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Abstract

We present a new approach to facilitate the application of the optimal transport metric to pattern 

recognition on image databases. The method is based on a linearized version of the optimal 

transport metric, which provides a linear embedding for the images. Hence, it enables shape and 

appearance modeling using linear geometric analysis techniques in the embedded space. In 

contrast to previous work, we use Monge's formulation of the optimal transport problem, which 

allows for reasonably fast computation of the linearized optimal transport embedding for large 

images. We demonstrate the application of the method to recover and visualize meaningful 

variations in a supervised-learning setting on several image datasets, including chromatin 

distribution in the nuclei of cells, galaxy morphologies, facial expressions, and bird species 

identification. We show that the new approach allows for high-resolution construction of modes of 

variations and discrimination and can enhance classification accuracy in a variety of image 

discrimination problems.
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1. Introduction

Automated pattern learning from image databases is important for numerous applications in 

science and technology. In the health sciences arena, biomedical scientists wish to 
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understand patterns of variation in white and gray matter distributions in the brains of 

normal versus diseased volunteers from magnetic resonance images (MRI) [26,27]. 

Pathologists wish to understand patterns of morphological variations between benign versus 

malignant cancer cell populations through a variety of microscopy techniques [28,30]. Other 

applications include morphometrics [31], the analysis of facial images [32,17], and the 

analysis of mass distributions in telescopic images of galaxies [14]. The goal is usually 

related to discovery and understanding any discriminant pattern among different classes. 

More specifically, the objective in many morphometry-related applications is to determine 

whether statistically significant discriminating information between two or more classes 

(e.g. benign vs. malignant cancer cells) exists. If so, it is also often desirable to determine 

through visualization the nature (e.g. biological interpretation) of the found differences.

Numerous image analysis methods have been described to facilitate discrimination and 

understanding from image databases. A critical step in this process is the choice of an image 

similarity (or distance) criterion, based on which image clustering, classification and related 

analysis can be performed. While the Euclidean distance between pixel intensities (after 

images are appropriately normalized for rotation and other uninteresting variations) remains 

a viable alternative in many cases [45], typically employed distances involve the extraction 

of numerical descriptors or features for the images at hand. In many applications [14,33], 

feature-based distances lead to high performance and accurate image classification. Feature-

based methods commonly incorporate shape-related features [34], texture-related features 

[44], such as Haralick and Gabor features, derived based on the adaptations of Fourier and 

Wavelet transforms [46,35], and others [47]. Most feature-based approaches, however, are 

not ‘generative’ and thus any statistical modeling performed in feature space is not easily 

visualized. This can be readily understood by noting that the transformation (from the 

ambient image space to feature space) is not invertible: one can extract features from 

images, though it is not generally possible to obtain an image from an arbitrary point in 

feature space.

In analyzing shape distributions obtained from image data, numerous approaches based on 

differential geometry have been employed. Grenander et al. [37], for example, have 

described methods for comparing the shape of two brains (or brain structures) by 

minimizing the amount of incremental ‘effort’ required to deform one structure onto 

another. Likewise, Joshi et al. [38], and Klassen et al. [39] have described similar 

approaches for determining the distance between two shapes as encoded by medial axis 

models and contours, respectively. Such approaches are not only capable of measuring 

differences between shapes without loss of information, but are also generative and thus 

allow for interpolating between shape exemplars, thus giving researchers access to 

geometrical properties of shape distributions from image databases. It is worthwhile noting 

that the approaches described in these references, however, do not allow for one to encode 

information regarding intensity variations, or texture. Moreover, such approaches can be 

computationally expensive to employ in pattern recognition tasks on large datasets.

Active appearance models [7,8] and Morphable Models [48] are another class of approaches 

that can be used for modeling shape and intensity variations in a set of images. Such 

methods are parametric, nonlinear, and generative. However, these methods require the 
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definition of characteristic landmarks, as well as the correspondence between the landmarks 

of all images in the set.

Finally, we also mention that several graph-based techniques have also been developed for 

interpreting variations in image databases. The idea in such methods is to obtain an 

understanding of the geometric structure of such variations by applying manifold and graph 

connectivity learning algorithms [40,41]. These methods find a linear embedding for the 

images, which preserve the local structure of the data in the image space. Such approaches 

have been often employed in studying variations in image databases [40]. We note that, 

generally speaking, such methods are not generative. As with the numerical feature 

approach above, it is generally not possible to reconstruct an image corresponding to any 

arbitrary point in feature space (other than images present in the same dataset).

1.1. Previous work on linear optimal transport (LOT)

In [21,22] we have recently introduced a new approach based on the mathematics of optimal 

transport (OT) for performing discrimination and visualizing meaningful variations in image 

databases. Interpreting images as nonnegative measures one can employ the Kantorovich–

Wasserstein distance to measure the similarity between pairs of images. The metric space is 

formally a Riemannian manifold [42] where at each point one can define a tangent space 

endowed with an inner product. The OT distance is then the length of the shortest curve 

(geodesic) connecting two images (see Fig. 1). The linear optimal transport (LOT) idea 

presented in [21] involves computing a modified version of the OT metric between images 

by first computing the necessary optimal transport plans between each image and a reference 

point, and then quantifying the similarity between the two images as a functional of 

computed transport plans. The idea is depicted in Fig. 1.

In short, the LOT framework initially proposed in [21], and refined in [22] for the analysis 

of cell images can be viewed as a new nonlinear image transformation method. The 

‘analysis’ portion of the transform consists of computing a linear embedding for given 

images by finding the transport plans from images to a reference image. In this manner, each 

point in the embedding corresponds to a transport plan that maps an image to the reference 

image. The ‘synthesis’ operation relates to computing the image corresponding to a point in 

the embedding.

One of the major benefits of this signal transformation framework is that it facilitates the 

application of the OT metric to pattern recognition on image databases. If a given pattern 

recognition task (e.g. clustering or classification) requires all pairwise distances for a given 

database of N images to be computed, one can compute the LOT distance between them 

with only N optimal transport problems, as opposed to the usual N(N – 1)/2 computations 

that would be required in the standard approach [20]. Beyond just an improvement in 

computation time, the LOT image transformation framework also allows for the unification 

of the discrimination and visualization tasks. Discrimination using Euclidean distances in 

the LOT space are akin to a modified (linearized) version of the transport metric, described 

as a generalized geodesic by Ambrosio et al. [43], and have been shown to be very sensitive 

in capturing the necessary information in a variety of discrimination tasks [21,22]. In 

addition, given that the new transformation framework is invertible, the framework also 
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allows for the direct visualization of any statistical modeling (e.g. principal component 

analysis and linear discriminant analysis) in the embedding. This enables direct visualization 

of important variations in a given database.

1.2. Contribution highlights

The work described in [21,22] utilizes Kantorovich's formulation of the OT problem in a 

discrete setting (particle-based). That is, images are viewed as mass distributions and 

modeled as sums of discrete delta ‘functions’ placed throughout the image domain. The 

underlying OT problem then simplifies to a linear programming problem and is solved using 

existing approaches. The method in [21,22] is, however, computationally expensive as the 

computational complexity of linear programming solvers is generally of polynomial order 

(w.r.t. number of particles) and in addition it requires an initial particle approximation step.

Here we improve the work in [21,22] by utilizing Monge's formulation of the underlying OT 

problem. In particular, we highlight the following contributions:

• We describe a continuous version of the LOT framework that bypasses many of the 

difficulties associated with the discrete formulation. In this respect, we define a 

forward and inverse transform operation based on continuous transport maps, 

define an improved reference estimation algorithm, as well as describe the range 

within which points in LOT space are invertible according to the continuous 

formulation.

• We show experimentally that the new formulation significantly speeds up the 

computation of the LOT embedding for a set of images.

• We demonstrate that (in contrast to the previous method), the new method allows 

for reliable information extraction from high resolution, non-sparse, images.

• We demonstrate that the method performs well in comparison to other methods in 

several discrimination tasks, while at the same time allowing for meaningful 

generative modeling and visualization.

We start by reviewing the LOT framework, and then describe the nonlinear minimization 

technique we use, in Sections 2 and 3. Section 4 describes our approach for computing the 

LOT embedding using the continuous OT maps between each image and a template in a 

given dataset. In Section 5 we describe how to combine the LOT embedded images together 

with PCA and penalized LDA to visualize meaningful information in different datasets. We 

describe the datasets used in this paper and demonstrate the output of our LOT framework 

by showing modes of variations, discrimination modes, and classification results for all the 

datasets, in Section 6. Finally, the paper is summarized and our contributions are highlighted 

in Section 7.

2. Linearized optimal transport

Optimal transport methods have long been used to mine information in digital image data 

(see for example [36]). The idea is to minimize the total amount of mass times the distance 

that it must be transported to match one exemplar to another. Let μ1 and μ2 be two 
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nonnegative probability measures defined over a 2D domain Ω such that μ1(Ω) = μ2(Ω) = 1. 

Let Π(μ1, μ2) be the set of all couplings between the two measures. That is, let A and B be 

measurable subsets of Ω, and let π ∈ Π(μ1, μ2). Then π(A × B) describes, how ‘mass’ 

originally in set A in measure μ1 is transported to set B in measure μ2 so that all mass in μ1 

can be transported to the same configuration as the mass in μ2. The optimal transport plan, 

with quadratic cost, between μ1 and μ2 is given as the minimizer of

(1)

where  and  are coordinates in domains of μ1 and μ2, respectively, and | · | denotes the 

Euclidean norm. In Wang et al. [21] a linearized version of the OT metric is described, 

which is denoted as the linear optimal transportation (LOT), based on the idea of utilizing a 

reference measure σ. Let πμi denote a transport plan between σ and μi. In addition, let 

Π(σ,μ1,μ2) be the set of measures such that if π ∈ Π(σ,μ1,μ2), π(A × B × Ω) = πμ1 (A × B), 

and π(A × Ω × C) = πμ2 (A × C). Then, in the most general setting, the LOT can be defined 

as

(2)

In [21] a ‘particle’-based approach is utilized for computing (2). The idea is to first 

approximate the measures μ1, μ2 and σ using a weighted linear combination of masses and 

compute (2) by solving the associated linear program [21]. Because linear programs are 

expensive to compute (generally scale as O(n3), where n is the number of particles used to 

approximate the image), Wang et al. proposed a particle approximation algorithm to reduce 

the number of pixels in each image prior to computation.

Instead, here we describe an extension of the LOT computation to the set of smooth 

densities, together with a few additional modifications required by the continuous 

formulation, that can significantly reduce the computational complexity while at the same 

time allowing transport maps to be computed at full image resolution. Let μ1, μ2, and σ be 

smooth measures on Ω with ,  and , where I0, I1 and 

I2 are the corresponding densities. Monge's formulation of the OT problem between σ and 

μ1, for example, is to find a spatial transformation (a map)  that 

minimizes

(3)

subject to the constraint that the map f1 pushes measure μ1 into measure σ. When the 

mapping is smooth, this requirement can be written in differential form as

(4)

where Df1 is the Jacobian matrix of f1. Eq. (4) specifies the mass preserving property that the 

mapping must have. In addition, we note that f1 is a 2D map: , 
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with f1x and f1y denoting the x and y components of the map, respectively. Similarly, we note 

that , where u1
x and u1

y are displacement fields in the x and y 

directions, respectively. Now let us similarly define  as the continuous 

OT mapping between σ and μ2.

Using  and  in Eq. (2), the LOT distance between measures μ1 and μ2 with 

respect to the reference measure σ can be written as

(5)

where . Thus the functions  and  are natural 

isometric linear embeddings (with respect to the LOT) for I1 and I2, respectively.

From the geometric point of view, the LOT transform can be viewed as the identification 

(projection), P, of the OT manifold on the tangent space at σ. Hence, given a measure μi 

with the optimal transport map fi (with respect to σ) we have

(6)

where . See Fig. 1 for a visualization. From (6) we have  and 

we can write

(7)

therefore, P preserves the OT distance between μi and σ.

3. Optimal transport minimization

There exist several algorithms for finding an estimate of the solution to the OT problem. 

Haker et al. [11] utilized a variational approach for computing a transport map by 

minimizing the problem in (3), while Wang et al. [20,21], for example, made use of 

Kantorovich's formulation of the problem in a discrete setting (2) to achieve a solution based 

on linear programming. Benamou et al. [3] solved the OT problem by resetting the problem 

into a continuum mechanics framework. More recently, Chartrand et al. [5] introduced a 

gradient descent solution to the Monge–Kantorovich problem, which solves the dual 

problem. In another interesting approach toward solving the OT problem, Haber et al. [10] 

reformulated the problem as a penalized projection of an arbitrary mapping onto the set of 

mass preserving mappings. In this paper, we show that the LOT approach, introduced in 

[21], can be extended to use the continuous formulation in (3), thus allowing for the use of 

full resolution images hitherto impossible with the state of the art methods. We employ the 
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generic approach as described in [11]. Given densities I0 and I1, the method works by first 

finding an initial measure preserving ‘guess’, that is det , and 

then minimizing (3) based on a partial differential equation approach.

3.1. Finding an initial measure preserving (MP) map

We follow the approach described in [11], originally proposed in [13], for finding an initial 

measure preserving map. Briefly, the initial measure preserving map can be found by 

solving a series of 1D problems. In 1D, the OT solution can be found by simply computing 

the points along the line where the integrals of the two functions coincide. In 2D, the initial 

mapping can be found by solving a series of 1D problems as described below.

Let Ω = [0,1]2 and I0 and I1 be the two density maps (images) one wishes to compare 

through the OT approach. In order to find an initial MP map,  we first 

find the transportation map parallel to the x-axis, a(x):

(8)

Then the transport map along the y-axis, b(x,y), is calculated by differentiating the equation 

above with respect to η and solving for b(a(x),y):

(9)

and hence . In practice,  and  cab be found with simple 

numerical integration techniques.

3.2. Optimal transport minimization

We employ a fundamental theoretical result [4,9] which states that there is a unique optimal 

MP mapping f* that minimizes Eq. (3), and it can be written as the gradient of a convex 

function , and hence it is curl free. Once an initial mapping f0 is found, we 

follow a gradient descent process [11] to make f0 curl free. We use the closure under 

composition and closure under inversion properties of the MP mappings [11] and define 

. Note that f is a MP mapping from I0 to I1, if and only if s is a MP 

mapping from I0 to itself, meaning that

(10)

Now we update , starting from , such that  converges to a 

curl free mapping from I0 to I1. For  to be a MP mapping from I0 to itself, 

should have the following form:

(11)
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for some vector field ξ on Ω with div(ξ) = 0 and  on , where  is normal to the 

boundary of Ω. From (11), it follows that for  to be a MP mapping 

from I0 to I1 we need

(12)

Differentiating the OT objective function,

(13)

with respect to t and after rearranging we have

(14)

Substituting (11) into the above equation we get

(15)

Writing the Helmholtz decomposition of f as  and using the divergence theorem 

we get

(16)

thus, ξ = χ decreases M the most. But to find χ we first need to find ϕ. Given that div(χ) = 0 

and , we take the divergence of the Helmholtz decomposition of f and we find ϕ 

from

(17)

Hence,  where Δ−1 div(f) is the solution to (17). Substituting ξ 

back into (12) we have

(18)

which for  can be even simplified further:

(19)

where  indicates rotation by 90°. Finally, the MP mapping is updated using the gradient 

descent approach as follows:
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(20)

where α is the gradient descent step. In our implementation α is found based on a 

backtracking line search approach. The gradient descent method described above is shown 

to converge to the global optimum [1]. This method can be thought of as a gradient descent 

approach on the manifold of the MP mappings from I0 to I1.

4. Calculating LOT embedding from optimal transport maps

The linear embedding, as explained in Section 2, is calculated with respect to the template 

image I0. Given a set of images I1,...,IN, I0 is initially set to the average image via 

. The set of OT maps that transform each image Ik into I0 is computed via 

the OT minimization procedure described above. Having the mappings  for k = 1 ··· 

N, the reference (template) image is updated iteratively using the mean optimal transport 

map. This iterative approach helps ‘sharpen’ the estimated template as well as have it be a 

more representative intrinsic ‘mean’ image for the given dataset. Fig. 2shows the calculated 

mean using the mentioned approach as well as the average image for a set of images 

including 40 faces with neutral expressions. The increase in sharpness is clearly evident.

The outcome of this procedure is used as the ‘reference’ template I0, and the corresponding 

mappings fk, k = 1, ..., N such that det  are calculated for the 

I0. The LOT embedding for an image Ik, as described in Section 2, is given by 

. This linear embedding can now be used for a variety of purposes, 

including clustering and classification, as well as visualization of main modes of variation, 

as we show below.

We emphasize that in contrast to other ‘data driven’ methods [16,2] for computing a linear 

embedding of a nonlinear dataset, the LOT embedding is generative. Meaning that, one is 

not only able to visualize any original image, but also able to visualize any point in the LOT 

space (subject to the constraint described in the next section) to obtain a synthetic image, 

which lays on the OT manifold in the image space. Let  correspond to the 

displacement field of an arbitrary point in LOT space. Its corresponding image is computed 

by setting , and then computing the corresponding image Iv by

(21)

where  refers to the inverse transformation of fv, such that . Eq. (21) 

shows that, any arbitrary point in LOT space, with corresponding displacement field , 

is visualizable if and only if Dfv is not singular, and hence f−1 exists. Next, we devise an 

approach which gives us the visualizable range in the LOT space.
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4.1. Visualizable range in the LOT space

We utilize an orthogonal expansion in order to describe a visualizable range for the LOT 

embedding computed with respect to a chosen reference. Let the mean displacement field 

for the embedded images be . Now let [v1,...,vM] be an 

orthonormal basis for the zero mean displacement fields, . Such a basis 

can be obtained using PCA or a Gramschmidt orthogonalization process, for example. 

Hence, the displacement field of an arbitrary point in LOT space can always be written as 

follows:

(22)

where cks are coefficients of linear combination with , and β is a constant which 

corresponds to the range of change in the direction of . Therefore we can rewrite the 

mapping as below:

(23)

where  and . The goal is to find the maximum β, for the Dfv 

remains nonsingular, or in other words, det  for all x ∈ Ω. Expanding det(Dfv) 

and after rearranging one can write

(24)

where , and 

. In order to find the visualizable range, the above equation is 

set to zero and is solved for  for each . Finally we choose  to 

denote the range in  direction. Although the process above leads to a very 

conservative bound for β, |β| <β*, it enables one to find the visualizable range for any linear 

combination of the orthonormal basis displacement fields. In all of the computational 

experiments shown in the following sections , where σ is the standard deviation of 

the projected images on the given direction in LOT space.

5. Modeling shape and appearance

Having the linearly embedded images with respect to the reference image, I0, enables one to 

visualize any point in the embedded space (subject to the restrictions described above). 

Hence, linear data analysis techniques such as principal component analysis (PCA) and 

linear discriminant analysis (LDA) provide visualizable modes of variations in the 

embedded space.
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5.1. Visualizing variations within a single class

We utilize PCA (in kernel space) to visualize the main modes of variation in texture and 

shape within the dataset. Briefly, let S be the inner product matrix of the LOT embeddings 

of the images:

(25)

Let the corresponding eigenvalues γi be

(26)

where i = 1...N and ei s are the eigenvectors. The PCA directions are then given by

(27)

with corresponding eigenvalues γi. The variations in the dataset along the ith prominent 

variation direction can then be computed about the mean:

(28)

with the corresponding image computed by , as mentioned 

earlier, and with β being a coefficient computed in units of standard deviations σi computed 

over the projection of data on vi. Note that for each direction β is chosen such that |β| <β*.

5.2. Visualizing discriminant information between different classes

In order to find the most discriminant variation in a dataset containing two classes we apply 

the methodology we described in [19], which is a penalized version of the well-known 

Fisher linear discriminant analysis (FLDA), to the PCA-space of the LOT embeddings. The 

reason behind applying FLDA in the PCA-space is that the number of data samples is 

usually much smaller than the dimensionality of the embedded space. Therefore, the data 

can be presented in a lower dimensional space of the size equal to the number of sample 

points. In the PCA-space of the LOT embeddings, the kth image is represented by

(29)

with i = 1...N. The discriminant directions are then calculated in the PCA-space using

(30)

where  is the total scatter matrix, 

 represents the ‘within class’ scatter matrix, and  is 

the center of class c. Note that, ε is a constant and we use the approach described in [22] to 
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compute the appropriate value for ε in each case. Finally, the discriminant directions in the 

LOT embedding space are given by

(31)

The variations along vpLDA and around the mean are then visualized using the same scheme 

explained in the previous section.

6. Computational experiments

Here we describe results obtained in analyzing 4 different datasets using the proposed 

method. These datasets contain images of chromatin distribution in two types of cancerous 

thyroid cells, spiral and elliptical galaxies, human facial expressions, and part of the 

Caltech-UCSD Birds 200 dataset. These datasets are chosen to cover a broad spectrum of 

applications, in order to demonstrate versatility and the limitations of the proposed 

approach.

6.1. Datasets

The human facial expression dataset used below is part of the Carnegie Mellon University 

Face Images database, and is described in detail in [15]. Each image contains 276 × 276 

grayscale pixels of 40 subjects under two classes of expressions, namely neutral and smiling. 

The light variation in these images is relatively minor and facial area, gender, and 

expression differences are the major variations in the dataset. The second dataset we used 

consists of segmented thyroid nuclei from patients with two types of follicular lesions, 

namely follicular adenoma (FA) of the thyroid and follicular carcinoma (FTC) of the 

thyroid. Tissue blocks, belonging to 27 patients with FA and 20 patients with FTC, were 

obtained from the archives of the University of Pittsburgh Medical Center. The study was 

approved as an exempt protocol by the Institutional Review Board of the University of 

Pittsburgh.

All images were acquired using an Olympus BX51 microscope equipped with a 100× UIS2 

UPlanFl oil immersion objective (numerical aperture 1.30; Olympus America, Central 

Valley, PA) and 2 megapixel SPOT Insight camera (Diagnostic Instruments, Sterling 

Heights, MI). Image specifications were 24 bit RGB channels and 0.074 μm/pixel, 118 × 89 

μm field of view. Slides were chosen that contained both lesion and adjacent normal 

appearing thyroid tissue (NL) where possible. The pathologist (J.A.O.) took 10–30 random 

images from non-overlapping fields of view of lesion and/or normal thyroid to guarantee 

that the data for each patient contained numerous nuclei for subsequent analysis. Nuclei 

were segmented semi-automatically utilizing the approach described in [6]. The segmented 

cells are visually inspected by the pathologist (J.A.O.) and on average 27 cells were taken 

from each patient leading to 756 nuclei for FA and 509 for FTC cases. The third dataset we 

employed contains two classes of galaxy images, including 225 elliptical galaxies and 223 

spiral galaxies [14]. Finally, the last dataset is part of the Caltech-UCSD Bird 200 dataset, 

and it contains 30 images of two similar bird species, namely Gadwall and Mallard. Finally, 

we note that prior to the analysis shown below, each dataset was pre-processed so as to 
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remove translations, rotations, and image flips as described in [21,22]. In addition, each 

grayscale image containing one segmented morphological exemplar was normalized so that 

the sum of its pixels was set to 1.

6.2. Visualizing modes of variation

One of the most important contributions of the LOT framework is to provide a visual image 

exploration tool which automatically captures and visualizes the modes of variations/

discrimination in a set of images. We applied the proposed continuous LOT framework to 

model and visualize modes of variation in the datasets described above. Fig. 3 shows a 

comparison between the PCA modes obtained using image space (utilizing the L2 metric) 

[18], the discrete LOT-space as proposed by [21], and the continuous LOT-space obtained 

from the approach presented in this work. The photo-realistic improvement is self-evident. 

Fig. 4 (a), (b), (c), and (d) also shows the top 4 PCA modes for the human facial expression 

dataset, 3 PCA modes for the galaxy image dataset, 2 PCA modes for the bird image dataset, 

and the first 10 PCA modes for the nuclear chromatin distribution dataset, respectively. 

Several variations are visible: illumination changes, large vs. small, hairy vs. smooth, 

elongated vs. round, neutral vs. smiling, etc.

Fig. 5 shows discriminant directions between smiling vs. neutral faces, women vs. men, 

cancerous vs. normal nuclei images, eliptical vs. spiral galaxy images, and Mallard vs. 

Gadwall bird images. The histograms in Fig. 5 show the distribution of the projected LOT 

embeddings onto the corresponding vpLDA direction. The variations along vpLDA are 

computed about the mean as described above. It can be seen that the LOT framework 

represented in this paper is capable of capturing the visual differences of the images. We 

note that, in order to avoid over fitting, 20% of the dataset is kept out as the test data and 

vpLDA is calculated based on the remaining 80%, training data for each experiment. Fig. 5 

shows the projection of the test data on the vpLDA calculated from the training dataset. The 

p-value (computed using only held out test data) for all experiments in Fig. 5, calculated 

from the Kolmogorov–Smirnov test (computed using held out data only), is zero to 

numerical precision. The visualization on the face image datasets confirm that the LOT 

approach captures the expected morphology changes between smiling and neutral faces, as 

well as female vs. male faces (e.g. appearance of facial hair). Differences between the FA 

and FTC nuclei can be summarized by the amount of relative chromatin that is present at the 

center of the nucleus, as opposed to its periphery. A similar statement can be made for 

summarizing differences in mass distributions between elliptical versus spiral galaxies. 

Spiral galaxies tend to have more mass, in relative terms, concentrated further away from 

the center of the galaxy. Finally, differences between the Gadwall and Mallard bird species 

can be summarized by the fact that the Gadwall species, on average, have thinner beaks, 

rounder heads, and brighter feather coloration in the head region. These examples are meant 

to highlight the type of information that the LOT and penalized LDA approaches, when 

combined, can capture, as well as to demonstrate some of its limitations (described below).

6.3. Computation time analysis

In order to compare the computation time for calculating the LOT embedding with particle-

based and continuous LOT implementations we devised the following experiment. First we 
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ran the particle-based code on the facial expression dataset images with 100, 300, 500, and 

700 particles. The average computational time is reported in Fig. 6 (note the x-axis is in log 

scale). We note that the reported computational time includes the particle approximation 

step we described in [21,22]. For the continuous LOT code, on the other hand, we resized 

the images in the dataset to 64 × 64, 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024 and 

ran the code. The average run time for the continuous LOT is also reported in Fig. 6. In 

order to make a fair comparison one can think of the total number of pixels as the number of 

particles and compare the results in that manner. It is clear that the continuous LOT code is 

significantly faster than the particle-based LOT code. We note that the computational 

complexity of each iteration of the continuous LOT code is of the order of O(n log (n)), 

where n is the total number of pixels in the image. The algorithm usually converges in less 

than 100 iterations. The codes were executed on a MacBook pro, with 2.9 GHz Intel Core i7 

and 8 GB 1600 MHz DDR3.

6.4. Classification results

Here we have tested the ability of the continuous LOT approach described above for 

classification tasks in the aforementioned image datasets. We have also compared the 

approach to our previous, particle-based method [21]. In doing so, we have limited the 

number of particles used in this method to 300. This is so that the average computation times 

between the continuous and particle-based versions are comparable while the visualizations 

are still acceptable. For 300 particles and images of size 256 × 256, the particle-based 

method is on average 10 times slower than the proposed method. In addition, we also 

compare the method described above to the tangent distance method described in [45], also 

used in face classification [12], and the truncated PCA coefficients (capturing 90% of 

variations). In all but one of the classification tasks, we have used a 10-fold cross validation 

technique, where a linear support vector machine classifier is computed on the training set, 

and tested on the held out test image. All classification results are shown in Table 1.

The classification strategy used for the nuclear dataset is different given the slightly different 

nature of the problem. Here labels are available only for sets of nuclei (not individual nuclei) 

and the task is to test whether a patient (not an individual nucleus) can be classified as FA or 

FTC. This leads to a need for estimating a low dimensional density for each class in the 

training set. To that end, we designed a classifier based on computing the K-nearest 

neighbors (K-NN) method on the LDA direction together with a majority voting step. A 

‘leave one patient out’ scheme is used for cross validation, in which all nuclei corresponding 

to one patient are held out for testing and the nuclei from rest of the patients are used as the 

training data (to find the LDA direction as well as the optimum K in K-NN). The results are 

summarized in Table 2.

It can be seen that in all the experiments, the continuous LOT approach described above 

significantly outperforms our earlier particle-based version of the LOT. We also note that in 

all attempted classification tasks, the proposed LOT approach provides better or comparable 

accuracies in comparison to the tangent metric and the truncated PCA coefficients. We note 

that the p-values calculated from Welch's t-test between different methods on each dataset 
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show that the improvement in accuracy for the proposed method compared to the particle-

based LOT is statistically significant (p-value <0:01) for all datasets.

7. Summary and discussion

We described a new method for information extraction from image databases utilizing the 

mathematics of optimal transport. The approach can be viewed as a new invertible 

transformation method that computes the relative placement of intensities in an image 

dataset relative to a ‘reference’ point. Distances computed in the so-called linear optimal 

transport (LOT) space are akin to a linearized version of the well-known optimal transport 

(OT), also known as the earth mover's distance. Moreover, the transformation is invertible, 

thus allowing for direct visualization of any statistical model constructed in LOT space. In 

short, the framework thus enables exploratory visual interpretation of image databases, as 

well as supervised learning (classification), in a unified manner.

In practice, we envision this approach to be most useful in information discovery settings 

where optimal feature sets have yet to be discovered, as well as in tasks where a visual 

interpretation of any information is necessary. One such well-suited application is the 

detection of cancer from cell morphology. We have recently shown that the discrete LOT 

technique can be used to classify certain types of thyroid cancers with near perfect 

sensitivity and specificity [25] on a cohort of 94 patients. At the same time the technique can 

be utilized to provide biological information regarding chromatin reorganization differences 

in different cancer types. In contrast, the classification accuracy utilizing state of the art 

feature sets [33] is significantly lower. Similarly, we have recently shown that the discrete 

LOT approach also allows one to detect mesothelioma, a type of lung cancer usually 

associated with exposure to asbestos, directly from effusion cytology specimens [24], thus 

obviating the need for invasive biopsies which are often necessary for diagnosis. The 

advances discussed in this paper could be used to improve accuracy while at the same time 

significantly reduce the computation time involved in such diagnostic tests from a few hours 

on a Beowulf-type cluster [25] to minutes on a modern standard desktop workstation. We 

have shown that the approach can also produce visualizations of significantly higher 

resolution.

The work presented here builds on our own earlier work on this topic [21,22]. Relative to 

this work, the main innovation described here is an adaptation of the LOT framework to 

utilizing a continuous formulation for the underlying optimal transport problem, rather than 

a discrete formulation as done in [21,22]. In the process, we described a modification of the 

reference estimation algorithm based on estimating the intrinsic mean in the dataset, as well 

as described how to utilize deformation fields in order to compute the necessary LOT 

embedding. In this paper we utilized the algorithm described in [11] to solve the underlying 

OT problem, though other approaches can be used as well [23]. We have also described a 

method for calculating regions in LOT space where the transform, computed using 

deformation fields as described here, is invertible. Finally, we have also described how to 

utilize the continuous formulation of the LOT for tasks related to visualization using PCA 

and LDA.
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We compared the performance of the ‘continuous’ LOT approach described here to the 

‘discrete’ version we described earlier [21,22] in visualization and discrimination tasks 

using several image databases. The approach described here is much faster to compute than 

our previously described version, given that it relies on a gradient descent-estimate for 

transport maps, rather than discrete transport plans obtained via linear programming 

minimization. As a result, it is now possible to utilize images at their full resolution for 

visualization and discrimination tasks. Consequently, visualizations computed using PCA 

and penalized LDA look significantly more photo-realistic, classification accuracies are 

improved, in addition to the computation time being decreased. In addition, we compared 

the LOT distances computed using both continuous and discrete approaches to other 

distances often employed in visualization and discrimination tasks. We have shown that 

using the same classifier (linear SVM) the classification accuracy of the proposed LOT 

metric computed utilizing a continuous formulation for the underlying OT problem 

outperforms that of the tangent metric for images, the PCA subspace of the image space, and 

our earlier particle-based LOT approach.

While the approach is effective in mining information from image databases, it is 

worthwhile to point out a few of its limitations. We note that the convergence speed of the 

optimal transport solver depends on the smoothness of the input images. This effect is also 

demonstrated by Chartrand et al. [5], for example. Therefore, in order to ensure the 

smoothness of the input images, the images are filtered with a Gaussian filter of small 

standard deviation (1–2 pixels) as a preprocessing step. This process leads to the loss of high 

frequency content in the images being analyzed. Results reported in this paper, however, 

have found that this effect is not significant for the datasets we tested. In addition, we note 

that the ‘linearization’ afforded by the LOT approach we described here, while seemingly 

effective for many applications, does not provide for a perfect representation model for 

certain image datasets. We note, for example, that the models produced by our method in 

regions near the mouth (see Fig. 3), though visually superior to the other alternatives we 

tested, are not visually sharp. We postulate that this is due to the large intensity variations 

that are possible near this region (e.g. open versus closed mouth and visibility of teeth). 

Techniques for overcoming these and other issues will be subject of future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The geometry of the OT manifold and the LOT embedding.
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Fig. 2. 
Calculated mean image (a) and the average image (b) for the 40 neutral faces.
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Fig. 3. 
PCA modes in the continuous LOT space, discrete LOT space, and image space for the 

facial expression and the nuclei datasets.

Kolouri et al. Page 22

Pattern Recognit. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The first 4 PCA modes for the facial expression dataset, capturing 78.5% of the variations in 

the dataset (a), the first 3 modes of variations for the galaxy dataset, capturing 68.1% of 

variations in the dataset (b), the first 2 modes of variations for the bird image dataset 

capturing 82.2% of the variations in the dataset (c), and the first 10 PCA modes for nuclei 

dataset, capturing 90.39% of the variations in the dataset (d). For visualization purposes, the 

images are contrast stretched.
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Fig. 5. 
The histogram of the distribution of the projected LOT embeddings on the corresponding 

discriminant direction, and the visualized −4σ to 4σ variation of points around this direction 

about the mean for smiling and neutral faces: (a) male versus female faces (just neutral 

faces); (b) normal and cancerous cells; and (c) elliptical and spiral galaxies. The x-axis of 

the histograms is in the units of standard deviation.
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Fig. 6. 
Computation time comparison for the continuous LOT and the particle-based LOT. The x-

axis shows the number of pixels in log scale for the continuous LOT and the number of 

particles in log scale for the particle-based LOT.
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Table 1

Accuracy table for classification of facial expressions, gender in facial expression dataset, galaxy dataset, and 

bird type (Mallard vs. Gadwall) using a linear SVM classifier with 10-fold cross validation in image space, 

truncated PCA coefficients, particle based LOT-space, and continuous LOT-space.

Embedded space Accuracy%

Neutral vs. smiling Spiral vs. elliptical Male vs. female Mallard vs. Gadwall

Tangent metric 77.35 ± 0.74 77.64 ± 0.51 81.04 ± 1.43 77.71 ± 2.3

PCA coefficients 69.05 ± 1.14 78.4 ± 0.54 79.42 ± 1.57 76.59 ± 1.6

Particle-based LOT 74.27 ± 1.28 72.5 ± 0.6 77.7 ± 1.4 81.76 ± 1.74

Continuous LOT 83.04 ± 0.8 77.82 ± 0.35 82.45 ± 0.8 85.26 ± 1.35
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Table 2

Accuracy table for patient classification in the thyroid nuclei dataset using K-NN on the first LDA direction in 

(a) image space, (b) truncated PCA coefficients, (c) particle based LOT-space, and (d) continuous LOT-space.

Tangent metric
Label

PCA Coefficients
Label

FA FTC FA FTC

Test
FA 21 6

Test
FA 21 6

FTC 2 18 FTC 12 8

(a) Accuracy 82.98% (b) Accuracy 61.70%

Particle-based LOT
Label

Continous LOT
Label

FA FTC FA FTC

Test
FA 27 0

Test
FA 27 0

FTC 0 20 FTC 0 20

(c) Accuracy 100% (d) Accuracy 100%
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