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Abstract

Background—Although ambient air pollution has been linked to reduced lung function in 

healthy children, longitudinal analyses of pollution effects in asthma are lacking.

Objective—To investigate pollution effects in a longitudinal asthma study and effect 

modification by controller medications.

Methods—We examined associations of lung function and methacholine responsiveness (PC20) 

with ozone, carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels in 
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1,003 asthmatic children participating in a 4-year clinical trial. We further investigated whether 

budesonide and nedocromil modified pollution effects. Daily pollutant concentrations were linked 

to zip/postal code of residence. Linear mixed models tested associations of within-subject 

pollutant concentrations with FEV1 and FVC %predicted, FEV1/FVC and PC20, adjusting for 

seasonality and confounders.

Results—Same-day and 1-week average CO levels were negatively associated with post-

bronchodilator %predicted FEV1 (change(95%CI) per IQR: −0.33(−0.49, −0.16), −0.41(−0.62, 

−0.21), respectively) and FVC (−0.19(−0.25, −0.07), −0.25(−0.43, −0.07)). Longer-term four-

month averages of CO were negatively associated with prebronchodilator %predicted FEV1 and 

FVC (−0.36(−0.62, −0.10), −0.21(−0.42, −0.01)). Four-month averaged CO and ozone levels were 

negatively associated with FEV1/FVC (p<0.05). Increased four-month average NO2 levels were 

associated with reduced post-bronchodilator FEV1 and FVC %predicted. Long-term exposures to 

SO2 were associated with reduced PC20 (%change(95%CI) per IQR:-6(-11,-1.5)). Treatment 

augmented the negative short-term CO effect on PC20.

Conclusions—Air pollution adversely influences lung function and PC20 in asthmatic children. 

Treatment with controller medications may not protect but worsens the CO effects on PC20. This 

clinical trial design evaluates modification of pollution effects by treatment without confounding 

by indication.
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Introduction

Over the past thirty years evidence has accumulated demonstrating that ambient air pollution 

has adverse effects on the respiratory health of asthmatic and non-asthmatic children.1-4 In 

observational studies of asthmatic children, higher short-term exposures to air pollution have 

been associated with more symptoms, increased need for reliever medication, hospital 

admissions, lung function decrements, and airflow obstruction.5-9

Although ambient air pollution has been linked to reduced lung function in healthy children, 

longitudinal analyses of air pollution effects in asthma are lacking. For instance there are no 

clinical trials that assessed associations of long-term pollution with lung function, airflow 

obstruction and airway responsiveness (AHR), and modification of putative pollution effects 

by controller medications. Pollutants induce adverse effects by affecting oxidant signaling 

pathways and airway inflammation.10,11 Inhaled corticosteroids (ICS) have been shown to 

reduce oxidative stress and improve airway function and asthma symptoms.8,12 However, 

recent observational studies suggest that asthmatic children using inhaled corticosteroids 

(ICS) may be more vulnerable to the adverse health effects of air pollution compared to 

those that are not on ICS.13,14 These findings may reflect confounding by indication, since 

children with more symptomatic asthma may be more likely use an ICS. Only evaluation of 

pollution effects in the context of a clinical trial can test whether ICS increase or decrease 

susceptibility to air pollution.
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The Childhood Asthma Management Program (CAMP) is such a randomized clinical trial 

involving eight cities in North America (Albuquerque, New Mexico; Baltimore, Maryland; 

Boston, Massachusetts; Denver, Colorado; San Diego, California; Seattle, Washington; St. 

Louis, Missouri; and Toronto-Ontario, Canada). Its main goal was to evaluate the long-term 

effectiveness and safety of daily inhaled anti-inflammatory medication in children diagnosed 

with mild-to-moderate asthma.15,16 Using the pre-randomization observational data from 

this trial, we reported that short-term air pollution exposures increased asthma symptoms 

and use of relief medication,6 with carbon monoxide and nitrogen dioxide having the 

strongest associations.

The current paper, investigates in the same CAMP study whether short- and long-term 

exposures to four of the Environmental Protection Agency's criteria air pollutants (ozone, 

carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2)) are associated 

with lung function level and AHR in children with asthma. In addition, we investigate 

whether anti-inflammatory treatment with ICS or nedocromil modifies the effects of 

pollution on asthma outcomes.

Methods

CAMP study design and methods have been described elsewhere.16 Additionally, detail on 

all methods used in the present report is provided in an online data supplement. In summary, 

children enrolled in CAMP were 5–12 years of age and were hyperresponsive to 

methacholine at study entry. 1,041 Children entered the randomization phase and 311, 312, 

418 children received budesonide, nedocromil, and placebo, respectively. All subjects were 

treated and followed for four years with visits at two and four months after randomization 

and at four-month intervals thereafter. Each parent or guardian signed a consent form and 

participants of 7 years of age and older signed an assent form approved by each clinical 

center's institutional review board.

Outcomes Measures

Spirometry, before and after the bronchodilator administration, was conducted at 

randomization (RZ) and at follow up visits (n=13) according to the American Thoracic 

Society Standards. We considered both pre- and post-BD FEV1 and FVC %predicted as 

outcomes in this current analysis as we investigated short- and long-term effects of air 

pollution. Additionally, the FEV1/FVC % ratio was used as another measure of airflow 

obstruction. Using the Wright nebulizer-tidal breathing technique a methacholine challenge 

was performed annually during the treatment phase. Spirometry was performed 90 seconds 

after each challenge until FEV1 had fallen by 20% or more (PC20).

Air Pollution Exposure Assessment

Monitoring data on 24-hour averages concentrations of 4 gaseous pollutants (ozone, CO, 

NO2, and SO2) were obtained for each metropolitan area. The ZIP or postal code centroid 

coordinates were used to link participants to daily concentrations from the nearest monitor 

within 50 km that did not have missing data on that day (December 1993 through June 

1999).

Ierodiakonou et al. Page 3

J Allergy Clin Immunol. Author manuscript; available in PMC 2016 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical Analysis

We fitted a linear mixed model - with random intercepts for each subject - to estimate the 

associations between lung function (FEV1 and FVC %predicted and FEV1/FVC%) and (log-

transformed) PC20 and same day, 1-week and 4-month moving averages of pollution. 

Number of days from randomization was the time trend of the model. Potential for 

confounding factors was considered carefully, basing choice of covariates on prior CAMP 

experience.17,18 To estimate associations across all cities, we constructed a model including 

city as a covariate, but also compared estimates of this model with study-wide estimates 

from meta-analyzing city-stratified models. We adjusted for “season” by using sine and 

cosine functions of time19 and their interactions with city. In addition, we decomposed daily 

pollution concentrations into between- and within-subject exposures. We report estimates of 

within-subject exposure effects (on interquartile range scale (IQR)).

To assess potential effect modification of the pollution- outcomes associations by treatment 

we included a pollutant concentration by treatment interaction into the models while 

excluding the baseline (RZ) measurements and used ANOVA likelihood ratio to test effect 

differences across the 3 treatment groups.

We used SAS® software (version 9.2; SAS Institute Inc. 2008, Cary, NC USA) and IBM 

SPSS statistics (version 20; Armonk, NY USA: IBM Corp 2011) to manage all data. 

Statistical analysis was performed in IBM SPSS and R programming language (version 

2.15.1; 2012-06-22).

Results

All subjects considered in this analysis were randomized into CAMP and followed up during 

the trial period. A total of 1,003 of the 1,041 total children (96.3%) children were studied. At 

study entry the mean (SD) age was 9 (2.1) and geometric mean (minmax) for PC20 was 1.1 

(0.02-2.5) mg/ml. Table I shows the main characteristics of the participants. 82.5% of the 

children attended all visits during the 4 years of the trial (median number of completed 

visits=14 (range: 1-14)). Participants had a median of 14 (range: 1-14) pre-BD and 10 

(range: 1-10) post-BD lung function measurements and 4 (range: 0-4) PC20 tests.

Pollution concentrations during December’93-June’99 are summarized by city in Table II. 

We report the number of observations, percentiles and IQR of daily concentrations of the 4 

pollutants. Table E1 shows the IQR of the overall and the within-subject concentration of 

pollutants.

Correlations of 24-hour mean pollution concentrations are shown in Table E2. Overall, 

ozone was negatively correlated with the other 3 pollutants that were positively correlated 

with each other. The same pattern of correlation existed in the 8 separate cities (data shown 

in Table E3 in the online repository). These relationships are expected because ozone is a 

secondary pollutant of regional origin, whereas the other pollutants are primary and mostly 

associated with local sources.
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Association of pollution with level of lung function

Figure 1 presents the associations of pollution with post-BD FEV1 and FVC %predicted. 

Same day and 1-week and 4-month moving averages of CO had the most consistent negative 

associations with %predicted post-BD FEV1 (change (95%CI) per IQR: −0.3(−0.5,−0.2), 

−0.4(−0.6,−0.2), −0.6(−0.7,−0.1), respectively) and FVC (change (95%CI) per IQR: 

(−0.2(−0.3, −0.1), −0.3(−0.4, −0.1), −0.2(−0.4,−0.01), respectively). The 4-month average 

NO2 was also negatively associated with post-BD FEV1 and FVC %predicted (change 

(95%CI) per IQR: −0.2(−0.4, 0.01) and −0.2 (−0.4,−0.1), respectively). The evidence for 

negative effects on post-BD lung function was weaker for 4-month average exposure to 

ozone (all-months) compared to CO or NO2. SO2 was not associated with post-BD FEV1 

and FVC %predicted.

The city-wide estimates of the meta-analysis were similar to the estimates given by the 

model with adjustment for city and city by sine/cosine function of time interactions. Table 

E4 shows the city-specific and meta-analysis estimates for long-term exposures. Meta-

analysis estimates of associations of post-BD FEV1 and FVC %predicted with the 4-month 

average gas concentrations are comparable to all-cities model estimates in Figure 1.

Table E5 presents the associations of pollution with pre-BD FEV1 (and FVC %predicted. 

Increases in the average CO levels in the 4-months prior to and including the day of the visit 

were associated with significant decreases in pre-BD FEV1 (change(95%CI) per IQR: −0.4 

(−0.62; −0.10) and FVC (change(95%CI) per IQR: −0.2 (−0.42, −0.01) %predicted. In 

contrast, compared to their associations with post-BD FEV1, same day and 1-week averages 

had associations with pre-BD FEV1 (change(95%CI) per IQR: −0.13(−0.29;0.02), 

−0.2(0.39,0)) and FVC (change(95%CI) per IQR: −0.12 (−0.24, 0.003), −0.15 (−0.30, 0.01)) 

%predicted that were the same order of magnitude, but somewhat smaller and somewhat 

weaker in significance. Increases in the NO2 exposures were not associated with reduced 

pre-BD FEV1 and FVC %predicted. Increase in 4-month SO2 was associated with increases 

in pre-BD FVC %predicted (change(95%CI) per IQR: 0.23 (0.05,0.42).

Associations of long-term (4-month average) exposure with FEV1/FVC% are shown in 

Figure 2. Reduced post-BD FEV1/FVC was associated with increased 4-month averages of 

ozone and CO, but not with NO2 or SO2 (change (95%CI) per IQR pollution increase:

−0.4(−0.8,−0.1), −0.2(−0.3,−0.03), 0.03(−0.1,0.1), 0.03(−0.1,0.1), respectively). Similar 

associations were found with pre-BD FEV1/FVC% (change(95%CI) per IQR:

−0.3(−0.7,0.06), −0.2(−0.3,−0.02), −0.03(−0.1,0.1), −0.01(−0.1,0.1), respectively).

There was weak evidence of modification by treatment of pollution effect on lung function 

(Figure 3). Although there were differences in the magnitude of long-term pollution effect 

between placebo and budesonide or placebo and nedocromil (p-values for interactions 

ranging from 0.03 to 0.50), the overall likelihood ratio tests were not significant (ANOVA 

p>0.05; tables E6-E9 in the online repository).
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Association of pollution with PC20

Overall, the only pollutant that was significantly associated with PC20 was the 4-month 

average SO2 level (%change (95%CI) per IQR: −6(−11,−1.5)). CO had a marginal overall 

effect on PC20 for all averaging periods (Figure 4). Compared to children on placebo, 

children on budesonide and nedocromil had a greater drop in PC20 with same day and 1-

week average exposures to CO (ANOVA p= 0.04 and 0.08, respectively). This was more 

prominent for nedocromil. Treatment did not modify associations of SO2with PC20. Tables 

E10 and E11 in the online repository show the associations for all pollutants with PC20 and 

the results of interactions with treatment.

Associations of asthma outcomes with warm-month (May – September) ozone were not 

statistically significant (Table E12 in the online repository). Two-pollutant models showed 

similar pollutant-asthma outcomes associations as one-pollutant models (Table E13 in the 

online repository).

In our study, CO was the pollutant with the strongest and most significant associations with 

lung function and the only pollutant showing associations with both pre- and post-BD lung 

function with shorter (same day to 1-week)- and longer (4-month)-term exposures (Figure 1, 

and Table E5). Thus to evaluate whether the longer-term effects were independent of 

shorter-term effects we put either one-day or one-week averages in the same model with 4-

month averages of CO. Since the same-day and 1-week average measurements are included 

in the original 4-month average estimate, this added to the correlation amongst the measures 

and introduced co-linearity into our model. To disentangle the shorter- and longer-term 

averages and their associations with our outcomes, we performed an additional analyses 

with newly created 4-month averages (ie., calculating the 4-month average leaving out the 

same day measurements, and calculating the 4-month average leaving out the 1-week 

average), adjusting for same day and 1-week average CO, respectively. The associations 

with pre-BD and post-BD lung function from models with single averaging periods, 

compared to those with shorter (one day or one week) plus longer (4-month) averaging 

periods are shown in Tables III and IV.

Discussion

Short-term adverse effects of pollution on children's pulmonary health have been 

extensively studied, meta-analyzed, and systematically reviewed. These studies provide 

strong evidence that short-term exposures to air pollution can increase airflow obstruction in 

asthmatic and non-asthmatic children,20 and that long-term traffic pollution may increase 

incident asthma and reduce level of lung function in general populations of children.2,21-24 

There are fewer studies considering the effects of long-term exposures to pollution on lung 

function in asthmatic children,1,2,20 and none that we know of evaluating long-term effects 

of pollution on lung function and AHR in asthmatic children in the context of a clinical trial.

In this unique asthma intervention trial, increases in the average long-term (4-month) 

concentrations of ozone, CO and NO2 were all associated with reductions in lung function 

levels consistent with airflow obstruction, and with some decrease in vital capacity 
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represented by a drop in FVC. There are few air pollution studies including post-BD 

measurements with which to compare our findings. A recent study of subjects from the 

Manchester Asthma and Allergy Study (MAAS) birth cohort showed greater long-term 

pollution (NO2 and PM10) effect on post-BD FEV1 %predicted compared to pre-BD FEV1 

%predicted.25 Their findings motivated the hypothesis that the bronchodilator administration 

might reduce the influence of varying circadian and day-to-day bronchodilator tone on the 

measurement of FEV1, potentially increasing the power of the study to show pollution 

influences on lung function. In our study, this may have been the case for shorter-term but 

not for longer-term cumulative averages of pollution exposure. Focusing on FEV1 as an 

outcome, with one week and 4-month cumulative averages of CO in the same model, 

longer-term CO exposure was more consistently associated with lower pre-BD FEV1 

%predicted, and short-term CO exposure was more strongly/more consistently associated 

with lower post-BD lung function measures. Additional unmeasured short-term influences 

on pre-BD responses that were reversible by bronchodilator administration may have added 

noise and contributed to the variability in the pre-BD measurement, and this may have 

resulted in somewhat less robust associations of pollution exposures in the past week with 

pre-BD FEV1. .

The within-subject variation of gaseous pollutants in our asthma trial was low (i.e., same day 

CO IQR=0.50 ppm), and while effects were statistically significant (P<0.001), given their 

small magnitude (for every 0.5 ppm increase in the same day CO concentration, there is a 

~0.3 decrease in the average post-BD FEV1 %predicted, which would be equivalent to a 

patient dropping from 103.0 to 102.7 average FEV1 %predicted post-BD over a 4-year 

follow up), the lung function responses to pollution may not have short-term clinical 

relevance. Whether the small pollution-related changes in lung function that we observed 

have longer-term implications for lung growth and maximum attained lung function in these 

vulnerable asthmatic children remains to be assessed.

One study in adult asthmatics has reported associations of reduced lung function with short-

term exposures to CO, but the mechanisms for this association is not known.26 Endogenous 

hypoxic-induced CO is a mediator of vasodilation and bronchodilation and high doses of 

inhaled CO in mice decrease inflammation and AHR.27-33 Exogenous CO at levels 

encountered by children in our cohort did not have beneficial effects.

Motor vehicles emissions are major sources of CO. These source produces many 

contaminants - such as fine particles and organic compounds - thus in this case it is likely 

that CO is a surrogate for other pollutants,2,34,35 and that the observed associations might 

not be due to CO per se, but due to other pollutants in traffic emission mixtures. Similarly, 

NO2 may be a marker for complex pollutant mixtures of pollutants emitted by the same 

sources or related through complex atmospheric reactions. Primary traffic-related pollutants 

such as elemental/black carbon or freshly emitted primary particles and secondary 

pollutants, including ozone, are often correlated with NO2.2,34,35 In the present study, air 

pollutant levels were correlated such that it was difficult to separate out the contributions of 

the individual pollutants. All effects estimates on asthma outcomes remained significant 

after controlling for co-pollutants/gases in multi-pollutant models.
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Sarnat et al.35 showed relatively strong associations of personal exposure of particles of 

ambient origin and ambient measurements, but considerably lower associations for gases. In 

particular, NO2 primarily from traffic emissions, was more strongly associated with personal 

exposure to traffic particles. This suggests that ambient gases from traffic are associated 

with personal exposure to particles, and perhaps other compounds from traffic. Since CO is 

an antioxidant in the lung and not a plausible pollutant to reduce lung function we interpret 

it as a surrogate for particles and perhaps organic gases from traffic. The two pollutants 

associated with traffic sources—CO and NO2—were most strongly and consistently 

associated with reduced level of lung function and more severe hyperresponsiveness in our 

children with asthma. Those were the same pollutants that influenced asthma exacerbations 

(i.e., more symptoms and use of relief medication) pre-randomization in this CAMP trial.6 

However, SO2 which originates predominately from diesel combustion (diesel fuel content 

of sulfur was higher during 1990's) and non-traffic fossil fuels (e.g., coal burning power 

plants and domestic heating), was also associated with enhanced response to metacholine 

long-term. Most studies investigating the latter association are based on short-term 

exposures to diesel and they have shown that air pollution may enhance the responsiveness 

to metacholine as well as to inhaled allergens in sensitized subjects.36-39 One animal study 

has suggested an increase in AHR with long-term sulfur dioxide exposure, supporting our 

findings for this pollutant.40 However, our study is unique in the investigation of AHR and 

its relation with short-term as well as long-term in asthmatic children.

We also found a positive association of long-term exposure to SO2 with pre-BD FVC. 

Again, experimental and epidemiological studies investigating lung function response to 

SO2 focus on acute responses and this makes them difficult to be compared with our finding. 

Most epidemiologic findings show modest negative or null association of SO2 with lung 

function.41-43 Generally, it is suggested that after acute exposure to SO2 the lung function 

returns to normal after some minutes to hours and that there is a great deal of inter-

individual variation in response to SO2.44-46

Ozone is the most important tropospheric oxidant which is formed through photochemical 

reactions involving NO2 and hydrocarbons. Cumulative exposure is a function of both the 

rate and duration of exposure and it has been shown that effects of pollution on children's 

health have greater impact if the children exercise outdoors.47-50 We also show that longer 

exposure to ozone is associated with airflow obstruction, indicated by decrease in 

FEV1/FVC with increase in 4-month average ozone concentration. Ozone and other air 

pollutants initiate intracellular oxidative stress and are linked to chronic damage and effects 

on to the human lung with prolonged exposure.51-53 The decrease in post-BD FEV1/FVC 

may reflect airway wall remodeling process related to repeated exposures to ozone and other 

pollutants.54 For ozone, associations of reduced lung function with pollution also tended to 

be stronger for children on budesonide compared to placebo. The latter suggests a less clear 

relationship between exposure to ozone and airway inflammation. Two recent studies have 

suggested that children on ICS were more vulnerable to the adverse effects of ozone and 

other air pollutants.13,14 The authors speculated that the observed associations might be 

explained by the fact that children on ICS are more likely to have worse asthma and that 

confounding by indication might exist. The design of our trial prevents confounding by 

indication because of the double-blinded randomized distribution of treatment to children of 
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similar asthma severity. Although the evidence for the interaction of ICS treatment on ozone 

mediated effects is weak, it is plausible that the children on the ICS had greater exposure to 

ozone compared to placebo, either because they were more likely to spend more time 

outside and exercise more due to better control of their asthma,15,18 or because they had 

greater minute ventilation because they were able to breathe more deeply when exercising.

In our study, modification of CO effects on AHR by anti-inflammatory treatment suggests 

that use of controller medication may not protect asthmatic children from pollutant effects. 

The worsening of AHR with short-term exposure to CO was stronger for children on 

budesonide and nedocromil compared to placebo, a finding that needs further investigation. 

Nevertheless, a public health interpretation of this finding is that controller medication use 

should not be assumed to be sufficient as a preventive measure on days with high pollution 

levels. Policy for pollution control and advice55 to asthmatic children to avoid outdoor 

activities on days of high pollution levels remain the most powerful preventive measure.

The present report provides a unique contribution in that it can be considered a meta-

analysis of eight large, within-city panel studies. Yet, it does not suffer from many of the 

challenges associated with meta-analyses in the published literature (e.g., between-study 

heterogeneity and obvious publication bias). The large and geographically diverse panel of 

children participating in CAMP trial was followed from December 1993 to June 1999, on 

average for 4 years. This allowed us to examine the health effects of ambient concentrations 

of CO, NO2, SO2 and ozone across seasons and geographic regions and results from this 

study may be applicable to a broad population.

Many studies investigating the long-term effects of pollution have focused on traffic-related 

exposures and used surrogate measures such as distance to major roads, road density or 

vehicle density.2,20,21,23,56,57 In this study we measured daily pollutant concentrations to 

predict long-term (4-month (but also acute (same day) and intermediate (1-week)) effects on 

asthma severity in children. We acknowledge that exposure is at the zip/postal code rather 

than the residence level. However, we limited exposure misclassification bias in two ways: 

1) by using zip/postal code level concentrations of pollution instead of averaging monitor-

specific concentrations by city; and 2) by restricting the period of interested to the period of 

the trial for which the great majority of the participants attended all visits. In addition, we 

investigated pollutants that tend to be regional and we also focus on long-term exposure 

which is less prone to misclassification. Recent evidence supports the value of further 

investigating, where feasible, whether pollution effects vary by gender.58 Unfortunately, this 

is outside of the scope of our manuscript and we lack sufficient power for assessment of a 

three-way interaction (pollution by treatment group by gender).

We conclude that exposure to gaseous pollutants adversely influences level of lung function 

and AHR in asthmatic children, and treatment use worsens the short-term effects of CO on 

AHR. The longitudinal evaluation of children treated with daily asthma therapy in a clinical 

trial enabled us to separate the modification of pollution effects by treatment without 

confounding by indication.
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Supplementary Material
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Clinical Implications

Exposure to gaseous pollutants adversely influences lung function and airway 

hyperresponsiveness levels in asthmatic children. Anti-inflammatory treatment use may 

worsen the negative short-term effects of some pollutants on airway 

hyperresponsiveness.
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Capsule Summary

Gaseous pollutants adversely influence lung function and airway hyperresponsiveness.

The longitudinal evaluation of children on daily asthma therapy in a clinical trial enabled 

us to separate the modification of pollution effects by treatment without confounding by 

indication.
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Figure 1. 
Same day and 1-week and 4-month moving averages of carbon monoxide and 4-month 

average of nitrogen dioxide had negative associations with post-BD FEV1 (top graphs panel) 

and FVC (bottom graphs panel). The evidence for adverse effects on post-BD lung function 

seems weak for 4-month average exposure to ozone (all-months) compared to the traffic 

pollutants and there were not associations with sulfur dioxide.
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Figure 2. 
Reduced post-bronchodilator (BD) FEV1 /FVC (left graph panel) was associated with 4-

month averages of ozone and carbon monoxide, but not with nitrogen dioxide or sulfur 

dioxide. Carbon monoxide also associated with pre-BD ratio (right graph panel).
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Figure 3. 
shows long-term (4-month moving average) pollution effect modification by treatment. 

Although there were differences in the magnitude of long-term pollution effect between 

placebo and budesonide or placebo and nedocromil (p-values for interactions), the overall 

likelihood ratio tests (ANOVA) were not significant.
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Figure 4. 
Carbon monoxide had a marginal overall effect on PC20 for all averaging periods. Compared 

to children on placebo, children on budesonide and nedocromil had a greater drop in PC20 

with same day (left graph panel) and 1-week (middle graph panel) average exposures to 

carbon monoxide (ANOVA p= 0.04 and 0.08, respectively).
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Table I

Demographic characteristics

N= 1003

City; n (%)

Albuquerque 121 (12.1)

Baltimore 126 (12.6)

Boston 123 (12.3)

Denver 141 (14.1)

San Diego 122 (12.2)

Seattle 136 (13.6)

Saint Louis 133 (13.3)

Toronto 101 (10.1)

Sex; n (%)

Males/Females 602/401 (60/40)

Treatment Group; n (%)

Placebo 407 (40.6)

Budesonide 298 (29.7)

Nedocromil 298 (29.7)

Ethnicity; n (%)

Caucasians 677 (67.5)

African-Americans 137 (13.7)

Hispanics 97 (9.7)

Other 92 (9.2)

$Annual Income =>30K USD; n (%)

Yes/No 728/235 (76/24)

In utero smoking exposure; n (%)

Yes/No 114/854 (14/86)

Pre bronchodilator lung function at randomization; mean (SD)

FEV1 % predicted 93.8 (14.3)

FVC % predicted 104.0 (13.1)

FEV1/FVC % 79.7 (8.3)

Post bronchodilator lung function at randomization; mean (SD)

FEV1 % predicted 103.0 (12.8)

FVC % predicted 106.5 (12.8)

FEV1/FVC % 85.5 (6.5)

FEV1 : forced expiratory volume in 1 second; FVC: forced vital capacity; SD: standard deviation

$
=>30K USD: equal or more than 30,000 United State Dollars at baseline (1993-1995)
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Table II

Distribution of 24-hour mean pollution concentrations by city

Pollutant City
N Percentiles

IQR
Valid Missing 10 25 50 75 90

O3 (ppb) ALB 1336 358 13 19 28 36 43 17

BAL 1703 61 7 13 23 33 43 20

BOS 1660 62 7 13 21 30 38 17

DEN 1669 305 6 13 23 32 41 19

SD 1664 44 13 20 27 35 41 15

SEA 1071 833 7 11 17 22 28 11

STL 1667 195 7 12 22 32 41 20

TOR 1350 64 6 10 17 25 33 14

TOTAL 12120 1922 8 14 22 31 39 18

CO (ppm×10) ALB 1343 351 1 3 7 11 14 8

BAL 1719 45 3 5 7 11 15 6

BOS 1660 62 6 8 10 13 16 5

DEN 1684 290 4 5 8 12 17 7

SD 1664 44 4 5 8 11 17 6

SEA 1701 203 7 10 14 19 25 9

STL 1684 178 4 5 7 9 12 4

TOR 1350 64 2 6 10 12 15 6

TOTAL 12805 1237 4 6 9 12 16 6

NO2 (ppb) ALB 1307 387 7 11 17 23 30 12

BAL 1719 45 14 18 24 29 36 11

BOS 1660 62 14 20 25 32 38 12

DEN 1577 397 10 20 29 36 44 17

SD 1664 44 10 13 19 26 34 13

SEA 1255 649 11 15 19 24 30 9

STL 1707 155 8 13 18 24 28 11

TOR 1350 64 13 19 25 32 39 13

TOTAL 12239 1803 11 16 22 28 35 13

SO2 (ppb) ALB 25 1669 0 0 4 16 24 16

BAL 1719 45 2 4 6 9 14 6

BOS 1660 62 2 3 5 9 13 5

DEN 1571 403 1 2 4 7 10 4

SD 1454 254 1 2 2 3 5 1

SEA 1752 152 2 3 5 7 10 4

STL 1736 126 1 3 5 9 13 6

TOR 1347 67 0 2 4 6 9 4

TOTAL 11264 2778 1 2 4 8 12 5

ALB: Albuquerque, BAL: Baltimore, BOS: Boston, DEN: Denver, SD: San Diego, SEA: Seattle, STL: Saint Louis, TOR: Toronto, O3: ozone 

(ppb); CO: carbon monoxide (ppm × 10); NO2: nitrogen dioxide (ppb); SO2: sulfur dioxide (ppb); N: number of observations; IQR: interquartile 

range, ppb: part per billion; ppm: parts per million
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