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Abstract

Many power wheelchair control interfaces are not sufficient for individuals with severely limited 

upper limb mobility. The majority of controllers that do not rely on coordinated arm and hand 

movements provide users a limited vocabulary of commands and often do not take advantage of 

the user’s residual motion. We developed a body-machine interface (BMI) that leverages the 

flexibility and customizability of redundant control by using high dimensional changes in shoulder 

kinematics to generate proportional controls commands for a power wheelchair. In this study, 

three individuals with cervical spinal cord injuries were able to control the power wheelchair 

safely and accurately using only small shoulder movements. With the BMI, participants were able 

to achieve their desired trajectories and, after five sessions driving, were able to achieve 

smoothness that was similar to the smoothness with their current joystick. All participants were 

twice as slow using the BMI however improved with practice. Importantly, users were able to 

generalize training controlling a computer to driving a power wheelchair, and employed similar 

strategies when controlling both devices. Overall, this work suggests that the BMI can be an 

effective wheelchair control interface for individuals with high-level spinal cord injuries who have 

limited arm and hand control.

Introduction

High-level spinal cord injuries (SCIs) can result in severe motor deficits including weakness 

and uncoordinated movements. Specifically, injuries to the spinal cord at the cervical level 
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often result in tetraplegia, or a loss of motor function that affects all limbs [1]. Many 

individuals, however, retain some movement, which can be used to control assistive devices 

such as power wheelchairs [2]. The ability to safely self-operate a power wheelchair 

dramatically increases quality of life and promotes independence for individuals with 

limited mobility [3 – 5]. The majority of power wheelchair users rely on a hand-controlled 

joystick as the method by which they control the movement of the power wheelchair [6], 

however many individuals with cervical spinal cord injuries may have limited arm and hand 

control or coordination. This can result in either a decreased ability to control the power 

wheelchair or the need to use alternative controllers. The organization of the spinal cord is 

such that the level at which motor neurons leave the spinal cord mirrors the location of the 

muscles they innervate. Motor neurons that innervate the distal muscles of the upper body 

(arms and hands) project out of the spinal cord inferior to the nerves that innervate the 

proximal muscles of the upper body (neck and shoulders). Individuals who do not have 

sufficient arm and hand control to use a joystick may have substantial shoulder and neck 

movement [2]. While there is not a direct link between neurological injury level and precise 

functional ability [7, 8], generally, individuals with spinal cord injuries between the C2 and 

C5 levels could generate coordinated shoulder movement but would likely have limited 

hand control.

For individuals whom do not have sufficient arm and hand control to use a joystick, there 

are a number of commercially available alternative power wheelchair controllers, the most 

prevalent being the sip-and-puff and head array [6]. While these controllers provide a means 

of transportation for individuals who cannot use a standard joystick, they have several 

limitations. First, the majority of these controllers provide the user with only a limited set of 

discrete commands. Users select from a set of four commands: drive forward, drive 

backward, turn left, and turn right. Users can only control the speed in incremental steps, 

and they cannot smoothly combine commands to execute more complex maneuvers. There 

are current commercial devices that provide users with a full set of proportional commands 

[9, 10], however, these controllers often have a predefined method of operation. Users must 

learn to conform to the controller. After it is set, the controller is not flexible to the user’s 

residual motor function. Similarly, users do not have the opportunity to utilize much of their 

remaining mobility, and instead rely solely on their head, neck, or tongue to control a power 

wheelchair. These shortcomings limit the usability of power wheelchairs and are some of the 

reasons that power wheelchair users report difficulty or inability to perform daily maneuvers 

[6].

There has been recent progress in the field of non-invasive human machine interfaces as a 

means for power wheelchair control [11 – 16]. Specifically, there are numerous 

electroencephalography- (EEG) and electromyography- (EMG) based wheelchair 

controllers. The major advantage of these systems is that they do not require any residual 

movement, as they rely solely on neural activity to generate wheelchair control commands. 

This type of controller would be ideal for extreme cases of paralysis such as locked-in 

syndrome or the most advanced stages of progressive conditions such as amyotrophic lateral 

sclerosis. Many of these interfaces, however, similar to the commercially available 

alternative wheelchair controllers, do not provide the user with proportional control. The 

user simply specifies the direction of motion, typically in one of the four cardinal directions, 
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but does not have proportional control of the speed of the wheelchair [12]. This results in a 

more limited set of possible maneuvers. Additionally, while brain activity can be detected in 

slight anticipation of overt body motions, the rate of information transmission of non-

invasive brain computer interfaces is limited by the time needed to process signals and 

classify brain activities and ranges currently from 0.05 to 0.5 bits/second [17, 18]. In 

contrast, recent studies have shown that classification of body movements can be achieved 

on a much faster time scale of about 5 bits/sec [19]. This inhibits the user’s ability to make 

fast changes, limiting practical use in crowded and rapidly changing environments. While 

there has been progress in shared control algorithms that allow for a more continuous and 

complete vocabulary of commands [13] as well as increased safety measures [20] users may 

desire to have complete control of the wheelchair and not rely on the consistency of noisy 

external sensors. Tongue based wheelchair controllers would also be ideal for individuals 

with very little residual motion. However they may hinder communication and present 

aesthetic and practical issues that can be avoided if the user regains some peripheral 

functional ability [9, 10]. Perhaps most importantly, tongue- and head-based wheelchair 

controllers, do not provide a way to significantly engage the residual upper-body mobility of 

their users.

To overcome some of the limitations of alternative power wheelchair controllers for 

individuals with high-level spinal cord injuries, it may be advantageous to develop a power 

wheelchair control interface that maximally leverages the remaining residual body motions 

[6, 21 – 24]. In fact, previous research has shown that individuals with cervical spinal cord 

injuries are able to continuously control the location of a two dimensional computer cursor 

to complete several tasks using only small shoulder movements [25], [26]. The underlying 

principle behind this body-machine interface (BMI) is to use dimensionality reduction 

techniques to map high dimensional measurements of shoulder movement to the state of a 

low dimensional controller. Principal component analysis (PCA) on random shoulder 

movements reveals movements that account for the most variability while remaining 

orthogonal [27, 28]. In other words, PCA allows us to identify two independent movements 

that are commonly executed by the user and can be continuously mapped to any two 

dimensional control commands [29, 30]. This work has formed the basis for a control 

interface that is fully customizable to the remaining upper body motion for individuals with 

high-level SCIs, which is highly dependent on the nature and location of the injury.

This type of interface has been shown to be effective for controlling a computer cursor to 

complete a variety of tasks including center out reaching, playing virtual ping-pong, or 

playing cards [31]. However, little work has been done to investigate whether users can 

learn to use this type of interface to control a power wheelchair safely and effectively. There 

exist many nontrivial differences between driving a power wheelchair and controlling a 

computer cursor, such as the need to stabilize and to compensate for external motion as well 

as the nature of the feedback (increased visual load and vestibular feedback). Additionally, 

little systematic work has yet been done to determine if users would employ similar control 

strategies to complete such drastically different tasks. Here, we investigated not only 

whether users can learn to use small shoulder movements to accurately control a power 

wheelchair but also how similar their control strategy for driving is to the strategy for 

controlling a computer cursor.
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We compared power wheelchair driving performance using the BMI to performance using a 

traditional joystick, which was taken to be the gold standard for manual control. We 

expected that participants would be able to successfully control the power wheelchair using 

the BMI. However, since the participants with spinal cord injuries enrolled in this study had 

significant arm function and used a joystick to control their wheelchairs daily, we also 

expected that their performance using the BMI might be slightly worse than the performance 

using the joystick. We estimated based on regression analysis what control strategy users 

employed when driving the wheelchair and when controlling a computer cursor. We used 

this approach to test whether the subjects formed a single representation or two distinct 

representations to perform two functionally different tasks.

Methods

The Body-Machine Interface (BMI) described here uses high dimensional upper body 

movements to control the speed and direction of a power wheelchair. Specifically, inertial 

measurement units (IMUs) were used to detect and measure small shoulder movements 

which were mapped to power wheelchair control commands for individuals with spinal cord 

injuries. Two IMUs were placed on each shoulder of the participant to maximally capture 

shoulder movement. The sensors were attached to a vest that was worn above the 

participants clothing. The IMUs were placed on the same location on the vest for each 

training session. An additional sensor was placed directly on the wheelchair to cancel out 

IMU measurements that could be attributed to the motion of the wheelchair. This allowed us 

to separate intended shoulder movements from unintended movements resulting from 

bumpy or uneven surfaces. The IMUs used in this study were Xsens MTx sensors (Xsens 

Technologies B.V., Netherlands), which use tri-axis accelerometers, tri-axis gyroscopes, and 

tri-axis magnetometers to estimate the pose of each IMU. From each IMU, we continuously 

recorded changes in the roll and pitch. We did not record changes in yaw because the yaw 

measurement exhibited substantial drift, and was heavily influenced by changes in the 

heading of the wheelchair. Also, the yaw measurement is the only angle that relies on 

accurate magnetometer readings, which are influenced by changes in the local magnetic 

field from the wheelchair’s motors. From the roll and pitch of the four IMUs, at each sample 

time, we obtained an 8-dimensional vector (the “body vector”). IMU samples were taken at 

50 Hz.

Power wheelchair operation by joystick typically relies on two continuous control signals 

[32]. Specifically, the control commands consist of a translational (CT) and rotational (CR) 

component. The translational component controls the forward speed of the power 

wheelchair, driving both wheels at the same angular velocity. The rotational command 

controls the turning speed of the wheelchair, driving the wheels at equal angular velocities 

but in opposite directions. The two control commands are sent to the power wheelchair as 

independent analog voltages, where the level of the voltage signal is directly related to either 

the forward speed or turning speed of the power wheelchair. By having the ability to 

independently select from a continuum of control commands, a power wheelchair user can 

execute a broad vocabulary of maneuvers.
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For the BMI described here, the movement of the upper body was used to define the 

wheelchair command as a continuous two dimensional vector containing the translational 

and rotational command voltages. To achieve this, we used dimensionality reduction 

techniques, similar to those described in [25, 29, 33]. Specifically, we used PCA to 

decompose the high (8) dimensional shoulder movements into orthogonal components that 

best describe the structure of the variability of random shoulder movements [27, 28]. During 

initial calibration, users performed a 1 minute “dance” where they were instructed to 

perform random shoulder movements within a range of motion that avoided extremes and 

uncomfortable movements. PCA was performed on the IMU measurements during this 

“dance” to rearrange the signals into eight principal components ordered by decreasing 

variance. We then used the two principal components that accounted for the highest 

percentage of variance in the “dance” to construct a forward map (A; 8×2 matrix). The body 

vector (h) was then linearly mapped to the control vector (p) using A, according to equation 

1.

(1)

The individual components of A (aij) represent the weighting of the ith IMU measurement 

on the jth degree of freedom for the controller. This method maps high dimensional shoulder 

movements to low dimensional control commands. A single calibrated map A was used for 

all sessions as learning was robust to small changes in the locations of IMUs. The 

components of p, were used to set the speed (v) and the angular velocity (ω) for the 

wheelchair.

(2)

(3)

Kv and Kω are constant conversion factors between the components of p to speed and 

angular velocity and have the units 1/s and deg/(m*s) respectively Wheelchair motion can 

then be described by

(4)

where [x y θ]t
T is the state of the wheelchair (2D location in space and heading) at time t. 

The components of p were continuous variables that could take on any positive (drive 

forward or turn left) or negative (drive backward or turn right) value depending on the 

configuration of the shoulders. This allowed the wheelchair to execute numerous maneuvers 

at different speeds. In addition to power wheelchair control, the principle described here can 

be used to control any system with two degrees of freedom such as a computer cursor [31] 

or the joint angles of a two-link planar robot [34].
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In order to effectively control the interface, users must learn to solve the inverse problem Bp 

= h, where B is a right inverse of A (AB = I2), p is the desired control vector and h is a (8-

dimensional) body configuration that achieves this desired (2-dimensional) control vector. 

Because there are more degrees of freedom in the body space (the space spanned by h) than 

there are in the control space (the space spanned by p), the interface is over actuated. Thus 

there are infinite right inverses of A that can be used to solve this problem or infinite body 

configurations that map to the same control commands. Prior research suggests that users 

learn one of these right inverses when operating the interface [29]. To estimate what inverse 

users learn, we used least squares regression to obtain B̂ from a collection of N body vectors, 

H = [h(1), h(2),…, h(N)] and N control vectors, P = [p(1), p(2),…, p(N)].

(5)

We considered B̂ to be the maximum likelihood estimated of the control strategy employed 

by the users.

To facilitate power wheelchair driving, real time feedback was displayed to users. The visual 

feedback was delivered via a small screen that was mounted to one of the armrests of the 

wheelchair (Figure 1). On the screen, the position of a cursor reflected the current state of 

the control command. The cursor moved the same as the tip of a joystick would. When the 

cursor was in the center of the screen, the power wheelchair was stationary. As the 

translational speed increased (forward) or decreased (backward), the cursor would move up 

or down respectively. Similarly, as the rotational command changed to cause the power 

wheelchair to turn left or right, the cursor would move left or right respectively.

Several additional considerations were taken into account to ensure that the interface 

provided a safe and efficient means of transportation. First, the average body position during 

the “dance” was set to correspond to the resting state of the wheelchair (both control 

commands were equal to zero). This guaranteed that it would be easy to stop the wheelchair 

by moving to a comfortable location. Also, this ensured that maneuvers in all directions 

would be equally easy for users. To ensure that users could not make unsafe maneuvers that 

might result it crashes or tipping, the wheelchair control commands were confined such that 

maximal rotational commands could not be achieved while there was a maximal 

translational command and vice versa. Specifically, the control commands were constrained 

such that the magnitude of the control vector did not exceed a certain value. If the body 

configuration resulted in a control vector outside this constraint, the individual control 

commands were lowered until the magnitude of the control vector fell within the appropriate 

range, while maintaining the same ratio between the individual commands. This is 

analogous to how most joysticks work. Lastly, a dead zone was enforced so that if the body 

deviated only slightly (15% of the maximal movement) from the mean posture along each 

principal component independently, the component of the control command mapped by that 

principal component would remain neutral. This ensured that it was easier for users to 

maintain each control command at zero independently and thus allowed users to stop with 

ease, as well as to easily execute singular maneuvers such as driving straight or turning in 

place.
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Participants

Three individuals with spinal cord injuries (S1, S2, and S3) were enrolled in the current 

study. Specific injury levels, age, and the time since injury can be seen in Table 1. 

Generally, all participants had suffered injuries at the cervical level of the spinal cord that 

resulted in limited upper limb mobility and active range of motion as well as complete 

paralysis of the lower body and trunk. Despite this, all participants had sufficient shoulder 

movement, in that they could generate at least two independent movements that could be 

reliably recorded by the IMUs. All participants were experienced power wheelchair users 

and used hand controlled joysticks as their control method. No subject had any prior 

experience using the BMI. Three additional unimpaired control participants (age-, and 

gender-matched) that had no previous experience with the BMI or power wheelchairs 

participated in a second experiment. Participants with spinal cord injuries and unimpaired 

participants provided informed consent approved by the Northwestern University 

Institutional Review Board.

Experimental Protocol

A schematic of the experimental design can be seen in Figure 2. The three participants S1, 

S2, and S3 partook in 24 training sessions that spanned four months. Sessions were 

biweekly and lasted roughly 1.5 hours. During each training session, participants used the 

BMI to control a computer interface. For this, the control vector was mapped to the two 

dimensional coordinates of a cursor on a screen [31]. Moving the cursor up and down 

corresponded to the same movements that would later cause the wheelchair to go forward 

and backward respectively. Lateral cursor movement would later equate to turning the 

power wheelchair. Using the computer interface, participants performed simulated center-

out reaching, typed sentences on a virtual keyboard and played various games, from ping 

pong to solitaire. For simulated reaching, users performed 24 center out reaches by moving a 

small cursor from a central target to eight equally spaced targets as quickly and as accurately 

as possible. Subject typed a pangram English sentence by hovering over the correct keys on 

a virtual keyboard. For the remainder of the games, users controlled the location of the 

computer mouse. A click was activated when the cursor was held in a static location for 500 

milliseconds. These tasks involved a combination of accuracy training as well as timing 

training and allowed users to fully learn the relationship between shoulder movements and 

changes in the control vector.

For safety reasons, participants practiced using the BMI to control a virtual wheelchair prior 

to driving the real wheelchair. Previous research has shown a positive effect of using virtual 

reality to train and evaluate power wheelchair driving performance [35]–[37]. Using the 

virtual wheelchair allowed users to have some practice using the BMI to control a power 

wheelchair without the risk of injury. The virtual wheelchair used in this study was a 

modified version of the McGill Wheelchair simulator [38], which uses a commercial grade 

3D gaming engine (Unreal Development Kit, Epic Games, USA) to provide a realistic first 

person perspective view of driving a power wheelchair. The system described in [38] was 

adapted to use the output from the BMI to control the virtual wheelchair. Participants were 

exposed to two different environments while using the wheelchair simulator. First, they 

spent 5 minutes freely exploring an environment that mirrored a floor plan at the 
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Rehabilitation Institute of Chicago. This allowed participants to explore different maneuvers 

in a completely unconstrained manner. Following free exploration, participants were given 

10 minutes to complete an obstacle course in a second virtual environment. This course 

required them to practice an array of maneuvers that mirrored the skills necessary to achieve 

safe and accurate real world driving. The maneuvers were also similar to the maneuvers that 

participants would be tested on when driving the real power wheelchair. Participants S1, S2, 

and S3 were introduced to the virtual driving environment on their 17th training session, 

allowing them to practice driving the power wheelchair in the virtual environment for 8 

sessions before driving the actual power wheelchair. The number of training sessions was 

determined from a previous experiment [29] and augmented to ensure that subjects reached 

steady state performance using the computer interface before driving the real wheelchair.

After 24 practice sessions, subjects S1, S2, and S3 performed 5 sessions driving a power 

wheelchair using our BMI. Each session lasted about 1.5 hour. During driving sessions, 

subjects first performed one set of computer reaching followed by 15 minutes of virtual 

driving. Participants then performed a set of actual wheelchair maneuvers using first their 

personal joystick, and then the same maneuvers using the BMI. The set of maneuvers was a 

subset of the wheelchair skills test [39]. This test includes a comprehensive set of tasks 

encompassing the maneuvers that power wheelchairs users need to be able to make to 

effectively navigate in real world situations. The nine specific maneuvers that were tested 

for this study included driving straight forward, driving straight backwards, turning left and 

right while driving forward and backward, navigating a four cone slalom twice, and driving 

through a simulated doorway (Figure 2B). The simulated doorway consisted of two traffic 

cones placed 1 meter apart, through which the participant needed to drive. All participants 

completed the real wheelchair driving using their personal wheelchair. The maximum 

forward speed of the wheelchair was held below 1 mph at all times during testing. The three 

participants used their personal wheelchairs so the maximum angular rate could not be easily 

set equal for all, however it was kept appropriately low to ensure safety.

A similar experiment was conducted involving the three unimpaired control participants. 

The only difference between the two protocols was the number of training sessions. Control 

participants participated in five training sessions before completing one driving session with 

the power wheelchair. Additionally, control participants were exposed to the virtual reality 

environment after only three training sessions and practiced in the virtual environment twice 

before driving the power wheelchair. The length of each training session, the tasks 

completed during training, as well as the driving maneuvers were identical between groups. 

The experimental design can be seen in Figure 2. Control participants used a Quantum Q6 

Edge power wheelchair (Pride Mobility Products Corp., Exeter, PA) to complete the real 

wheelchair driving.

Data Analysis

Driving performance was quantified by three metrics. For each maneuver, the path length 

traversed, the time to completion, and the smoothness of the maneuver were recorded. The 

smoothness was evaluated by the number of independent sub-movements that the users 

make in order to realize the complete maneuver and was calculated as the inverse of the 
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number of peaks in the velocity profile. For a given maneuver, peaks were taken only when 

the velocity was greater than 25% of the maximum velocity and at least 500 milliseconds 

apart. Prior to peak detection, the velocity profile was smoothed using a second order 

Butterworth filter with a cutoff frequency of 10Hz to eliminate high frequency noise. The 

ability to “blend” and/or reduce in number these sub-movements, thus maximizing the 

smoothness, is a good indicator of the ability to safely and effectively drive a power 

wheelchair [38]. For visualization, the value of each performance metric achieved when 

using the BMI was normalized by the value of the same performance metric achieved using 

the joystick for each maneuver. From this, a performance metric equal to 1 indicates that the 

participant was able to achieve performance values using the BMI that were equal to the 

performance values achieved when using the joystick. For completion time and path length, 

a value greater than 1 indicated that performance using the BMI was worse than 

performance using the joystick. The opposite was true for smoothness. To quantify final 

performance using the BMI, a paired sample t-test was performed for each participant for 

each performance metric between the value achieved using the BMI (9 maneuvers) and the 

value achieved using the joystick (9 maneuvers) only during the final driving session. To 

quantify learning, a paired sample t-test was performed for each subject on each 

performance metric (9 measures per subject) between BMI performance during the first 

driving session and BMI performance during the fifth driving session. Non-normalized data 

was used for significance testing. For all statistical tests, a significance threshold of P = 0.05 

was used. The average distance that the cursor traveled during the two slaloms was 

measured for each subjects and each session. Qualitative comparisons were made between 

the average cursor distance in the first session and the fifth session.

To analyze the dimensionality of the movements, we performed PCA on the raw sensor data 

taken during different tasks. Specifically, the planarity of movements was calculated as the 

percentage of variance accounted for by the first two principal components. The planarity 

was assessed for both slalom maneuvers and comparisons were made between the planarity 

during the first session and the planarity during the fifth session. Additionally, the body 

vector can be decomposed into two orthogonal components (hT and hN) where A * hT = p 

and A * hN = 0. In this scenario, hT is in the task space of A and hN is in the null space of A. 

This decomposition is further described in [40] and is analogous to the decomposition in 

[41]. From this, we measured the relative amount of task space variability and null space 

variability during the two slaloms during the first and fifth driving sessions. The estimated 

inverse map used during driving (B̂drive) as well as the estimated inverse map used during 

reaching (B̂reach) were also compared for each of the five driving sessions. The inverse maps 

were calculated according to equation 3. To quantify the difference between the control 

strategies, the L2 matrix norm of the difference between the two inverse maps was 

calculated for each session. To detect whether these differences were significant or could be 

attributed to noise, we compared them to the mean of the norm of the difference between the 

estimated inverse maps used during subsequent driving sessions across all subjects (noise 

level). If the difference between B̂drive and B̂reach was above this noise level, it would 

suggest that participants were not utilizing the same inverse map, or control strategy for 

reaching and driving.
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Results

Wheelchair Control

All participants were able to control the powered wheelchair with the BMI. Their 

performance was comparable with the performance with the joystick in terms of distance 

traveled. As for timing and smoothness, subjects took generally longer to complete the 

navigation and were less smooth using the BMI, although the performance improved across 

the experiment sessions.

Figure 3A shows the normalized path length ratios for the three SCI participants. Figure 4 

also shows a representative wheelchair trajectory using the BMI (grey) and the joystick 

(black). All non-normalized path lengths fell between 3 meters and 12 meters. For example, 

it took S1 4.0 meters to make a right turn using the BMI and 4.4 meters to make the same 

maneuver using the joystick. A paired sample t-test for each subject revealed that only the 

path length for S2 when using the BMI was significantly different from the path length 

achieved when using the joystick (S1: p = 0.735, S2: p = 0.002, S3: p = 0.719) during the 

first driving session. However, for S2, the path length significantly decreased from the first 

to the fifth driving session (p = 0.016) and there was no significant difference between the 

path length using the BMI and joystick during the final session (p = 0.125). The mean 

normalized time to completion during the first and final sessions can be seen in Figure 3B. 

The range of non-normalized completion times was 20 seconds to 2 minutes. As a 

representative case, S1 took 40 seconds to make a right turn using the BMI and 28 seconds 

to make the same maneuver using a joystick during the final training session. During the 

first driving session, S1, S2, and S3 took 1.99 (STD = 0.468), 2.35 (STD = 0.572), and 2.04 

(STD = 0.477) times longer respectively to complete the maneuver when using the BMI 

compared to the joystick. All three subjects, however, showed a significant decrease in time 

to completion (paired t-test p < 0.001, p = 0.015, p = 0.029) from the first driving session to 

the last. Finally, the mean normalized smoothness can be seen in Figure 3C. In the first 

session, S2 and S3 were significantly less smooth when using the BMI compared to when 

using the joystick. Despite this, both subjects S2 and S3 showed a significant increase in 

smoothness (p = 0.015 and p = 0.029). During the first session, S1 achieved smoothness 

values using the BMI that were not significantly different from the values achieved using the 

joystick and thus did not show a significant increase in smoothness over driving sessions (p 

= 0.326). During the final driving session, no subjects showed a significant difference 

between the smoothness when using the BMI and joystick (p = 0.306, p = 0.095, p = 0.091).

Figure 5 shows the same driving performance metrics for the control participants alongside 

the SCI participants. The control participants practiced with the interface for five sessions 

before driving. Control participants achieved slightly worse but comparable normalized 

smoothness values compared to SCI participants: 0.88 (STD = 0.16) for controls and 0.75 

(STD = 0.14) for SCI participants. Control subjects were 2.34 (STD = 0.59) times slower 

using the BMI compared to the joystick, comparable to the relative time to completion for 

the SCI participants. Despite being slower and less smooth using the BMI compared to the 

joystick, no control participants had any problems completing all of the maneuvers and all 
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participants were able to achieve all of the maneuvers without making erroneous movements 

or colliding with the cones.

Cursor Control

The average distance that the cursor moved during the two slaloms during the first and fifth 

session can be seen in Figure 6. Over five training sessions, all subjects decreased the 

average cursor distance for both slaloms. S1 went from 1.65 meters in the first session to 

1.17 meters in the fifth session. S2 went from 2.56 meters to 2.30 meters and S3 went from 

3.38 meters to 1.98 meters. This equates to an average decrease in cursor path length of 

26.8%.

Dimensional Analysis

In addition to driving performance, we also considered how subjects learned to reorganize 

their body motions, as captured by the sensor signals. All subjects learned with practice to 

reduce the amount of motion that was not essential to the performance of the task and they 

appeared to develop a single control strategy for performing different tasks, i.e. for 

navigation control and for performing reaching movements with the computer cursor.

Figure 7 shows the change in variance accounted for (VAF) by the first two principal 

components during the slalom maneuver as well as the ratio of task space variability to null 

space variability. All subjects increased the VAF by the first two principal components from 

the first session to the final session. However, the extent of this trend was not equal for the 

three subjects. Two of three participants (S1 and S3) showed a noticeable increase in the 

VAF for the first two principal components from the first session to the final session, while 

one participant (S2) did not show a substantial increase. Similarly, S1 and S3 also showed 

an increase in the task space variability to null space variability ratio while S2 did not 

change. Analysis of the inverse map used for driving and reaching is summarized in Figure 

8. The figure shows the mean noise level ± 1 standard deviate (grey box) along with the 

difference between the inverse map used during driving and the inverse map used during 

reaching for each subject across all five driving sessions (grey circles). The mean noise level 

was 0.205 mm/rad (STD = 0.063 mm/rad). This difference was greater than one standard 

deviation above the mean noise level for only 4 out of 15 cases and was greater than two 

standard deviations for only 1 case. The mean difference between the two inverse maps 

across all subjects was 0.237 mm/rad (STD = 0.057 mm/rad). A t-test revealed no significant 

difference between the difference between the inverse map used for driving and reaching 

and the noise level (p = 0.206).

Discussion

The goal of this study was to test the efficacy of using a body-machine interface to translate 

high dimensional shoulder movements into low dimensional control signals. Unlike previous 

studies that investigated using the BMI to control a computer cursor [25, 26, 29], this study 

focused on using the BMI for controlling a power wheelchair. We hypothesized that 

individuals with spinal cord injuries would be able to use the BMI to control a power 

wheelchair, after a moderate amount of training. Additionally, we expected that users would 
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be able to transfer their learned ability to use the BMI for controlling a computer interface to 

the use of the BMI for controlling a power wheelchair, despite large differences between the 

tasks. Results suggest two main findings. First, participants with high level spinal cord 

injuries were in fact able to use small shoulder movements to safely and accurately control a 

power wheelchair. Second, we found that participants did need some practice driving the 

wheelchair to learn the inverse relationship between wheelchair movement and cursor 

movement, however, they still used similar strategies to control the cursor for reaching and 

driving.

In this study we considered joystick use as a gold standard for power wheelchair control. We 

did not expect to surpass manual dexterity, among those in whom this was available, and did 

not expect to supplant the control interface with which participants have many years’ 

experience. Despite these disadvantages facing the BMI, we wanted to compare our system 

to the highest possible standard, joystick control. Previous results indicate that individuals 

with no arm function are able to control the computer interface equally well [31], suggesting 

that individuals with no arm function would be equally skilled in using the BMI to drive a 

power wheelchair. Furthermore, we also consider use of the BMI as a way to promote upper 

body health and mobility in people with joystick control capabilities. Results indicate that 

participants were able to control a power wheelchair using the BMI at a level that was only 

slightly worse than when using a joystick. The ability to achieve path lengths using the BMI 

that were equal to those achieved using the joystick shows that subjects did not make 

mistaken or unnecessary movements when using the BMI. In fact, all subjects were able to 

realize their desired trajectory without veering off course or colliding with any cones. More 

surprisingly, after only a few driving sessions, subjects were able to achieve wheelchair 

trajectories using the BMI that were nearly as smooth compared to the trajectories achieved 

using the joystick. The only participant that did not significantly improve performance (S1), 

exhibited equal smoothness between the BMI and joystick during the first session, which 

likely caused a ceiling effect. Smoothness is a good measure of how well users are able to 

control power wheelchairs and suggests that they were using the same general strategy to 

control the power wheelchair when using both control interfaces [42]. This is especially 

promising considering that the participants with spinal cord injuries were all expert power 

wheelchair users and had at least 2 years of experience using a joystick, and retained ample 

arm control sufficient to operate a standard joystick.

Participants were, however, significantly slower when using the BMI, even after training. 

Despite this, all showed a significant decrease in completion time after only five training 

sessions. The slow completion time can likely be attributed to differences in previous 

experience with the two control interfaces. Joysticks are ubiquitous in video and computer 

games and are one of the most popular input devices for manual 2D control. It was therefore 

not surprising that subjects, even those with no previous power wheelchair experience, were 

more hesitant when using the BMI, a completely novel control interface with which subjects 

had little experience. This resulted in not only slower speed but also frequent stops to adjust 

the heading of the wheelchair (reflected in the initial smoothness). As we expected, the gap 

between BMI and joystick performance shrunk over practice using the BMI or as users 

became more comfortable controlling the power wheelchair with upper-body movements.
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In the current study, we compared BMI driving performance to performance using a 

standard joystick, however it is likely that a better comparison would be between BMI 

driving performance and performance using a sip-and-puff or head array. The targeted 

population for the proposed control interface consists of individuals with absent or marginal 

control of arm and hand motion, who currently use alternative controllers. The BMI 

addresses specific disadvantages of the alternative controllers [43] by having proportional 

control and increased customizability. While the BMI has technical advantages over discrete 

alternative controllers, the advantages that the BMI has over a standard joystick is dependent 

on the user’s motor abilities. The BMI can be used by individuals who may not have enough 

hand or arm function to control a standard joystick; however, for individuals who have 

sufficient arm control, it is unlikely that the BMI will outperform a standard joystick. In the 

current study, all participants with spinal cord injuries retained sufficient arm control to 

safely and effectively use a hand controlled joystick. Further work is needed to compare the 

proposed interface to commercially available alternative power wheelchair controllers for 

individuals with severely limited arm and hand motor ability. There are also several 

practical considerations that must be addressed in the future. Importantly, while no 

participants reported any abnormal fatigue when using the interface, theoretically, long trips 

could fatigue shoulder muscles. It would also be advantageous to transition to smaller, 

wireless, and more cost effective IMUs. We do not feel, however, that these considerations 

take away from the main findings of this work.

Looking solely at the use of the BMI, it is interesting to note that participants become more 

efficient at driving the power wheelchair through only a few practice sessions. The results in 

Figure 7 show that two of three subjects increased the planarity of shoulder movements 

through driving practice. The other subject (S2) likely experienced a ceiling effect as the 

first two principal components accounted for 92% of the variance during the first session. 

Interestingly, the two subjects who increased the VAF by the first two principal components 

also increased the ratio of task-space variability to null-space variability. This suggests that 

these subjects’ shoulder movements were not only becoming more planar but their 

movements were becoming more efficient in the control space. Because the movements of 

S2 were essentially planar at the start of driving, this subject likely had a very strong 

mastery of a specific control strategy and thus did not make any adjustments when 

introduced to the power wheelchair. In addition, all subjects showed a significant decrease in 

the path length of the cursor while not changing the path of the power wheelchair during the 

two slaloms. Thus, a measure of control efficiency, or the ratio of cursor movement to 

wheelchair movement, increased through training for all participants. Overall, this suggests 

that while subjects had mastered the computer interface prior to driving the power 

wheelchair as demonstrated by their ability to successfully complete all maneuvers during 

the first driving session, some practice was needed to learn the most efficient relationship 

between cursor movement and wheelchair movement.

The virtual environment that we used in this study was not fully immersive. Therefore, it 

may not be surprising that after practicing the driving of the virtual wheelchair, additional 

experience driving the real power wheelchair was needed [36, 42, 44]. Despite this, the 

current study revealed that participants utilized the same inverse map when controlling the 

computer interface and the power wheelchair. This validates the hypothesis that training 
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with the computer interface is useful for learning to drive a power wheelchair. While the 

ability to transfer learned skills from a virtual environment to a real world scenario has been 

established for skills such as driving a car or flying a plane [45, 46], it had yet to be 

investigated for a redundant control interface with infinite possible control strategies. The 

fact that users conserve control strategies when switching between cursor control and 

wheelchair control is especially important in that it is critical to have a training paradigm for 

a novel wheelchair control interfaces that minimizes risk. The unimpaired participants 

yielded similar results and helps validate that the proposed control scheme could be useful 

for individuals with a wide range of abilities.

While here we compared the performance with the BMI to the performance with the joystick 

controller, we must also stress that engaging the residual upper-body motions in the control 

task has some important collateral features, beside the ability to drive a power wheelchair. 

The BMI is also and perhaps more importantly a means to keep the body engaged in 

performing coordinated motor control tasks. Unlike the brain-machine interface and joystick 

controllers, the body machine interface can also be programmed to promote physical 

exercise and to challenge the users to engage parts of the body that lie on the boundary of 

the paralysis or that tend to be underused [47]. This benefit is critically important to promote 

recovery and prevent comorbidities in severe paralyses and can be obtained by programming 

the body-machine map and/or by placing the IMU sensors so as to target specific degrees of 

freedom of the user's body [48]. Further studies will be conducted to evaluate the efficacy of 

our BMI system to serve as a rehabilitative tool for individuals with high-level SCIs.

Conclusion

This study investigated the efficacy of using a BMI to control a power wheelchair for 

individuals with tetraplegia. Shoulder kinematics were measured using inertial measurement 

units and were mapped to wheelchair control commands using principal component 

analysis. After training by using the BMI for controlling a computer interface to complete 

various tasks, participants completed five driving sessions where they performed a number 

of power wheelchair maneuvers using a joystick as well as the BMI. All participants were 

able to achieve paths that were not significantly different when using the BMI and the 

joystick and, after five driving sessions, were able to achieve similar levels of smoothness. 

Despite being slower when using the BMI, subjects showed a significant improvement in 

completion time over the driving sessions. Participants were also able to increase their 

movement efficiency through practice driving. Finally, participants were found to employ 

similar control strategies when using the BMI for controlling the computer and driving the 

wheelchair. Overall, the results suggest that the BMI can be an effective power wheelchair 

control interface for individuals with high-level spinal cord injuries.
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Figure 1. 
Diagram of the Body Machine Interface (BMI). Shoulder kinematics are recorded by inertial 

sensors, processed by an on board computer and commands are sent to the power wheelchair
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Figure 2. 
Experimental design. The number on the left is the number of sessions that each group spent 

completing the tasks on the right. Sessions spanned 1 – 1.5 hours. Reaching, typing and real 

driving were performed to completion while subjects had 15 minutes each for playing 

games, and virtual driving.
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Figure 3. 
Driving performance across of sessions. The three plots show each of the three performance 

metrics, path length (A), completion time (B), and smoothness (C). All measures were 

normalized by joystick performance. Different colored lines represent different subjects. 

Error bars represent 95% confidence intervals.
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Figure 4. 
Representative power wheelchair trajectories. The wheelchair trajectories for the slalom 

maneuver are shown for S1 using the BMI (grey) and the joystick (black). There was no 

significant difference between the two path lengths.
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Figure 5. 
Performance metrics for SCI and control participants. The three performance metrics are 

shown for the SCI participants (black, left) and the control participants (grey, right). For 

both the SCI and control participants, the data are from the first driving session after 

completing computer training. Error bars represent 95% confidence intervals.
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Figure 6. 
Cursor distance as a function of session. The mean cursor distance (in pixels) for the two 

slaloms was measured during the first the final driving sessions. Different colored lines 

reflect different subjects. Error bars represent 95% confidence intervals.
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Figure 7. 
High dimensional driving analysis. The top plot shows the change in variance accounted for 

(VAF) by first two principal components while driving the slalom for each subject in the 

first and final sessions. The bottom plot shows the ratio of task space to null space 

variability.
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Figure 8. 
The difference in inverse map used for reaching and driving across all sessions. Each circle 

indicates the norm of the difference between the estimated inverse map used for reaching 

(B̂reach) and driving (B̂drive). Different colors represent different subjects. The grey area 

represents the noise, and is the mean difference between the estimated inverse for 

subsequent driving sessions averaged across all subjects ± 1 standard deviation.
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Table 1

Subject Injury Details

Injury
Level

Age Time Since
Injury

Current Wheelchair
Control Method

S1 C6 59 2 years Joystick

S2 C6 41 8 years Joystick

S3 C5 30 10 years Joystick
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