeneity of
cellular responses as they occur within more chronic condi-
tions. The association of neuroinflammation and activation
state with various neurodegenerative diseases including Alz-
heimer’s disease (Varnum and Ikezu, 2012; Tang and Le,
2015), Parkinson’s disease (Blandini, 2013; Kannarkat et al.,
2013; Moehle and West, 2014), Huntington disease
(Ellrichmann et al., 2013; Crotti et al., 2014), amyotrophic
lateral sclerosis (Evans et al., 2013; Zhao et al., 2013; Hooten
et al., 2015), prion disease (Gómez-Nicola et al., 2014)

and multiple sclerosis (Goldmann and Prinz, 2013;
Strachan-Whaley et al., 2014) suggests a contribution to
disease progression (Boche et al., 2013). Whether the contri-
bution of microglia actions in progressive neurodegenerative
diseases is associated with an elevation in the M1 pro-
inflammatory phenotype or a diminished ability of the cells
to differentiate into an M2-type phenotype remains an
issue under current study. Given the diverse pathological
patterns of each of these diseases, questions remain as to
whether the contribution of microglia and the associated
inflammatory response follows a general pattern or a level
of specificity as may be influenced by the environmental
niche. In addition, it is not clear if responses of individual
microglia within such disease states may follow an acute
response pattern or a prolonged cellular shift. In human
patients, data are limited with regards establishing a temporal
progression of cellular changes and inflammatory responses.
Restrictions also exist in the various animal models of specific
aspects of human neurodegenerative diseases with regards to
examination of the temporal aspect of associations with clas-
sical pro-inflammatory activation and alternative or repair
associated phenotypes. In addition, within such disease-
oriented conditions there exists the potential confounding
factor of a perivascular macrophage or infiltrating blood-
borne immune cell contribution occurring with tissue degen-
eration (Mildner et al., 2011; Funk et al., 2013). This then
brings an entirely different dynamics to the environment as
compared with a response limited to resident microglia (Jung
and Schwartz, 2012; Yamasaki et al., 2014). Hypotheses have
been put forward that (i) under chronic degenerative condi-
tions, microglia maintain a high pro-inflammatory state
leading to an enhanced and prolonged generation of low MW
mediators such as NO, ONOO−, and ROS, and (ii) that pro-
inflammatory molecules impair the ability of microglia to
clear excess or aberrant proteins, which could then extend
the stimulating environment. How either of these two situa-
tions would result in an alteration of the bioenergetics of
microglia has yet to be examined; however, it is likely that the
ability of microglia to shift their bioenergetic profile will
significantly influence the final outcome (Urrutia et al.,
2014).

Classification for microglia phenotyping
The initial concept of individual macrophages having either
a M1 or M2 phenotype has effectively set a framework for
experimental examination of inflammation (Figure 4). Cur-
rently available data demonstrate a more complex phenotyp-
ing, especially in vivo with influence of various cell types
comprising the inflammatory niche.

A transcriptomic analysis of macrophages following dis-
crete stimulation show activation pathways outside the
standard M1/M2 polarization paradigm (Hume and Freeman,
2014) recommending the use of a combination of markers
rather than isolated canonical markers of any specific activa-
tion state. It is becoming clear that any effort to determine
whether or not macrophages exist within distinct activation
or polarized states cannot rely on only one or two ‘markers’,
but rather will require the examination of several markers
including the mitochondrial bioenergetics of the cell. Further
proposals for advancing our understanding of macrophage
states and the heterogeneity of cellular responses include
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recommendations for the use of nomenclature linked to the
activation standards rather than an M1/M2 classification
(Murray et al., 2014). To translate these recommendation to
microglia, efforts towards characterization would include
assessments of morphological phenotype, discrimination
between resident and infiltrating macrophages, metabolism,
and where possible, functional features of the cells. Gaining a
better understanding of the link between mitochondrial
function and inflammation will support any future efforts to
develop therapeutic approaches to support the normal and
well-regulated function of these dynamic cells.
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of CD206 and the release of IL-10, TGF-β, FIZZ1 and PPARγ.
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