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Abstract

Learning new words is difficult. In any naming situation, there are multiple possible 

interpretations of a novel word. Recent approaches suggest that learners may solve this problem 

by tracking co-occurrence statistics between words and referents across multiple naming situations 

(e.g. Yu & Smith, 2007), overcoming the ambiguity in any one situation. Yet, there remains 

debate around the underlying mechanisms. We conducted two experiments in which learners 

acquired eight word-object mappings using cross-situational statistics while eye-movements were 

tracked. These addressed four unresolved questions regarding the learning mechanism. First, eye-

movements during learning showed evidence that listeners maintain multiple hypotheses for a 

given word and bring them all to bear in the moment of naming. Second, trial-by-trial analyses of 

accuracy suggested that listeners accumulate continuous statistics about word/object mappings, 

over and above prior hypotheses they have about a word. Third, consistent, probabilistic context 

can impede learning, as false associations between words and highly co-occurring referents are 

formed. Finally, a number of factors not previously considered in prior analysis impact 

observational word learning: knowledge of the foils, spatial consistency of the target object, and 

the number of trials between presentations of the same word. This evidence suggests that 

observational word learning may derive from a combination of gradual statistical or associative 

learning mechanisms and more rapid real-time processes such as competition, mutual exclusivity 

and even inference or hypothesis testing.
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1.1 Observational learning and referential ambiguity

Early in language acquisition, children are often assumed to learn the mapping between 

words and objects largely from observation (Gleitman, 1990) without reliable feedback. 

However, a fundamental problem for observational learning is referential ambiguity (Quine, 

1960): in any naming event, there is a vast array of possible interpretations for a novel word. 

Consequently, learners may require strategies or biases to cope with this ambiguity 

(Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Markman, 1990). Recently, Yu and 

Smith (2007; see also Siskind, 1996) argued the problem of referential ambiguity may in 

part be an artificial consequence of restricting the analysis of word learning to one encounter 

with a word. Across multiple situations, there may be sufficient statistical information to 

support learning. For example, many words (e.g., objects) are more likely to co-occur with 

their referents than with other objects.

Yu and Smith (2007) tested this in adults (and later in infants, Smith & Yu, 2008): On each 

trial, participants saw a number of novel objects and heard novel names for each of them, 

creating considerable ambiguity. Across multiple trials, a word and its referent always co-

occurred while its co-occurrence with other objects was lower. After a short training, 

participants showed above-change accuracy for selecting the words’ referents, suggesting 

statistics were sufficient to support learning. This raises the possibility that learners have 

powerful mechanisms for inferring the words’ meanings across multiple situations, even if 

any given situation is ambiguous.

1.2 How do people learn words in the cross-situational paradigm?

There has since been a large number of experiments examining how mostly adults learn 

words in observational paradigms (Medina, Snedeker, Trueswell, & Gleitman, 2011; 

Trueswell et al., 2013; Vouloumanos, 2008; Yurovsky, Yu, & Smith, 2013). This has led to 

a debate over the mechanism underlying such learning.

Originally, Yu and Smith (2007, 2012) described cross-situational learning as a process of 

tracking co-occurrence statistics between words and objects across many situations. This is a 

form of statistical or associative learning in which the word-object pairs with the highest co-

occurrence are the correct mapping. However, more recent accounts suggest people could 

harness cross-situational information using propositional logic (Medina et al., 2011; 

Trueswell et al., 2013): The most prominent theory of this sort is “propose-but-verify”, in 

which learners form a single explicit hypothesis after encountering a novel word, which is 

carried forward unless disconfirmed by later encounters.

Others have proposed hybrid accounts: For example, there are memory-based accounts in 

which such inferences are made over stored episodes of situations in long-term memory 

(Dautriche & Chemla, 2014). Bayesian accounts take a hypothesis-testing approach, but 

evaluate multiple probabilistic hypotheses simultaneously to find the most likely mapping 

given the data (Frank, Goodman, & Tenenbaum, 2009). Finally, McMurray, Horst and 

Samuelson (2012) propose that gradual associative learning may be buttressed with real-

time decision making to account for both cross-situational learning and other developmental 

phenomena. These real-time processes may allow the system to engage in more inferential 
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processes in the moment (e.g., mutual exclusivity), while long-term statistics are tracked via 

associations.

These theories are still developing with newer iterations of purely statistical accounts (Yu & 

Smith, 2012), propose-but-verify (Koehne, Trueswell, & Gleitman, 2014) and the dynamic 

associative account (McMurray, Zhao, Kucker, & Samuelson, 2013). While these theories 

may exhibit stark differences in their core commitments (e.g., whether learning is 

propositional or associative), they appear flexible in how these commitments get 

implemented. Consequently, it may be premature to experimentally disentangle them.

However, there are crucial open questions about the basic properties of observational 

learning, which may constrain how these theories are developed. Thus, we identified four 

such questions that have played (or may play) a crucial role in these debates and critically 

evaluated them across two experiments. These questions include the issues of 1) whether 

participants maintain multiple hypotheses for a given word1; 2) whether information is 

gradually accumulated; 3) the role of context, and 4) other factors that may shape learning.

1.2.1 Do learners maintain multiple hypotheses about the meaning of a word?

The first question is how many hypotheses learners maintain for a given word. For example, 

in a dinner table event, when fork is heard for the first time, do learners form a single 

hypothesis for fork (positing that it refers to either the fork or the spoon), or do they note 

that this word co-occurred with both objects (but not with a car or boat)? In an associative 

account, learners track the co-occurrence of multiple objects with a word (e.g. Yu & Smith, 

2007), relying on the accumulation of data to resolve any ambiguity. At the dinner table, for 

example, the learner will eventually encounter the word fork without a spoon, pushing its 

statistical co-occurrence with fork above that with spoon. Consequently, learners must 

maintain multiple hypotheses with different degrees of strength. In contrast, early versions 

of propose-but-verify suggested learners posit a single hypothesis about a word, which can 

be updated on future encounters. However, more recent propositional accounts also admit 

multiple hypotheses: For example, learners may recall previously considered hypotheses in 

the face of memory failure or disconfirming evidence (e.g. Koehne, Trueswell, & Gleitman, 

2014).

As an empirical issue, whether learners track one or many hypotheses remains unresolved. 

This is largely because most studies address this issue indirectly using trial-by-trial 

autocorrelation analyses. Such analyses infer what a learner may have learned about a word 

from previous trials’ accuracy, and measure how it predicts performance on subsequent 

encounters (Trueswell et al., 2013): In propositional accounts, if learners previously selected 

the correct object, they must have arrived at the right hypothesis and should continue to 

select the correct object on present trials. However, if they were incorrect on a previous trial, 

they likely had the wrong hypothesis, and should now be at chance. In contrast, in statistical 

accounts, even on an incorrect trial, they accumulate more “data” and could show a benefit 

on subsequent trials. Autocorrelation analyses conducted by Trueswell et al. (2013) 

1We here use the term hypothesis here to refer to any knowledge structure mapping a word to potential referents, including both 
abstract knowledge and associative links.
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supported a single-hypothesis account, and even an analysis of participants’ eye-movements 

(a potentially more sensitive measure) showed little evidence for any learning after an 

incorrect trial.

Dautriche and Chemla (2014) pointed out that prior incorrect trials may function differently 

depending on the information on the current trial: If the prior incorrect selection is present, 

people may continue to select it and be below chance. Trueswell et al.'s (2013) choice of 

four foils made it likely that prior selections were repeated, leading them to potentially 

underestimate what people were learning from incorrect trials. Dautriche and Chemla (2014) 

decreased the number of foils, and found that people were now above chance in selecting the 

correct referent even after an incorrect previous encounter.

This offers tentative evidence that learners track multiple hypotheses for a given word. 

However, these experiments have several shortcomings: First, as Dautriche and Chemla 

(2014) point out, indirectly inferring what people might know on a previous trial from their 

overt response(s) oversimplifies the complex mapping between prior and present trials. 

Moreover, these analyses assume that prior accuracy is a robust (and uniform) index of 

knowledge. However, early in training a correct response may be due to chance, and 

response accuracy is therefore confounded by a trial’s position in the learning curve. Thus, 

the trial-by-trial analyses of Trueswell et al. (2013) and Dautriche and Chemla (2014) may 

not be sufficient to evaluate the claim of multiple hypotheses.

Moreover, this approach fails to address a second important question. If listeners are 

retaining multiple hypotheses, what do they do with them? Prior studies focus on whether 

multiple hypotheses are retained, but they do not address whether these hypotheses are also 

simultaneously activated in the moment when a novel word is processed.

What is needed is a more direct measure that addresses what listeners bring to bear in the 

moment: On a single trial, are multiple objects under active consideration as referents for a 

word? The present study achieves this by examining eye-movements to potential referents 

relative to the participant’s response. If the participant clicks on the correct referent but 

simultaneously fixates a second referent (more than some baseline), this offers strong 

evidence that multiple hypotheses are not only tracked, but influence behavior 

simultaneously.

1.2.2 What do learners carry forward from prior encounters with a word?

A related issue is whether listeners gradually accumulate information across trials. For 

example, after a third and fourth encounter with fork, do listeners have stronger associations 

or more confidence than after the first (even if all encounters favored the correct 

interpretation)? If so, learners may even accumulate evidence from ambiguous encounters 

(e.g., the fork/ spoon example).

Evidence for this comes from Yurovsky, Fricker, Yu and Smith (2014), in which adults first 

learned a small set of words. Then, words that were still at chance received additional 

training in a second phase along with new words. This initial exposure, even though it 

seemed to yield no measurable learning for the original words, improved learning in the 
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second phase for all words. This suggests that learners must have acquired some partial 

knowledge about the original words during the first phase despite at-chance performance.

This contrast with Trueswell et al.'s (2013) autocorrelation analyses showing that if learners 

were incorrect on a prior encounter with a word they were at chance on subsequent trials 

(though see Dautriche and Chemla, 2014). However, this style of analysis focuses largely on 

a single type of information that could be retained - the prior responses to a word (and by 

inference, hypotheses). .

The converse of this question - whether listeners gradually accumulate statistics about words 

and objects - has not been properly examined for two reasons. First, the training paradigms 

themselves were very short (e.g. five repetitions of each word in Trueswell et al., 2013). 

Statistical and associative accounts are most likely to be accurate when the contribution of 

any given trial is small (to avoid over-committing to an erroneous prediction). Consequently 

under these theories, any single trial’s contribution could be small, and a few repetitions 

may be sufficient to see these effects.

Second, many of these studies did not include analyses that tested for gradual learning. 

There is a statistical confound with the most versions of the autocorrelation analyses: Trials 

in which participants were incorrect most likely came from early portions of training , while 

correct trials were most likely later in training. Thus, a comparison of accuracy as a function 

of last-encounter performance would be heavily confounded with position in the learning 

curve. Again, this makes it very difficult to see any effects of gradual learning.

The solution is to simultaneously examine the effect of last-encounter performance and the 

effect of the number of prior exposures to the word (the contribution of gradual learning) 

(c.f. Wasserman, Brooks, & McMurray, 2015). This latter factor serves as a covariate to 

account for where the participant is in the learning curve, and simultaneously offers a 

statistical test of the gradual learning. The only example of such an analysis we are aware of 

is Experiment 3 of Trueswell et al. (2013) which found no effect of the number of 

encounters with a word (though there was an interaction with last-encounter performance). 

But, as noted earlier, five trials may not be sufficient to observe gradual learning effects. By 

coupling a positive statistical test of gradual learning with a longer training period, we may 

find clearer evidence for the influence of the gradual accumulation of statistics on single 

trial accuracy.

Our goal here was to evaluate whether the amount of exposure predicts accuracy, over and 

above prior-trial performance (while simultaneously accounting for the statistical confound 

in the influence of prior trial accuracy). Thus, we replicated Trueswell et al.'s (2013) 

analyses adding the number of trials as a factor.

1.2.3 How does context influence observational word learning?

An additional factor of recent interest is context. Many words appear in consistent contexts 

(the kitchen, a farm, etc.), and while context does not tell the listener what object a word 

refers to, it can have complex effects on learning: For example, if the learner knows that fork 

is a kitchen word, he or she can rule out referents that do not fall into that category (e.g., a 
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dog), even if they do not precisely know which of the remaining ones is a fork. Under a 

statistical account, however, context may also impede learning by raising the likelihood of 

spurious correlations. The fact that forks and spoons frequently appear together, for instance, 

means that the word fork may be linked to both objects.

Dautriche and Chemla (2014) manipulated contextual consistency by presenting a set of 

word-referent pairs as a consistent context in the first block of trials. For example, trials 1-4 

may have included the objects dog, cat, rabbit, cow, with each one the target on a trial. This 

established a set (all four are animals) that then served as context. This contextual 

manipulation improved learning on subsequent blocks when words were presented “out of 

context” (with other competitors). Later experiments made the grouping of the objects into 

contexts completely arbitrary, with similar results. This suggests context serves as a memory 

cue for ruling out competing hypotheses in the moment. Moreover, this appears to challenge 

associative or statistical account.

However, Dautriche and Chemla’s (2014) context manipulation creates potential benefits for 

context without the statistical costs. Context only occurred on one block of trials with the 

same four competitors. Subsequent presentations of a word had random foils, meaning that 

context was very salient and did not create spurious correlations that could have hurt 

learning. It is unclear how behavior would be affected if contextual consistency was 

manipulated across the whole experiment in a more natural, probabilistic manner. Thus, it is 

possible that context serves as both a source of information that can be used in real-time to 

eliminate competitors, even as it simultaneously exerts a cost on learning. Our third goal 

therefore was to investigate the potential associative costs that come with context. This was 

done by comparing learning if highly co-occurring competing objects were present 

throughout learning or not.

1.2.4 Do other factors from prior encounters with a word play a role in performance?

Finally, the autocorrelation analysis used until now focused on factors that directly 

propositional inference and/ or associative learning: whether the learner knew the word on 

the previous trial and the number of encounters. However, there may be considerably more 

information on a given encounter that learners could use and could reveal aspects of the 

mechanism. For example, in the kitchen example above, the spatial arrangement of the fork 

and spoon could match the current encounter or differ. Would such information matter for 

learning?

This was examined in an animal learning study by Wasserman et al. (2015). They taught 

pigeons to map 16 different categories onto 16 unique responses (in a problem analogous to 

word learning using an operant learning paradigm. They conducted detailed auto-correlation 

analyses showed both the same effect of last-trial accuracy as Trueswell et al. (2013), and 

unambiguous evidence for gradual learning. However, they also included a number of other 

factors not considered by prior work in their autocorrelation analyses: This included the 

spatial location of the target response (and foils) on the last encounter, how many trials 

lapsed between repetitions of a category, and learner’s knowledge of the foils. All of these 

played a role in pigeon learning.
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Given the similarities they report between pigeons’ learning and human word learning (as 

well as the obvious differences), our fourth goal here is to investigate these issues, by 

examining a range of other factors in our autocorrelation analysis. Such findings may unify 

cross-situational learning with other forms of learning and memory. For example, well 

established effects of spacing of training trials (e.g. Ebbinghaus, 1992; Pavlik Jr & 

Anderson, 2005; Smith, Smith, & Blythe, 2011), predict that the number of trials between 

successive presentations of the target impact learning. Similarly, recent studies indicate that 

children’s word representations are initially bound in space (e.g. Samuelson, Smith, Perry, & 

Spencer, 2011), suggesting the consistency of the spatial arrangement may matter. 

Identifying such factors at work in cross-situational learning may thus show how this 

paradigm maps onto broader ideas in learning and development.

1.3 The present study

The present study addresses these four questions across two experiments. Experiment 1 

primarily asks whether people maintain multiple hypotheses and activate them in a given 

moment during learning (Question 1). Learners were exposed to a set of word-object 

mappings in which each word had two additional objects that serve as highly co-occurring 

foils (though they were the named target on other trials). We used a variant of the visual 

world paradigm (VWP) (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995) during 

cross-situational learning to measure simultaneous activation of multiple hypotheses. Our 

logic was that if participants click on one object but simultaneously fixate another object on 

the same trial, this offers strong evidence that both hypotheses were not only retained (as 

suggested by Dautriche and Chemla, 2014), but also simultaneously activated in the moment 

as potential referents. Such an analysis was not possible in prior eye-tracking designs (e.g., 

Trueswell et al., 2013) which did not manipulate co-occurrence, nor condition eye-

movement analyses on the response. It is important to note that generally in the VWP, looks 

to competitors are driven by auditory ambiguity (e.g., words that overlap phonologically) or 

semantic similarity. However, neither of these factors is present here, and we are filtering 

trials to only analyze those in which the correct object was chosen. Thus, we expected to see 

very small differences in looking between the high-co-occurrence competitors and the 

control foils.

We addressed the second question (concerning gradual learning) by replicating the 

Trueswell et al. (2013) analyses, and then looking for an effect of gradual learning above 

and beyond that. This analysis was carried out both for Experiment 1 and 2.

Comparing Experiment 1 and 2 addresses the third question, the issue of whether context 

can impede learning. In Experiment 2, foil co-occurrence was completely random. Here, the 

high-co-occurrence competitors of Experiment 1 could have either served as a contextual 

cue and speeded learning (as in Dautriche and Chemla, 2014) or created statistical 

uncertainty and slowed it. However, unlike Dautriche and Chemla (2014), this co-

occurrence was repeated throughout the experiment to potentially magnify any interfering 

effects. By comparing the Experiments, we address the possibility that consistent context 

may also interfere with slower statistical learning process.
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Finally, the fourth question — what information is carried forward across trials — is 

addressed by conducting an autocorrelation analysis on the combined data from Experiments 

1 and 2. We consider a range of additional exploratory factors highlighted by Wasserman et 

al. (2015).like the distance between presentations of a word, spatial layout and foil 

knowledge.

In both experiments, the learning paradigm was similar to other cross-situational 

experiments with three objects presented on each trial, one of which was named. As in 

Trueswell et al. (2013), participants made an overt response on each trial (and they received 

no feedback). As described, this was crucial for both the fixation and trial-by-trial analyses. 

Unlike prior studies supporting propositional or memory-based accounts of learning, words 

were mapped to novel objects, rather than photographs of known objects to disencourage a 

paired-associative-process (linking novel names to existing names).

One of the most important differences between our experiments and previous studies is that 

we included significantly more trials (60 encounters with each word). This was motivated by 

one of our questions: the contribution of the gradual accumulation of information. In 

unsupervised statistical learning paradigms, the changes from trial to trial are likely to be 

very small. Hence, we were concerned that with only a few repetitions, the effect of number 

of exposures would be too difficult to observe. Moreover, a longer experiment was also 

necessary for our eye movement design: As we wanted to look at correct trials for evidence 

of activation of alternative hypotheses, learners needed to show very high levels of accuracy 

for a substantial proportion of the experiment. This is also why we only included eight 

words to be learned. Finally, the higher number of trials also gave us more power to carry 

out the extended autocorrelation analyses we used to examine our fourth question.

We acknowledge that this highly repetitive and simplified learning paradigm may be 

unrepresentative of everyday word learning, which likely features more ambiguity, more 

items and more variability. However, these decisions were based on theoretical and 

methodological considerations. In that regard, most cross-situational word learning studies 

(or word learning studies in general) make similarly reductionist assumptions, though 

perhaps in different ways (use of a small number of trials, mapping words to already known 

objects, e.g. Trueswell et al., 2013; Yu & Smith, 2007). Given these sorts of simplifications, 

we do not claim that these types of experiments capture the phenomenon of word learning as 

a whole; rather, they isolate and distill critical learning mechanisms that were not possible to 

investigate in previous experiments and that are likely involved in various forms of 

observational word learning.

2. Experiment 1

2.1 Method

2.1.1 Participants—Thirty-two native English speakers took part in this experiment. 

Participants were students at the University of Iowa. Thirty received course credit as 

compensation, two received gift cards worth $15. Participants underwent informed consent 

in accord with an IRB approved protocol.
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2.1.2 Design and materials—Participants learned eight word-referent pairs over 

approximately 40 minutes. Referents were novel objects, presented on a black background 

(Figure 1 for examples). Words were two-syllable, CVCV pseudo words, which were 

phonologically legal words in English. There was no phonological overlap among any words 

at onset (Table 1). The specific mapping between each word and its referent was randomized 

for each subject at the beginning of the experiment.

During training trials, each word was strongly correlated with a single target referent (co-

occurring on 100% of trials). To build “spurious” associations between the word and 

incorrect competitor referents, high and low co-occurrence competitors were also included. 

The high co-occurrence (HC) competitor was 60% likely to be seen with the target word; the 

low co-occurrence (LC) competitor was 40% likely to co-occur with the target word (see 

Table 2). HC and LC competitors were neither phonologically nor visually related to the 

target word/object pairs. All of the other five objects were randomly selected from trial-to-

trial with a co-occurrence rate of approximately 20%. All words and objects were equally 

likely to appear throughout the experiment. The random objects (ROs) for each trial were 

chosen without replacement to avoid spuriously increasing the co-occurrence of an RO with 

a word.

Each trial included three objects and a single target word. To manipulate the co-occurrence 

of targets and competitors, we controlled frequency of four trial-types, defined by which 

competitors were on the screen (Table 3) relative to the target word. In HCLC trials, the 

target referent, the high co-occurrence competitor and the low co-occurrence competitor 

were present. In HC trials, the target referent, the high co-occurrence competitor and a 

randomly chosen object were included. In LC trials, the target referent, the low co-

occurrence competitor and a randomly chosen object were present. In RO trials, the target 

referent was accompanied by two randomly chosen objects. The number of trials of each 

type was manipulated to obtain the desired co-occurrence frequencies (Table 3).

Participants responded at the end of each trial by clicking on the object that they thought 

mapped onto the word they heard. There was not a separate testing phase at the end of 

training. The experiment was separated into four blocks of 120 trials (resulting in an overall 

number of 480 trials). Trial-types were randomized within one block; the interval between 

learning instances for one word was thus completely random within block. Each block 

consisted of 16 HCLC trials, 56 HC trials, 32 LC trials, and 16 RO trials.

2.1.3 Procedure—Participants were told that their task was to discover which object goes 

with what word, and that on each trial, they were to indicate their best guess by clicking on 

that picture. Participants were also told that while we expected them to guess at the 

beginning, their response should become more informed over time.

At the start of each trial, three pictures were presented on a 19” monitor operating at 1280 × 

1024 resolution. Simultaneously, a small blue circle appeared at the center of the screen. 

Participants were given 1050 msec to inspect the objects. Afterwards, the circle turned red, 

cueing the participant to click on it to cue the auditory stimulus. When the participant 

clicked on it, the red circle disappeared and the target word was played via headphones. 
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Participants then clicked on the picture corresponding to the word, and the trial ended. Trials 

were not time-limited and participants were told to take their time and perform accurately.

Pilot results suggested that participants made fewer eye-movements over the course of the 

experiment as they learned to identify the objects, and as they learned the exact positions the 

objects could be in. To minimize this reduction in fixations, objects were presented in a 

triangle configuration, and the orientation of this triangle was randomly selected on each 

trial (either two objects on top or one object on top). The location of each object was 

randomized across the three possible locations of a given triangle on each trial.

2.1.4 Eye-tracking Recording and Analysis—Eye-movements were recorded 

throughout the experiment using an SR Research Eyelink II head-mounted eye-tracker 

operating at 250 Hz. Both corneal reflection and pupil were used to obtain point of gaze 

whenever possible, though for some participants only good pupil readings could be 

obtained. At the start of the experiment, participants were calibrated with the standard 9-

point display. The Eyelink II compensates for head-movements using infra-red light emitters 

on the edge of the computer screen and a camera on the head to track head position. This 

yields a real-time record of gaze in screen coordinates. The resulting fixation record was 

automatically parsed into saccades and fixations using the default “psychophysical” 

parameter set. We then combined adjacent saccades and fixations into a single “look” which 

started at the onset of the saccade and ended at the offset of the fixation as in prior studies 

(McMurray, Aslin, Tanenhaus, Spivey, & Subik, 2008; McMurray, Samelson, Lee, & 

Tomblin, 2010). To account for noise and/ or head-drift in the eye-track record, the 

boundaries of the ports containing the objects were extended by 100 pixels when computing 

the point of gaze. No overlap between the objects resulted from this.

2.2 Results: Overview

For Experiment 1, we first looked at overall accuracy and how performance differed across 

different trial-types to partially address Question 1 (multiple hypotheses). We then turn to 

the eye movements using both the standard statistical paradigm as well as a ratio measure to 

avoid common statistical issues when analyzing eye movements in the VWP. Finally, we 

replicate Trueswell et al.’s (2013) autocorrelation analyzes in our final part of the results’ 

section (Question 2: gradual learning).

Three participants were excluded from all analyses, as their learning plateaued at 45% 

correct (chance = 33.33%), with no improvement in performance over time. This left 29 

participants for analysis2.

Data were analyzed separately within each trial-type for the eye movement analyses. The 

analyses we report here focus on the two most important trial-types, those involving the HC 

competitor (the HC and HCLC trials). This is because the HC trials are experimentally the 

most important condition, as there is the largest difference in co-occurrence between the 

2Their accuracy was more than 2SD below the mean in block 4. Furthermore, the data of these participants showed high levels of 
looks to the target before the auditory file was played, indicating that participants’ selection of the target was due to chance (and not 
driven by what word they heard). The overall small number of correct trials as well as these early looks reinforced us to not include 
them in the analysis. Additionally, one participant decided to stop the experiment during block 3; these data were retained.
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spuriously associated object and the random object. Moreover, as such trials made up almost 

half of the experiment (a natural consequence of the co-occurrence manipulation) they had 

the greatest power to reveal any effects. We also ran an extensive set of analyses for the LC 

and RO trials which are presented in supporting online material and generally showed no 

differences (see supplement).

2.2.1 Accuracy—Figure 2 shows the accuracy of the 29 participants’ overt responses 

(across the four trial-types). Participants’ accuracy was well above chance in each block of 

the experiment, and 79% of the participants performed above 90% correct by block 3. 

Overall, accuracy between the different trial-types did not differ substantially (HCLC = 

83.35%; HC = 84.67%; LC = 86.66%; RO = 85.51%). Participants’ reaction time (RT) 

decreased over blocks (overall average RT = 1480.74 msec).

Figure 3 shows the distribution of responses (both correct responses and the distribution of 

errors) for the HC and HCLC trials. In the HC trials (Panel A), even though participants 

were highly accurate (the large light gray region), when they make an error, they were more 

likely to select the high co-occurrence competitor (dark grey) than a randomly chosen object 

(black), suggesting sensitivity to the co-occurrence manipulation. A similar pattern was 

observed in the HCLC trials (Panel B). In summary, participants learned the word-object 

mappings successfully and there are hints in their pattern of overt responses (and errors) that 

participants were sensitive to the co-occurrence manipulation.

We next turn to the primary analysis addressing Question 1 (maintenance of multiple 

hypotheses): We examined the fixation record to determine if there is evidence that 

participants are activating two hypothesized referents for a given word on the same trial. 

Next, we report a focused autocorrelation analysis designed to replicate the analysis of 

Trueswell et al. (2013) to determine whether prior choice and number of encounters 

influence trial-by-trial behavior (Question 2).

2.3 Analysis of Fixations

Figure 4A shows the typical time course of fixations on the HC trials: after a brief period of 

initial uncertainty, participants’ looks rapidly converge on the target. More importantly, 

when we consider looks to the competitors, participants are more likely to look at the HC 

competitor than the RO. However, this figure combines trials with different responses, 

potentially conflating different kind of eye-movements. Some of the increased looking to the 

HC competitor is likely due to trials in which participants clicked on that competitor (and 

hence would have fixated it heavily). Thus, we restricted our analysis of the eye movements 

to only trials in which participants clicked on the correct object. This is extremely 

conservative for two reasons. First, eye-movements reflect motor planning as well as 

activation dynamics (Salverda, Brown, & Tanenhaus, 2011), and we have restricted 

ourselves to trials in which this motor plan reflects the correct referent; this should 

significantly inflate target looking. Second, and perhaps more importantly, this eliminates 

the trials with the most robust evidence that the HC competitor was under consideration; as a 

result the absolute magnitude of the effect will be quite small. However, if participants are 

still fixating that object more than chance even as they click the target, it offers the strongest 
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evidence that multiple hypotheses were not only maintained but that both referents were 

under consideration at least partially on the same trial.

Figure 4B and C show the time course of fixations after excluding these trials. They display 

just the looks to the competitor objects as a function of the two trial-types containing HC 

competitors (for correct trials only). In both the HC and HCLC trials there are somewhat 

more looks to the HC than the random object (or the LC object). In both cases, this 

difference appears largely late in the time course of processing.

2.3.1 Statistical Analysis—To examine this statistically, we conducted two mixed 

effects models examining the HC and HCLC trials separately. For each, we computed the 

average proportion of fixations to the HC competitor and to either the random object or the 

LC competitor in the time window between 250 and 2000ms (Figure 5). These were 

submitted to a linear mixed effects model using the LME4 (version 1.1-5) (Bates & 

Maechler, 2009), lmerTest (version 2.0-6) packages in R (R Development Core Team, 

2011). The independent variables included block (1-4, centered), and object-type (HC vs. 

RO or the LC, contrast coded as ±0.5). Significance for the coefficients was established 

using the reported t-statistics with degrees of freedom computed by the Satterwaithe 

approximation. Random effects included both participant and stimulus. We computed effect 

sizes (d) by doubling the t-value and dividing it by the square root of the estimated degrees 

of freedom.

Before examining the fixed effects, we compared several models that differed on how these 

two random effects were implemented to determine the most appropriate one for our data. 

We compared a series of models with random intercepts for participant and stimulus or with 

random slopes of the fixed effects on participant. With only eight items, it was difficult to 

estimate random slopes on item, and this often resulted in very high correlations between 

random slopes, suggesting the model was overfitting the data; thus only models with 

intercepts on item were considered. The model containing random slopes of block and 

object-type on participant (but not their interaction), and random intercepts on stimulus, was 

the most conservative model (following Barr, Levy, Scheepers, & Tily, 2013) that 

converged; thus, it was used for analysis.

For the HC trials, we found a significant effect of block (B = −.020, SE = .0029, t(26.8) = 

6.80, p < .001, d = 2.63). This was due to the fact that as the experiment progressed, 

participants were less likely to make eye movements at all as they got better at recognizing 

the objects and were better able to perform the task with peripheral vision (see Figure 5A). 

Crucially, there was a main effect of object-type (B = .0085, SE = .0039, t(71) = 2.17, p = .

033, d = 0.52) with more fixations to the HC than the RO. The interaction between block 

and object-type was not significant (p = .278).

For the HCLC trials, the most conservative model included object-type and block as well as 

their interaction as random slopes on participant. We found a significant effect of block (B = 

−.013, SE = .0040, t(28) = −3.19, p = .0035, d = 1.20). No significant effect of object-type 

was observed (p =.446). However, the interaction of block and object-type was marginally 

significant (B = .011, SE = .005, t(135.8) = 1.93, p = .056, d = 0.33)3, suggesting that 
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participants looked more at the HC competitor (in comparison to the LC competitor) the 

longer the experiment lasted (c.f. Figure 5). Figure 5 suggests that the interaction is largely 

driven by an effect of object in block 4 of the experiment. Thus, to examine this interaction, 

we conducted post-hoc tests in which we split the data into block 1-3 and block 4 and 

examined the effect of object-type only. On blocks 1-3, there was no effect of object-type (p 

= .917). On block 4, the effect of object-type was marginally significant (B = .021, SE = .

011, t(25.9) = 1.79, p = .086, d = 0.70), though it is worth noting its large effect size.

2.3.2 Fixation Odds-Ratios—While the analytic approach used above is fairly standard 

for the VWP, it is not ideal for two reasons. First, the data come from an underlying 

binomial distribution, and particularly when the values are near zero (or one), such data may 

not meet the assumptions of linear models. The empirical logit transformation is often 

applied to transform the proportions of interest into log-odds ratios, which scale more 

linearly. However, this ignores a second factor which is commonly overlooked in the VWP. 

Looks to the HC and to the RO are not independent of each other: If the participant is 

looking at one, they cannot be looking at the other. Conventional analyses like the one just 

presented generally compare the proportion of looks to one object to the proportion of looks 

to the other. Since these are not independent of each other, this is problematic. In this case, 

the empirical logit transformation is insufficient to solve the problem: it simply allows us to 

compare two appropriately scaled variables that are still not independent.

The solution is to collapse the two looking measures into one (e.g., a difference score of 

some sort). In order to construct such a measure, but still respect the need for a more 

Gaussian distributed variable, we developed a new transformation based on the empirical 

logit. We replaced the odds ratio (p/[1-p]) with the odds ratio of looks to the HC over looks 

to the random object (or the LC competitor; whichever object-type that served as the 

baseline on that trial-type), as shown in (1).

(1)

This can also be written in terms of the absolute number of looks as

(2)

Here, Mhc is the number of looks to the HC object, and Nhc is the number of total looks. 

Since Nhc = Nro, this term can be dropped. However, one problem is that of 0s on either the 

numerator or the denominator (a log of 0 is negative-infinity). In the empirical logit 

transformation, this is solved by adding .5 (half a success) to the numerator and denominator 

when computing the probabilities from the counts. However, doing this created highly 

skewed distributions, since eye-movements do not occur every four milliseconds. Thus, we 

added the equivalent of half of a fixation as the correction factor (C). Half a look was 

3Using the same model as the HC trials (with no random slope of the interaction), the interaction was significant (p=.044).
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calculated by taking the average fixation duration within each trial type (for correct trials 

only) and then dividing it by four (since the eye-tracker sampled at 4 msec) and two (to 

create half a look). This resulted for a correction of 45.33 for HC trials and 45.08 for HCLC 

trials. The denominator is the same with respect to the random object.

(3)

As a whole, this is the log of the odds ratio of looks to the HC over looks to the RO, with a 

positive log-odds-ratio indicating more looks to the HC object. If this ratio was found to be 

significantly above 0, this would be evidence for participants looking more often at the HC 

competitor than baseline. This eliminates the non-independence issue since the two values 

are combined into one, and creates a more linear scaling.

Figure 6 shows the mean log-odds ratio as a function of block and trial-type, and confirms 

the results from the previous analysis. This measure was above zero for both trial-types on 

the later blocks, indicating more looks to the HC competitor than the baseline items (the RO 

or LC items). Data from the two trial-types were combined and examined with a linear 

mixed effects model with block (centered) and trial-type (HCLC vs. HC, +/−0.5) as fixed 

factors and subject and item intercepts. More complex (conservative) random effects 

structures showed a very high correlation (r=−1.00) between random slopes and intercepts, 

suggesting they may be overfitting the data. This model found that the intercept was 

significant (B=.046, SE= .022, t(28.5) = 2.05, p = .049, d = 0.80), indicating that this ratio 

was above 0 (equal looking for the HC competitor and the baseline comparison). This can be 

seen as further evidence that participants looked more at the HC competitor than the random 

object or the LC objects across the whole experiment. We also observed a significant effect 

of block (B=.042, SE= .019, t(1700.6) = 2.16, p = .031, d = 0.11). However, neither trial-

type (p = .265) nor the trial-type by block interaction (p = .563) reached significance.

2.3.3 Visual Co-Occurrence—The analyses thus far suggest that learners fixate the HC 

competitors more than other objects (even as they are clicking on the target). However, one 

final concern is that this could be driven by purely visual co-occurrence (ignoring which 

object was named) since visual targets appeared with their HC competitors more frequently 

than with other objects. If participants were sensitive to co-occurrence at a purely visual 

level, they may direct eye-movements to these objects independently of the auditory 

stimulus (and these in turn could mirror the effects of mapping the name onto each object). 

To rule this out, we investigated fixations to the objects before the stimulus was heard 

(between −1000 to 0 msec, during the pre-scanning period) of the HC trials. We used raw 

proportions of fixations as the dependent variable, and included all three objects (target, HC 

and RO) in the analysis as at this point the participant should have no information as to the 

eventual target. The fixed effects included block (centered) and object-type (two dummy 

codes). As in our prior analyses, we used random slopes of block and object for participant, 

and random intercepts for items. This analysis found no significant effect of object-type4 

(F(2, 147.8) = 0.60, p = .551), no significant effect of block (F(1,28)=.18, p=.67), and no 
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interaction (F(2,2722)=.38, p = .682) for HC trials. Thus, participants were not biased to 

look at one object-type or the other as a result of the co-occurrence manipulation.

We replicated these analyses by combining raw fixations from both the pre-scanning and the 

post-stimulus periods of the trial and adding trial-period as a factor (pre- or post- stimulus, 

centered), along with block and object-type. For maximum sensitivity to the hypothesized 

HC vs. RO difference, the target object was dropped from this analysis and object-type was 

coded as HC=+.5, RO=−.5. Again, models with random slopes of all three fixed effects and 

their interactions did not converge; as we were interested primarily in the trial period × 

object-type interaction, we used random slopes of both of these factors and their interaction 

on participant (but no slopes of block). There was a main effect of trial-period with more 

fixations post-stimulus than during the pre-scanning period (B=.038, SE=.0089, t(28)=4.24, 

p=.0002, d=1.6). While there was no main effect of object-type (B = .0029, SE= .0025, 

t(181)=1.18, p=.24, d=.18), we did find a significant interaction between object-type and 

trial period (B=.011, SE=.0054, t(74)=2.04, p=.045, d=.47). Given the prior analysis on just 

the pre-scanning period, this suggests the effect of object-type was only present during the 

post-stimulus period. This finding is further evidence for our assertion that participants’ 

looks were driven by the auditory stimulus and not visual co-occurrence. (We did not 

investigate other trial types given that if such visual co-occurrence effect existed, the HC 

trials would have had most power to reveal it.)

2.3.4 Summary of Fixation Analyses—The foregoing analyses present strong evidence 

that even on the trials on which participants were selecting the correct referent, they are 

nonetheless considering the HC competitors more than chance. While this effect was 

numerically small (as expected), it was robust across two analyses and the effect size was 

moderate. We also showed that it could not be attributed to visual co-occurrence. Thus, 

learners are clearly maintaining two hypothesized referents for a given word. Our next set of 

analyses turns to Question 2, i.e. what information participants are carrying forward from 

trial to trial.

2.4 Autocorrelation analysis

We next examined the trial-by-trial accuracy data using an autocorrelation analysis similar 

to the approach of Trueswell et al. (2013). This analysis examined performance on the 

current trial as a function of what happened the last time the same target was seen (we 

conduct a more complete analysis to address Question 4 more thoroughly after Experiment 

2).

We started with the simplest model, in order to replicate these prior approaches (Figure 7). 

This analysis started by including only the first five repetitions of each word in order to 

achieve the same number of repetitions used in Trueswell et al. (2013). Here, the outcome 

variable was binary, indicating whether the participant clicked on the correct target on the 

current trial. The only fixed effect was a dummy coded variable indicating if the participant 

4Note that we included target as an object-type in this analysis and that we used all trials (correct and incorrect). We dummy coded 
object-type (with looks to the RO as the baseline).
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had been correct the last time they heard that word (last-target-correct). The first trial with 

each target was excluded since there was no prior trial with the same target.

This model was constructed in a mixed models framework, using the binominal linking 

function. P-values were computed directly from the Wald Z statistics; there are no 

commonly accepted measures of effect size for logistic models. As before, we first explored 

the random effect structure that best fit the data using the full data set and a more complete 

model. Here, we found that random slopes of last-target-correct on participant and word, 

along with a random intercept of target object best fit the data. (Note that this model also 

included a fixed effect for trial-type to account for potential additional difficulties of some 

of the trial-types.) In addition, it should be highlighted that while the typical statistical tests 

on the intercept for a logistic model compare the coefficient to 0, this assumes a chance level 

of .5, whilst chance was here .333. Thus, to evaluate against.333, we subtracted −ln(2) from 

the original intercept (this will be reported as B33 or the adjusted intercept), and then 

computed a Wald Z-statistic by dividing this modified intercept by the original SE estimated 

from the model.

This model replicated the effects of Trueswell et al. (2013). We found a significant effect of 

last-target-correct (B= 1.74, SE= .240, Z= 7.22, p < .001), with much greater performance 

after a correct trial than an incorrect. The intercept was not significantly different from 0 

(B= −0.618, B33=.075, SE= .210, Z= 0.355, p = .723). Since last-target-correct is dummy 

coded, the intercept tells us the degree to which performance is above chance when the last 

target was incorrect, indicating that performance was at chance after an incorrect trial 

(Figure 7A).

However, Figure 7B (which shows repetitions 56-60 at the end of training) suggests this 

finding may not hold if we allow more time for gradual learning to unfold. Here, when we 

run the same analysis on the entire set of trials, we again see a highly significant effect of 

last-target-correct (B= 3.02, SE= .205, Z= 14.72, p < .001), but now the intercept was 

significantly different from 0 (B=0.10, B33=.79, SE= .141, Z= 5.605, p < .001), indicating 

that overall performance was above chance even if people responded incorrectly. Thus, by 

the end of training, while we replicated an effect of last-target-correct, we also find that 

performance was above chance even when learners were incorrect on the prior encounter, 

contradicting Trueswell et al. (2013). Thus, the difference in findings between our and 

Trueswell et al.’s (2013) results is a difference in the number of trials considered. This 

confirms our intuition that the gradual learning effect may simply be too small to be 

observable with a small number of trials.

More importantly, as we described, this statistical model (as well as many of those used 

previously), may underestimate effects of gradual learning as it confounds position in the 

learning curve with last-target-correct. Incorrect prior trials are more likely to come from 

the early portion of the learning curve, and correct trials from later points. More importantly, 

it cannot assess whether any gradual learning effect can be seen over and above last-trial 

performance. Thus, we extended the prior analysis to ask if there was a further effect of 

accumulated experience over and above the prior trial behavior. To do this, we added the 

centered log of the number of exposures to that word up to the current trial (log-target-
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count) and its interaction with last-target-correct to the model (both were also added as 

random slopes on participant and word). For this model, we centered last-target-correct to 

facilitate the interpretation of the included interactions.

When we used this new model on only the first five repetitions of each word, it did not 

provide a better fit to the data (p = .937). However, using our whole data set, the new model 

including log-target-count offered a significantly better fit than the prior model (χ2(16) = 

735.65, p < .001), providing robust evidence for an influence of a gradual element to 

learning, over and above the effect of last-encounter responding. In this model, there was a 

main effect of log-target-count (B = 1.18, SE = 0.15, Z = 8.13, p < .001), indicating that 

performance was better with more experience, independently of prior trial behavior. There 

also continued to be a significant main effect of last-target-correct (B = 2.40, SE = 0.26, Z = 

9.25, p < .001) with again better performance if the participant was correct on the prior 

encounter. This reveals that even when accounting for position in the learning curve, there 

was unique variance associated with the participants’ behavior on prior trials with that 

target. Finally, the interaction between last-target-correct and log-target-count was 

significant (B = 0.45, SE = 0.22, Z = 2.05, p = .04)5.

There are two equally accurate descriptions for this interaction: First, the effect of amount of 

exposure (log-target-count) may depend on whether one was correct on the previous 

encounter (last-target-correct), and in the extreme, there is only an effect of exposure for 

trials on which the learner was correct on the prior encounter with that word (e.g., Trueswell 

et al., 2013). That is, people are building more confidence with each correct response, but 

not accumulating anything from an incorrect one. Alternatively, the effect of last-encounter 

performance (last-target-correct) may depend on the amount of exposure. The first 

interpretation (particularly the extreme version) accords with a propositional account, whilst 

the latter would concur with associative learning.

To investigate this statistically, we conducted a post-hoc test, in which we asked whether the 

effect of exposure persisted even for trials that followed an incorrect response; if so, this 

would indicate that the effect of log-target-count cannot completely depend on previous 

performance. For this purpose, we split the data by last-target-correct, and only analyzed 

trials that followed an incorrect response on the previous encounter with the same target 

word. We used the same model as before, but dropped last-target-correct as a main effect 

and slope on participant and target word. In this model, there was a main effect of log-

target-count (B = 0.66, SE = 0.17, Z = 4.0, p < .001), indicating that an effect of exposure 

remained even for trials that had not followed a correct response.

The interaction thus indicates that the effect of prior trials increased over the course of 

training, but that the effect of exposure was present in both types of trials. This suggests that 

the last-target-correct effect may have been a product of learning, not the cause of it. That 

is, if the effect of last-target-correct grows with more exposure, it appears more the result of 

the accumulation of evidence. In contrast, if the last-target-correct effect derives from a 

sudden inference that drives learning, one would have expected much bigger effects early 

5There were also significant effects of trial-type, p < .001, but these are not relevant to the hypotheses being tested.
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(when there was more learning to do) than later. Thus, this analysis suggests that the number 

of repetitions of a word (gradual learning) accounts for variability in participants’ accuracy 

in addition to the contributions of last-encounter performance (proposing / verifying): 

participants must bring forward more information from prior encounters with a word.

2.5 Discussion

Experiment 1 revealed two primary findings. First, the eye-tracking results demonstrated 

that participants were simultaneously considering both the correct (target) referent and a 

competitor (e.g., the HC competitor) during the same naming event. Specifically, on trials in 

which participants ultimately selected the correct target, they still fixated the HC competitor 

more than other objects. This effect was numerically quite small, which was expected given 

the lack of ambiguity in the displays and the fact that we filtered out the trials on which 

listeners were considering this competitor so strongly they actually clicked it. Nonetheless, it 

was significant across several analyses and had a moderate effect size, suggesting that at 

least sometimes and on some trials, both possible referents were being considered. For 

HCLC trials, this was only seen at the end of the experiment (reflected in the marginally 

significant interaction between object-type and block). This offers some tentative evidence 

that these associations may grow over training. No such differences were observed in the LC 

trials (see supplement): This may indicate that these differences in co-occurrence (LC 

competitor versus RO) were too subtle to result in observable differences in association 

strength. However, for the HC competitors, there was clear evidence for the simultaneous 

consideration of multiple hypotheses.

It should also be noted that the difference in looks to HC over RO/ LC competitors was 

driven by eye movements generated late in the trial. This suggests that participants may have 

had difficulty fully suppressing the HC competitor. In addition, this indicates that a 

consistent context throughout learning (i.e. the presence of the HC competitor) may impede 

performace; however, this will become clearer when comparing Experiment 1 and 2 (see 

below).

Our autocorrelation analyses addressed our second question. They replicated previous work 

showing an influence of prior responding on current trial accuracy (Dautriche & Chemla, 

2014; Trueswell et al., 2013). However, more importantly, we found that adding a gradual 

component to the statistical model accounted for variance in accuracy over and beyond 

performance on the previous learning instance with that word. This thus indicates that 

participants do not simply retain hypotheses in an all-or-nothing fashion – they are also 

sensitive to the gradual accumulation of co-occurrence statistics. This was found even 

considering only trials in which participants responded incorrectly on their last encounter 

with a word. This also provides converging evidence for the question of multiple hypotheses 

(Question 1) - even when participants did not respond correctly on a prior encounter (they 

had the wrong hypothesis under a propose-but-verify account), they were still accumulating 

information relevant to the correct mappings. Thus, learning appears to be shaped both by 

last-encounter performance as well as overall exposure. Moreover, the fact that the effect of 

last-encounter performance improves with more learning suggests that the effect of last-

encounter performance – argued to be the hallmark of a propose-but-verify strategy - may be 
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a product of learning, not a mechanism of it (echoing the description of classic fast-mapping 

offered by McMurray et al., 2012).

The combined influence of both gradual learning and last-encounter performance is quite 

clear when examining individual subject data. Figure 8 shows the trial-by-trial accuracy for 

three participants for each word. Here we see that some words seem to start correct and stay 

that way (e.g., pacho for S1, goba for S10), seemingly confirming a propose-but-verify 

strategy. However, other words show a much more sporadic pattern (e.g., goba, for S1, zati 

for S5) and a substantial number of words show continued oscillation even out to repetition 

30 or 40. Yet other words show a fairly robust run of accurate responding (suggesting a 

correct proposal) that is then lost for a time (e.g., mefa for S10 around repetitions 12-20; 

pacho for S5 from blocks 1-6). Thus, while the individual learning profiles appear to fit a 

range of descriptions, there appears to be a strong gradual or probabilistic component to 

learning.

Experiment 2

Experiment 2 investigated one way in which context may influence cross-situational word 

learning (Question 3). As highlighted before, Dautriche and Chemla (2014) found that 

providing a stable context at the beginning of training helped learning on subsequent 

encounters. However, with no exposure to the context after these initial trials, it was 

impossible to tell if the spurious correlations created by consistent contexts may have 

hindered learning (since they were never encountered later). In Experiment 1, the HC 

competitors also offered a form of context, but one that was present probabilistically 

throughout the experiment, and may therefore be more likely to form spurious associations 

that impede learning. Thus, to determine whether this aided or hindered learning, 

Experiment 2 included only RO trials as a comparison.

Moreover, given the apparently conflicting results of our autocorrelation analysis and 

Trueswell et al.’s (2013), it was important to replicate Experiment 1 under experimental 

conditions that were more similar to their study; this was the case in Experiment 2 (there 

were no competitors with enhanced co-occurrence statistics). Thus, Experiment 2 was 

carried out both to establish a baseline of learning to compare accuracy of Experiment 1 

against, and to replicate our autocorrelation analyses.

3. Experiment 2

3. 1 Method

3.1.1 Participants—Nineteen native English speakers took part in this experiment. All 

were students at the University of Iowa and received course credit as compensation. 

Participants were consented in accord with an IRB approved protocol.

3.1.2 Design and materials—The same stimuli were used as in Experiment 1. However, 

the design differed, as only RO trials were included. Thus, every trial included a target 

referent and two randomly chosen objects. Again, the co-occurrence rate of a word and its 

target was 100%. All the other seven objects were randomly selected from trial-to-trial 
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without replacement and therefore co-occurred with the target word approximately with a 

co-occurrence rate of 28%. As in Experiment 1, the total number of 480 trials was separated 

into four blocks of 120 trials.

3.1.3 Procedure—The same procedure was used as in Experiment 1 with the exception 

that no eye movements were recorded as our primary hypotheses concerned accuracy.

3.2 Results Overview

Our analysis was conducted in two parts. First, we examined overall accuracy and compared 

it to Experiment 1 to determine how the co-occurring competitors, i.e. a constant context, 

affected learning. Second, we turn to our autocorrelation analysis to replicate the prior 

results with a study design that is closer to that of Trueswell et al.’s (2013) as well as of 

Dautriche and Chemla’s (2014) experiments.

3.2.1 Accuracy—One participant was excluded from the analysis due to a computer error 

in the experimental script. Note that as the purpose of this was to compare accuracy in 

Experiment 1 and 2, the three participants who were excluded in Experiment 1 were 

included again to correctly reflect overall performance.

Figure 9 shows the average accuracy across for both Experiments 1 and 2. It suggests that 

participants performed better in the absence of high and low co-occurrence competitors. 

This pattern of results remains if one only compares RO trials of both experiments, 

suggesting that the presence of HC and LC competitors affected overall performance, not 

just accuracy in trials that included competitors with enhanced statistics. To evaluate this 

difference statistically, a binomial mixed model was conducted with participant, target (the 

object that was the correct referent) and stimulus as random effects. Experiment and block 

were the fixed effects (coded similarly to the prior analysis). The dependent variable was 

accuracy. Model selection suggested that a model with random intercepts for stimulus, target 

and participant as well as random slopes of block on participant, target and participant 

offered the best fit to the data. Using this, the effect of block was highly significant (B= 

1.55, SE= .165, Z= 9.425, p<.001), suggesting improvement over time. Crucially, the effect 

of experiment was significant (B=.990, SE=.503, Z= 1.969, p =.0489), as performance in 

Experiment 2 was better than in Experiment 1. The interaction of experiment and block was 

marginally significant (B= .468, SE= .274, Z= 1.709, p = .087), and may indicate that 

participants did not simply learn better in Experiment 2 but also more quickly. Thus, highly 

co-occurring competitors, a probabilistic context, appear to impede learning.

One concern is that these differences may not reflect differences in the overall quality of 

learning, but the fact that some of the trials in Experiment 1 - those with an HC or LC 

competitor - were simply harder (though they would have been harder only because people 

had formed spurious associations). Thus, we controlled for this in a second analysis, by 

comparing only the RO trials of Experiment 1 to all of the trials from Experiment 2 (which 

were all RO). We found that a model that included random intercepts for stimulus, target 

and participant with a random slope of block on participant was best supported by the data. 

Using this model, the effect of block was still highly significant (B= 1.57, SE= .140, Z= 

11.30, p<.001). Interestingly, the effect of experiment was still marginally significant (B= 
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0.90, SE= .50, Z= 1.81, p=.07), suggesting tentatively that the difference in accuracy across 

the two experiments was not simply driven by a lower accuracy in HC, HCLC and LC trials 

in Experiment 1, but that the inclusion of high-occurrence competitors impeded overall 

learning. However, given this marginal significance, this result needs to be confirmed in 

further research. The interaction between experiment and block did not reach significance, p 

= .191.

3.2.2 Autocorrelation Analysis—Our autocorrelation analyses used the general 

statistical approach as in Experiment 1. This model included last-target-correct (centered), 

log-target-count (centered) and their interaction as fixed effects. In addition, a random 

intercept for participant, word and target object was added. We also included a random slope 

for last-target correct, log-target-count and their interaction term on both participant and 

word.

We found that (as in Experiment 1) the model which included log-target-count and its 

interaction with last-target-correct (both were added as random slopes on participant and 

word) offered a significantly better fit than a model with last-target-correct alone (χ2(16) = 

544.85, p< .001), replicating the previously reported influence of a gradual element to 

unsupervised learning. As in the previous analyses, it was found that there was a significant 

effect of last-target-correct (B = 2.16, SE = 0.25, Z = 8.49, p < .001) and log-target-count 

(B = 1.33, SE = 0.17, Z = 8.21, p < .001), indicating that both accuracy on a previous 

learning instance as well as experience (time) positively predicted accuracy on a current 

trial. Similar to Experiment 1, the interaction between last-target-correct and log-target-

count reached significance (B = .45, SE = 0.19, Z = 2.39, p = .017), suggesting that there 

was more of an impact of last-target-correct performance later on in the experiment.

3.3 Discussion

This experiment offered a clear answer to our third question, showing that participants 

learned more poorly in the presence of competitors that co-occur with a target word than in 

the presence of purely random competitors. This suggests an important caveat to our 

understanding of context. In natural situations, contexts like a kitchen or a park create sets of 

objects that frequently co-occur with each other and with their names. If such contexts are 

repeated across exposure (not just in the beginning of the experiment), this may create 

spurious associations between words and incorrect referents that can impede learning. It is 

likely that the statistical difference between Experiment 1 and 2 would have been more 

pronounced if learning in general had been more difficult, as most participants in 

Experiment 2 reached ceiling by block 2 (Figure 7).

Indirectly, this offers further evidence that people track more than one object-referent 

mapping hypothesis at the time too, even if this approach to learning has the potential to 

impair overall performance. Finally, we replicated the autocorrelation results from 

Experiment 1 (in the absence of HC and LC competitors) demonstrating that a gradual 

element significantly increased the fit of the model to the data, even in the presence of a 

strong effect of the last response. This highlights the need for a theory of word learning that 
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assumes that both factors influence learning, i.e. that participants must bring more 

information forward from prior trials (Question 2 and 4).

4. Further Effects on Learning

4.1 Overview

Our previous autocorrelation analyses indicated that at least two factors influence learning 

on a trial by trial basis (the prior choice behavior and the gradual effect of number of 

exposures). We next extended our investigation to determine what other variables from prior 

trials may influence performance (Question 4). In part this is motivated by the previously 

described animal learning work (Wasserman et al., 2015) that suggests a rich tapestry of 

information on prior encounters with a word can shape responding. This includes the 

distance between the last encounter with an object and the present trial, the learners’ 

knowledge of the foils, and the spatial arrangement of the items on prior trials (relative to 

that on the present trial). In this analysis, we asked whether such variables play a role in 

human cross-situational word learning over and above the previously examined number of 

exposures and/ or prior accuracy.

For this purpose, we combined the data from Experiment 1 and 2 in order to obtain more 

power to detect small effects. As our baseline, we started with the more complex model 

including last-target-correct, log-target-count (both centered) and the interaction term as 

fixed effects, and the same random effect structure (random intercept for participant, word 

and target object; random slopes for last-target correct, log-target-count and their 

interaction on participant and word). During initial explorations, we also examined models 

which added experiment and its interactions (with the other terms) as fixed effects. 

However, this did not improve the fit of the model to the data over the baseline model (p = .

104), so these terms were not included in the analyses presented here. It should be noted that 

the baseline effects of last-target-correct and log-target-count were similar in all cases to 

the prior analyses. Thus, we do not discuss them here and focus on the most important new 

findings.

We investigated the following factors: The delay between repetitions (last-trial-distance) 

may distinguish unsupervised from supervised learning (Carvalho & Goldstone, 2014), or 

indicate the involvement of a decaying working memory. We also assessed learners’ 

knowledge of the foils on the last encounter with the target (last-foil-accuracy). This could 

implicate some form of mutual-exclusivity or competition process that helps in correctly 

identifying the target (McMurray et al., 2012; Yurovsky, Yu, & Smith, 2013). Finally, we 

examined the degree to which visual-spatial factors may be involved by assessing whether 

the target object appeared in the same location on the last encounter (last-target-same-

location). This may implicate a spatially organized working memory (Samuelson et al., 

2011), a fairly naïve associative learner that had not yet determined the relevant features 

(Wasserman et al., 2015), or some kind of episodic memory. Each was examined in a 

separate model, adding one of these three factors along with its interactions to the baseline 

model (last-target-correct × log-target-count).
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We started by considering the number of trials between the prior encounter with the word 

and the current trial. Figure 10A shows a small effect of last-trial-distance such that a short 

distance between the current and prior encounter led to better learning, though this was most 

pronounced early in training. A model including last-trial-distance (and its interactions) 

significantly improved the fit to the data (χ2(4) = 36.77, p < .001) over the baseline model. 

This was due to a significant main effect of last-trial distance on accuracy (B = −.013, SE 

= .004, Z = −3.02, p = .002). This indicates that an increase in target distance decreases 

accuracy (regardless of whether participants selected the target or not), potentially 

suggesting some form of recent memory that may influence performance. Last-trial-distance 

also interacted with last-target-correct (B = −.03, SE = .01, Z = −3.45, p < .001) as well as 

with log-target-count (B =.01, SE = .005, Z = 2.51, p = .01), and the three-way interaction 

was also significant (B =.02, SE = .008, Z = 2.19, p = .03). Earlier in the experiment, the 

effect of last-target-correct depended on last-target-distance, with a higher distance 

increasing the probability of an accurate trial if one was incorrect beforehand. This may 

indicate that the participants’ response on a current trial was influenced by what they 

remember to have selected when they last encountered that target: This memory effect may 

decrease if distance is higher or when participants have already encountered a majority of 

mappings (late in the experiment). However, the main effect (which persisted with the 

interaction) also suggests some kind of momentum – learning was better if items were 

repeated nearby, regardless of the response.

We next examined the effect of foil accuracy (Figure 10B). This effect is very pronounced 

as accuracy is substantially higher if participants had previously responded correctly to the 

foil objects of a current trial. When we added last-foil-accuracy and its interactions to the 

model, this significantly improved the fit of the model over and above the baseline (χ2(3) = 

12.785, p = .005). This was due to a significant main effect of last-foil-accuracy: Learners 

were more likely to be correct if they had been correct on a trial on which either of the foils 

had been the target (B =.34, SE = .122, Z = 2.76, p = .006). This also significantly interacted 

with log-target-count (B =.34, SE = .11, Z = 3.09, p = .002), as participants were more 

likely to be accurate if they knew one or both foils late in the experiment. This would seem 

to implicate some sort of eliminative processes by which increasing knowledge of the foils 

can be used to rule them out for a target word. This also parallels the last-target-correct × 

log-target-count interaction suggesting that the influence of foil knowledge is also a product 

of learning.

Finally, we examined whether performance differed when the target appeared in the same 

location on two subsequent trials helps learning (last-target-same-location, Figure 10C). 

This prediction easily falls out of associative or exemplar learning accounts in which words 

are not just associated with the objects, but perhaps with the whole context, or with co-

occurring (irrelevant) factors such as spatial location. As Figure 10C shows, there was a 

small benefit when the target reappeared in the same spatial location as on the last 

encounter, though like target distance, this effect waned over training. We found that adding 

the main effect of last-target-same-location (but not its interactions) improved the fit of the 

model (χ2(1) = 4.1, p = .04). Accuracy was significantly increased if the target appeared in 

the same location the trial before (independently of whether one was correct on that trial; B 
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=.15, SE = .07, Z = 2.03, p = .042). The fact that participants’ learning is influenced by a 

target’s position even if they did not click on it within that trial is strong evidence that they 

must be sensitive to variables beyond their current response (or hypothesis). This did not 

interact with any of our measures (as adding the interaction did not increase the fit of the 

model), suggesting a locus in the dynamics of learning and/or memory.

4.2 Discussion

These analyses showed that learners’ performance was influenced by a variety of factors 

over and above of whether one chose the right referent on the last trial or one’s position in 

the learning curve. As it was not possible to evaluate these factors simultaneously (the 

statistical models were too complex to fit), we cannot really evaluate the relative importance 

or size of these effects. It is also important to point out that these factors were not 

experimentally manipulated, rather the analyses are in some ways correlational. Moreover, 

these factors obviously do not exhaust all of the possibilities; it is very likely that there are 

other trial-by-trial factors that also influence learning significantly. Consequently, these 

analyses should be treated as exploratory.

Nonetheless, the results are quite compelling suggesting effects of nearby repetition, of 

spatial location, and of knowledge of the foils. In general, these analyses show that a wide 

variety of factors from prior encounters with a word shape behavior in the moment. It is not 

clear whether such information is carried forward by associative mechanisms, a short- or 

long-term memory mechanism or by some sort of propositional inference (or all three). 

However, these results point into the direction of a more complex learning mechanism that 

takes a number of sources of information into account.

First, learning appears to be characterized both by some associative effects. The significance 

of log-target-count, for example, suggests that there is some accumulation of information 

across multiple trials over and above any hypothesis formed on the immediate prior 

encounter. Similarly, the main effect of spatial location, suggests information that is not 

strictly necessary for word-object mappings is nonetheless preserved, consistent with an 

associative mechanism that is not specifically geared for word learning.

Second, we also see the simultaneous influence of potentially inferential processes 

(knowledge of the target, knowledge of the foils). However, it is important to note that these 

processes do not need to be conscious. A number of these seemingly inferential effects could 

be characterized in either way: For example, foil knowledge could reflect some sort of basic 

competition process (e.g. McMurray et al., 2012; Yurovsky et al., 2013), but they may also 

reflect something more like mutual-exclusivity (Halberda, 2003). Other effects may reflect 

contributions of both sorts of mechanisms. The main effect of target distance, for example, 

seems to implicate basic learning or memory which operates in a graded manner, while its 

interaction with last-target-correct suggests this memory may be crucial for allowing 

inference from prior trials. Crucially, these possibly inferential effects (particularly last-foil-

accuracy and last-target-accuracy) both interact with the amount of exposure (they increase 

over time) suggesting that they are a product of learning, not a mechanism of it.
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Finally, effects like that of spatial location are hard to view in any kind of propositional or 

inferential framework – they may represent potentially erroneous memory or associative 

biases. Thus, neither a simple propose-but-verify, memory-based account nor an associative 

model that only considers overall statistics (but not the behavior of the participant) can 

explain the richness of people’s learning behavior.

5. General Discussion

This study was motivated by four unresolved questions that may help refine theoretical 

frameworks. First, we asked whether learners maintain multiple hypotheses for a word and 

whether these are simultaneously activated in-the-moment while listeners decide the referent 

of a novel word. Second, we asked whether learners gradually accumulate knowledge about 

a word above and beyond the effects of any hypotheses they may have from prior 

encounters. Third, we investigated whether a consistent context can exert a cost on word 

learning. Fourth and finally, we asked what other information is carried forward from 

previous encounters with a word to shape performance. Before we address each of these 

questions, we start by discussing some general limitations of the methodology we used. We 

close with a discussion about the nature of observational learning.

5.1 Limitations

Cross-situational word learning in general has been criticized as an experimental paradigm 

that is not representative of real-life vocabulary acquisition. It simplifies the problem of 

referential ambiguity by using isolated objects rather than embedding them in a cluttered 

scene. This could significantly facilitate learning (e.g. Medina et al., 2011; Trueswell et al., 

2013). These concerns are important, though in many ways, cross-situational learning is a 

step toward better distilling the problem of referential ambiguity – many word learning 

paradigms feature no ambiguity (ostensive naming/ teaching), give strong cues to the correct 

referent (e.g., eye gaze), or explicit feedback. In this way, cross-situational learning may 

allow us to isolate and study the key aspects of unsupervised learning in the face of 

moderate referential ambiguity in a paradigm in which learning that can unfold in the space 

of a few laboratory sessions.

Nonetheless, if one takes these concerns at face value, one might argue that our design is 

particularly guilty of these simplifications. Our task featured a relatively small number of 

words, and they were repeated a large number of times. Consequently, performance was 

very high by the end of both experiments. This leaves open the possibility that this 

characteristic of our experiments significantly influenced our results and may have 

encouraged strategies that children may not use during more naturalistic word learning. Our 

intuition was that if anything these design choices should have encouraged a more 

propositional approach to learning, so the fact that we observed multiple hypotheses, gradual 

learning, and effects like that of spatial location may be quite telling. However, it is also 

possible that they encouraged a more statistical strategy, as there is little data (of this level of 

detail) on how children learning words cross-situationally, and on learning with more 

naturalistic levels of ambiguity. We do know that animal learning (which is clearly not 

propositional) shows virtually all of the hallmarks demonstrated here (Wasserman et al., 
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2015), but it remains an empirical question whether these findings generalize to more 

naturalistic settings.

Our own choices in how to distill the paradigm were motivated by a desire to investigate 

aspects of observational learning that may have been missed. The use of more (rather than 

less) repetitions allowed us to investigate longer-term acquisition. This revealed an effect of 

gradual statistical learning that could not be seen in shorter experiments, and it is worth 

noting that outside of the lab children learn words quite slowly. More importantly, this 

additional training gave us experimental power to ask and isolate questions that have not 

been addressed within (observational) word learning before, such as what other factors 

contribute to word learning or how gradual information across different contexts contribute 

to word learning. Moreover, this expanded training along with the somewhat easier nature of 

the learning problem (8 word-object linkages) yielded high accuracies that were necessary 

for the logic of our eye-tracking design which offered a much more direct measure of 

whether people were tracking multiple hypotheses for a word and activating them in the 

moment of naming.

This trade-off may restrict the ability of our studies to generalize to vocabulary acquisition 

of natural language (in children), though this is still an empirical question. However, our 

goal in this study was not to capture word learning as a whole but rather to isolate 

mechanisms within observational learning that had been underrepresented by previous 

studies and that are likely to impact how words are learned.

With this important caveat, we now turn to our four questions.

5.1 Do learners maintain multiple hypotheses in parallel?

This question was addressed by our analysis of the eye movements in Experiment 1 which 

revealed that participants are more likely to fixate the high co-occurrence competitor than a 

randomly chosen object (the baseline), even as they are clicking on the target. This indicates 

that they retain multiple hypotheses about the word and are actively considering both the HC 

competitor and the target simultaneously on the same trial, even in the absence of 

disconfirming evidence or memory failure. This difference in looks to the RO/ LC and HC 

competitor was driven by eye movements made late in the time course of processing; this 

may be an indication that people had some small amount of difficulty disengaging from the 

HC competitor when it was present. Though this effect was numerically quite small, this 

was expected given that structure of the task: instructions made it clear that one word 

ultimately maps onto one object only, there was little bottom-up perceptual ambiguity, and 

we excluded the trials when consideration of this competitor was high enough to trigger an 

incorrect response to the HC object. More importantly, however, this effect was statistically 

robust and carried a moderate effect size. Given all of this, it is clear that multiple 

hypotheses were considered at least to some degree spontaneously and simultaneously.

The marginally significant interaction of object-type and block on the HCLC trials, as well 

as the overall effect of block in our analysis of the log odds ratio offers additional insight 

into this issue, by suggesting it may change over the course of learning. This indicates that 

these erroneous associations may grow over time, as listeners acquire more co-occurrence 
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data to support them, though this is clearly not as robust an effect as the overall main effects 

of object-type.

It is important to consider an alternative account of these results. It is possible that our 

repetitive design by itself led participants to be rather bored, and this in turn led participants 

to encode other aspects of the experiment that are not strictly relevant to the correct answer 

(e.g., they started learning about the high-co-occurrence competitors, but only due to 

boredom). While we cannot completely rule this out as an explanation of our eye movement 

data, there are several reasons why it is unlikely to be true. First, this predicts the strongest 

effects of object-type late in the experiment. However, the interaction between block and 

object-type were inconsistent across the two trial-types, and not reliable for the HC trials – 

the strongest evidence for multiple hypotheses. More importantly, while this hypothesis may 

address our eye movement results, it fails to account for the accuracy and autocorrelation 

results: It does not explain why participants’ performance was consistently better in 

Experiment 2 (and not just at the end when the eye movement effect becomes more evident) 

or why the effect of prior accuracy, presumably a marker of inferential processing, in fact 

becomes stronger as the experiment progresses. Moreover, the effect of number of 

exposures - which can be seen over and above learner’s prior hypothesis - also offers 

converging evidence that learners are building multiple hypotheses over time. Even when 

we only consider trials on which the learner was incorrect on the prior encounter, there is 

still a strong effect of number of exposures, implying that they were encoding multiple 

hypotheses. Finally, as similar learning patterns have been observed in pigeons using exactly 

the same autocorrelation analyses, this again indicates that this alternative hypothesis cannot 

account for all behavioral results (Wasserman et al., 2015). Thus, while we cannot fully rule 

out this account for our eye-movement results, it is not clear that it can explain the rest of 

our results. Thus, these arguments offer converging support for the idea that our eye-

movement results are not a spurious result from a boring task, but rather serve as evidence of 

a more basic learning mechanism.

So what kind of learning mechanism? The maintenance of multiple hypotheses for a word’s 

referent is a clear property of associative accounts of cross-situational word learning in 

which a given word can be partially associated with multiple objects (Kachergis, Yu, & 

Shiffrin, 2012; McMurray, Horst, & Samuelson, 2012; Ramscar et al., 2013; Yu & Smith, 

2007), and also of Bayesian accounts (Frank et al., 2009) which capture the likelihhod of 

each referent for a given word. The indication that looks to the HC competitor increased 

over training (as seen in the HCLC trials) is also a clear prediction of both associative and 

statistical accounts, in which these associations gradually build as a result of the 

accumulation of co-occurrence statistics.

Simultaneously, it may be possible to integrate these findings in a weak propose-but-verify- 

or memory-based framework (e.g. Koehne, Trueswell, & Gleitman, 2014). For instance, 

Koehne et al. (2014) suggested that participants may retain hypotheses that have been 

considered before. Given the design of this particular study (high number of HC trials, small 

number of words), it is likely that participants clicked the HC competitor at some point 

during learning. Thus, such a weak propose-but-verify account may be in agreement with 

our data. However, such an account would predict activation of multiple hypotheses only 
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under certain circumstances, i.e. in the light of disconfirming evidence and/ or memory 

failure. In contrast, we find evidence of such parallelism even when the learner is correct. 

Moreover, if such processes were to explain our results, activation of alternative hypotheses 

should have decreased over time (as a result of higher levels of certainty), where we see 

evidence for either a stable property of learning, or an increase with training. Thus, whilst 

the overall finding of participants maintaining multiple hypotheses is consistent with a weak 

propose-but-verify account, a closer analysis of its predictions does not concur with the 

particular pattern of effects we observed. More broadly, while we do not think our results 

are inconsistent with all propositional learning accounts, it is clear that a careful 

consideration of what information is available to learners in real-time may constrain 

theoretical notions of what learners may use multiple hypotheses for.

5.2 What do learners carry forward from prior trials?

Our second goal was to determine whether there also is a gradual element that contributes to 

cross-situational word learning. For that purpose, we enhanced the autocorrelation analysis 

introduced by Trueswell et al. (2013) by adding variables beyond whether participants were 

correct on their last encounter with the target word. We found that the number of encounters 

with an object was a significant predictor of accuracy over and above the participants’ prior 

accuracy with that word. More precisely, participants were more likely to be correct on a 

current trial if they had encountered it more often, over and beyond the effect of last-trial 

performance. This indicates that last-encounter performance, despite capturing an important 

aspect of learning, is only one of several factors that influences learning (and thus need to be 

accounted for in any theory of word learning). Crucially, while the specific hypothesis that 

learners may arrive at on a previous trial may indeed shape learning, their gradual 

accumulation of evidence for this hypothesis (as well as others) appears to be just as 

important. This is underscored by the fact that this gradual learning effect was observed 

even when we consider only trials on which learners were entertaining the wrong 

hypothesis.

This does not negate the prior responding effect – both were robust in our analysis. Thus, 

there are clear influences of prior behavior (not just statistics) on learning. Trueswell et al. 

(2013) attribute such effects to an explicit propose-but-verify strategy within a propositional 

framework. However, we are hesitant to claim that such last-encounter effects are unique 

markers of such an approach. First, Wasserman et al. (2015) showed that pigeons behave 

similarly in a supervised cross-situational learning paradigm, making it unlikely that an 

effect of last-encounter performance is uniquely an indicator of hypothesis testing. Second, 

there is a range of possible processes that could give rise to these effects. For example, 

participants could be biased by short-term memory of prior responses (whether or not they 

think those are correct for that word). This hypothesis may be supported by the interactions 

of last-encounter performance with the distance to the last trial as well as the significant 

three-way interaction between last-encounter performance, target distance and target count. 

These indicated that incorrect last-encounter performance may have less of a negative 

impact on accuracy if the period between presentations was larger. Alternatively, the last-

encounter performance effect on learning may reflect a sort of biased competition or 

hysteresis, where once the system has settled into a response for one word, it is more likely 
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to settle there again. It could even be due to something as simple as fluctuations in 

performance around a gradually increasing mean (e.g., if the participant is on a “run” of 

good performance), or a statistical artifact of not fully characterizing a non-linear learning 

curve. Thus, while it is clear that this prior-responding effect is a very important driver of 

learning behavior, future work must clearly disentangle what it means. This is particularly 

clear given that the here described effects seem to be consistent with either theory of 

observational learning.

5.3 Can a consistent context impair learning?

This question was addressed by comparing accuracy in Experiment 1, which manipulated 

context in a probabilistic manner, and Experiment 2, in which the co-occurrence of 

individual objects and a target word was kept constant across the seven foils (and thus 

overall lower than for the HC and LC competitors of Experiment 1). We found that 

participants’ accuracy was decreased by the presence of HC and LC competitors and that 

this difference does not appear to be driven by HC and HCLC trials only. Interestingly, 

learners appeared to consider more than one hypothesis, despite the fact that this impedes 

learning: If participants had treated trials in Experiment 1 as RO trials (i.e. ignored the 

higher co-occurrence of the HC and LC competitors with the target), learning would have 

been faster (as in Experiment 2).

This finding contrasts with the benefit of context reported by Dautriche and Chemla (2014). 

This is likely due to the fact that their study implemented the co-occurrence only in the 

beginning of the experiment and not throughout. Thus, this indicates that context may help 

situate a word (e.g. by restricting the possible interpretations of spoon to a kitchen item), but 

impedes learning when the co-occurrence of members of one context is held high during 

learning. More specifically, the word spoon would be more difficult to learn if it were 

repeatedly experienced with a fork and knife, but would receive a boost if it were seen in a 

completely different context and thus different competitors (e.g. in a sandbox). For real 

word learning, this may indicate that encouraging use of words outside their typical contexts 

may promote vocabulary acquisition, particularly after a word has been experienced in 

constant surroundings beforehand. This is consistent with the notion of contextual 

interference from motor skill learning (Wulf & Shea, 2002), and with the idea that variation 

in irrelevant factors can improve learning (Apfelbaum & McMurray, 2011; Gómez, 2002; 

Rost & McMurray, 2009). Targeted variation - in this case, in the co-occurring foils - can 

help learners to form more robust mappings between words and the correct foils.

This result may be explained within the propose-but-verify account: Accuracy may be lower 

in Experiment 1, as participants might consider the HC competitor as the target for longer 

(as this hypothesis is more likely to be confirmed in a later trial than in Experiment 2), thus 

leading to lower performance. This pattern of performance, however, should lead to the 

biggest differences between the two experiments early in learning (unless there is a lot of 

noise in how well people remember the hypotheses), suggesting this is not the whole story. 

Our results are also consistent with an associative account. As people track multiple 

hypotheses, this may result in spurious associations which favor the HC competitor, thus 

reducing overall accuracy.
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However, this account by itself may not be able to account for both the benefits of context 

observed by Dautriche and Chemla (2014) and the cost shown here. Indeed, our work is an 

important complement to their study highlighting the richness of contextual manipulation. 

The relative frequency of these two effects (e.g. benefit of learning vs. negative impact of 

context on learning) is hard to estimate, making it difficult to make clear predictions outside 

of the lab. But the presence of both a benefit and a cost implies something about the learning 

mechanism that is quite novel: it must involve both long-term tracking of statistics and 

associations (to show the cost) as well as short term competition or inference mechanisms 

(to get the benefit). This seems to suggest some kind of hybrid model in which active 

competition or inference processes are built on top of more basic associative mechanisms 

(McMurray et al., 2012; D Yurovsky et al., 2013).

5.4 What other information is retained from prior encounters during learning?

Our autocorrelation analysis identified a range of other factors from prior encounters with a 

word (or object) that may influence learning. While these analyses were somewhat 

exploratory, they considerably go beyond the issues of gradual learning (Question 2) and 

hypothesis testing by building on recent work in animal learning. In these analyses, target 

distance emerged as a significant additional predictor. When the target word had been 

encountered recently, learners were more likely to respond correctly, regardless of choice 

accuracy. This effect is quite interesting, as a recent study by Carvalho and Goldstone 

(2014) suggests that unsupervised learning is much more likely to benefit from nearby 

repetitions of a stimulus than supervised learning. This finding generally reinforces the 

possibility of a largely associative or general mechanism for this behavior, though it is also 

consistent with a memory-based account, in which short-term memory facilitates 

performance if target distance is shorter.

We also observed an effect of spatial location in which participants were more accurate 

when the target object was in the same spatial location on a prior trial. This is consistent 

with Wasserman et al.'s (2015) animal model. In pigeons, this effect appeared to be driven 

by the animals not knowing early in training that space is not relevant for predicting reward. 

Thus, consistently with error factor theory (Harlow, 1959), pigeons needed to learn to 

suppress responding on the basis of location. Here we showed that also humans benefit from 

a target being presented in the same spot as on a previous trial, independently of whether 

they clicked on it at that prior encounter. This happened in an unsupervised learning 

paradigm (no reward); nevertheless, the explanation is likely to be similar as in the pigeons: 

words and objects are not just associated with each other, but also with irrelevant factors 

such as spatial location. This benefits learners if the target object occurred in the same 

location subsequently (and hurt them if was not). Moreover, this effect could also reflect a 

more exemplar approach to memory in which all aspects of a context are recorded as part of 

the memory trace for a word or a reflection of space being used as a cue to bind the novel 

word label to the object (Samuelson et al., 2011). (Neither of these explanations is 

necessarily inconsistent with each other.) At this point, it is not clear how this finding could 

be integrated in a more propositional account which seem to assume strong functional goals 

on the part of the learner as to what are the relevant aspects of this task.
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Finally, we also found an effect of foil-responding on previous trials such that accurate 

identification of the foils (on a prior trial) led to better accuracy on the current trial. This 

would seem to suggest a form of mutual exclusivity that may come into play as foils are 

learned; however, this is consistent with both inferential versions of mutual exclusivity (e.g. 

Carey & Bartlett, 1978; Halberda, 2003) in which participants explicitly use their 

'knowledge', or with more basic mechanisms such as some form of real-time competition 

(McMurray et al., 2012; Yurovsky et al., 2013). As with the effect of last-target-correct, this 

effect also grew with more exposures to a word. This implies that it is a product of learning, 

not a core mechanism of it.

In summary, what is clear is that a substantial amount of information about prior trials (and 

prior experience) shapes learning on any given trial – both what the participant did and his 

or her experience with an object, as well as potentially more subtle factors (particularly 

given that our list is likely to not be exhaustive given the exploratory nature of these 

analyses). Thus, it would be incorrect to oversimplify learning into a process in which only 

one particular type of information is considered.

5.4 The nature of observational learning

While individually, our various findings are consistent with several accounts, our 

conclusions do not derive from any one finding (e.g., the eye movement results) or from the 

answer to any question in isolation. Rather the converging evidence across multiple findings 

is perhaps our most novel contribution. This highlights the complexity of processes that take 

place during word learning, processes that include the online activation of multiple 

hypothesized referents, potentially inferential or competitive strategies to rule out particular 

hypotheses in the moment on the basis of both knowledge of the target word, and of the 

target and foils objects, short-term memory processes that track prior responding to both 

targets and foils, and very basic associative phenomena that capture the cross-situational 

statistics.

Whilst the goal of this study was not to definitively test any particular theoretical accounts, 

it is possible to draw some conclusions. The richness of the results described here makes it 

clear that any oversimplified account is unlikely to be true: This applies both to simple co-

occurrence counting as well as a strong propose-but-verify account. More specifically, a 

strong propose-but-verify account cannot account for our eye-movements data (as people 

should not have tracked more than one hypothesis). Similarly, pure co-occurrence counting 

is not consistent with the subtle effects observed in the autocorrelation analyses. Thus, we 

need something more complex.

So do these two experiments appear to favor any particular elements of a theory of learning? 

On the one hand, the evidence for multiple hypotheses from the eye movements, and the 

evidence for gradual learning in the autocorrelation analyses, as well as the effect of spatial 

location in the same analyses all point toward the idea that associative learning (or 

something like it) plays at least some role in the learning. Under associative accounts, 

connections between words and objects that co-occur together are strengthened during 

learning; this process is gradual and accumulative to avoid over-commitment to one 

mapping on the basis of a few exposures, accounting for the rather protracted effect of 
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exposure (in the autocorrelation analyses). This effect could not be seen over five trials but 

did emerge over the whole course of training. This gradual and accumulative nature also 

means that participants would have formed stronger connections with a word and its 

respective HC competitor than any random word (as they were seen more often together), 

thus leading to increased levels of activation during trials (as reflected in a higher number of 

looks to the HC competitors in Experiment 1). Moreover, one would predict that this effect 

may increase over time as a result of the gradual nature of associative learning as these 

spurious connections are strengthened by more data. Indeed, we found some evidence for 

this in the eye movements. Moreover, the marked enhancement of learning in Experiment 2 

when there were no spuriously correlated objects suggests that these additional associations 

interfere with learning. Finally, as associative learning may not know a priori which aspects 

of the stimulus are relevant for learning (i.e. its appearance), this may lead to the observed 

effects of spatial location, as spatial locations are associated with words (c.f., Wasserman et 

al., 2015). While alternative explanations for any of these findings are possible (as we 

describe above), all told, this converging pieces of evidence paint a picture of some form of 

associative or statistical core to word learning, even as this must be embedded in a much 

richer processing system of some kind.

This is not likely the whole story however. There were strong effects of accuracy on prior 

trials including effects of accuracy for both the target (as seen in prior studies) and foil 

objects (seen for the first time in humans here). This appears to be in line with propositional 

accounts. In a propose-but-verify framework, the effect of prior accuracy is thought to be a 

reflection of retaining a single hypothesis (actively) from a prior encounter with a word. 

Thus, if participants chose the target on a prior trial, they should be very likely to be correct 

on the current trial, too. (This may not be perfect, however, because of memory limitations.) 

At the same time, an incorrect choice on a prior trial means that the person’s hypothesis had 

to be rejected and the participant is at chance when being confronted with the same word. 

Similarly, while propose-but-verify does not explicitly address knowledge of the foils, one 

could imagine propositional accounts in which learners use a mutual exclusivity strategy to 

choose an object for a novel word by ruling out objects for which they know the labels (as in 

mutual exclusivity accounts of child word learning). This would thus increase the 

probability of responding correctly if at least one known foil is present. These findings seem 

quite consistent with a more inferential or propositional logic.

But such findings are not unambiguous evidence for propositional learning. First, the fact 

that we see potential evidence for inferential processes (last-target-correct and last-foil-

correct effects) does not negate an associative core to how memories are formed. Indeed, we 

know of few other ways by which information is stored in the brain. However, such effects 

suggest that such a core must be embedded in a richer system which not only learns but also 

infers and acts. That is, learners may engage in propositional reasoning in the moment, even 

as the results of this reasoning gradually accumulate in the association matrix. Second, the 

effects of prior accuracy and foil responding do not appear to be unique markers of an 

inferential account: Wasserman et al. (2015) reported extremely similar effects of prior trial 

effects in pigeons. These animals do not have a developed prefrontal cortex, but are rather 

biological associative models. Of course, it is possible that these behaviors indicate different 
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mechanisms in varying species. However, right now, we simply do not know what 

representations and/ or mechanisms lead to these effects in humans and we have clear 

evidence that they can arise in an animal without higher-level inferential processes. Indeed, 

there may be simpler, domain-general mechanisms that could give rise to such effects; for 

example, competition between possible referents may instantiate a form of mutual 

exclusivity (McMurray et al., 2012).

This would appear to leave us in a situation where we need some kind of framework that is 

associative in core, but can also account for processes that appear inferential. McMurray et 

al. (2012) offer a conceptual (and computational) model that suggests a way to rectify some 

of these more inferential-looking processes with associative learning in the context of 

observational word learning. It argues that associative learning must be embedded within a 

system that is capable of real-time decisions (a form of constraint satisfaction or 

competition); in the specific simulations, they suggest that simple Hebbian learning 

embedded in a system of real-time competition (to choose the best referent) can learn words 

under high degrees of uncertainty and account for a range of developmental effects.

To broaden this framework, we might suggest that proposing and/or verifying may be 

primarily real-time processes (that are either propositional or perhaps based in lower level 

mechanisms like competition), even as the underlying associative learning system can build 

multiple alternatives more slowly. That is, in real-time participants only choose a single 

object (even as they evaluate multiple), and may engage in a variety of decision making 

processes (including, for example, verification processes), even as the underlying learning is 

gradual and tracks multiple co-occurrence statistics, which are still implicitly activated 

during response choice.

It is important to note that the mechanisms that lead to effects such as mutual exclusivity in 

this model are not actually propositional in nature; in contrast, they emerge out of simple 

real-time competition between referents. However, whatever the nature of the real-time 

processes, this model makes the point that such interactions across timescales can be quite 

powerful, allowing the system to act intelligently, even if the associative weights are not 

fully formed6. It is unlikely that the specific computational instantiation of McMurray et 

al.'s (2012) model can account for all of the specific data right now. For example, it does not 

include any units to encode context (e.g., Dautriche & Chemla, 2014), nor does it account 

for effects of spatial location. Nevertheless, it makes the important point that a combination 

of real-time processes and associative learning has the power and richness to account for the 

different types of behavior we are observing in Experiment 1 and 2.

Finally, observational learning is suggested as a developmental account, one of the 

mechanisms by which children learn words. Thus, it would be worth considering whether 

our results may differ in children. Recent data by Ramscar, Dye, and Klein (2013) suggest 

that children’s behavior is more consistent with an associative account whilst adults seem to 

behave more propositionally and to at least sometimes apply explicit strategies. In contrast, 

6Similarly, Bayesian models that track the distribution of possible mappings and their likelihoods should give rise to comparable 
effects, (Frank, Goodman, & Tenenbaum, 2009).
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we show clear hallmarks of associative learning in adults here. Part of the discrepancy may 

be due to the fact that Ramscar et al. (2013) only used two exposures per word (nine word-

object mappings in total) – clearly favoring an inferential approach that may have been out 

of reach for children, and this may also apply to cross-situational word learning experiments 

that only used a low number of trials. However, it may be possible that the factors that 

emerged during the autocorrelation analysis only correspond partly to the variables that may 

significantly predict performance in children. That is, children may show different effects of 

last-trial performance, gradual learning, spatial location and the like when confronted with a 

similar learning paradigm.

In summary, this study shows clearly that people are sensitive to not only complex co-

occurrence matrices but also other trial-to-trial information (such as the distance between 

two target trials or the location of an object). This indicates that observational learning must 

be supported by a much richer learning mechanisms than previously assumed, even as they 

are built on a deeply parallel and gradual core. Given that different frameworks in which 

cross-situational learning could be explained are still developing, it is unclear at this point 

what gives rise to this behavior. However, any future account of observational learning will 

need to acknowledge that word learning is a dynamic product of both gradual and real-time 

effects.
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Highlights

• There is considerable uncertainty around the nature of observational word 

learning

• Eye movements suggested learners maintain and activate multiple hypotheses

• Accuracy was influenced by many factors, including spatial location, foil 

accuracy

• Probabilistic context throughout experiment hurt people’s learning

• This supports an associative mechanism that is buttressed by real-time processes
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Figure 1. 
Examples of the novel, differently colored objects used in Experiment 1.
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Figure 2. 
Average accuracy across blocks. Errors bars mark the standard error of the mean.
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Figure 3. 
The distribution of overt responses (indicated by shading) as a function of block. Target 

(light grey) is correct.
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Figure 4. 
Time course graphs for HC trials with looks to the target for all trials (Panel A) and without 

looks to the target (Panel B) and for HCLC trials (Panel C) including only correct trials.
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Figure 5. 
Looks to the competitors in HC (Panel A) and HCLC trials (Panel B) (separated by block).
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Figure 6. 
The mean log-odds ratio as a function of block.
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Figure 7. 
Accuracy as a function of how participants responded on previous trials with the same target 

for five target replications (as used by Trueswell et al., 2013) at beginning of experiment 

(7A) and at the end of the experiment (7B). Error bars indicate the standard error of the 

mean.
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Figure 8. 
Accuracy per item for three exemplary participants (S1, S5, S10) (black = correct trials; 

white = incorrect trials).
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Figure 9. 
Average accuracy across blocks for Experiment 1 and 2.
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Figure 10. 
Main effects of target distance (Panel A), foil accuracy (B) and location of target in prior 

trial (C). Target distance was separated by a median split, median = 6.
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Table 1

Novel words used

Written form IPA

Mefa /meɪfɑ/

Goba /goubɑ/

Jifei /dʒifeɪ/

Bure /buɹeɪ/

Naida /nɑɪdɑ/

Zati /zæti/

Lubou /lubo/

Pacho /pɑt∫ou/
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Table 2

Example of co-occurrence statistics over all four blocks.

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7 Object 8

Mefa 60 36 24 12 12 12 12 12

Goba 12 60 36 24 12 12 12 12

Jifei 12 12 60 36 24 12 12 12

Bure 12 12 12 60 36 24 12 12

Naida 12 12 12 12 60 36 24 12

Zati 12 12 12 12 12 60 36 24

Lubou 24 12 12 12 12 12 60 36

Pacho 36 24 12 12 12 12 12 60
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Table 3

The four trial-types and the number of times each is repeated in a single block and over the course of the 

experiment.

Trial-type Object types on
screen

Repetitions
/ block and word

Repetitions

HCLC
Target

HC competitor
LC competitor

2 64

HC
Target

HC competitor
Random object

7 224

LC
Target

LC competitor
Random object

4 128

RO
Target

Random object 1
Random object 2

2 64
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