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Probabilistic modelling of chromatin code
landscape reveals functional diversity of
enhancer-like chromatin states

Jian Zhou'? & Olga G. Troyanskaya'34

Interpreting the functional state of chromatin from the combinatorial binding patterns of
chromatin factors, that is, the chromatin codes, is crucial for decoding the epigenetic state
of the cell. Here we present a systematic map of Drosophila chromatin states derived from
data-driven probabilistic modelling of dependencies between chromatin factors. Our model
not only recapitulates enhancer-like chromatin states as indicated by widely used enhancer
marks but also divides these states into three functionally distinct groups, of which only one
specific group possesses active enhancer activity. Moreover, we discover a strong association
between one specific enhancer state and RNA Polymerase Il pausing, linking transcription
regulatory potential and chromatin organization. We also observe that with the exception of
long-intron genes, chromatin state transition positions in transcriptionally active genes align
with an absolute distance to their corresponding transcription start site, regardless of gene
length. Using our method, we provide a resource that helps elucidate the functional and
spatial organization of the chromatin code landscape.
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arge-scale chromatin profiling efforts in modENCODE,

ENCODE and Roadmap Epigenomics projects'™ are

providing an increasingly complete picture of chromatin
organization by generating genome-wide binding profile
data of diverse chromatin factors, including histones with
posttranslational modifications, transcription factors (TFs) and
non-TF chromatin-associated proteins. Chromatin protein-
binding patterns observed across diverse genomic regions, cell
types, developmental stages and environmental conditions
provide rich information on the spatial-temporal functional
status of chromatin. Each distinct chromatin factor pattern can be
considered a chromatin code that needs to be decoded
to understand the transcriptional and regulatory status of
chromatin. To achieve this goal, chromatin state discovery
algorithms aim to identify functionally coherent groups of
chromatin codes underlying specific chromatin states.

Previous methods for probabilistic modelling of chromatin
states have yielded significant new insights into chromatin
states”8, but they did not consider dependencies between
different chromatin factors at the same genomic location. We
previously showed that given the existence of strong and
widespread interactions between chromatin factors, including
physical and catalytic interactions between histone marks and
chromatin proteins, accounting for such interactions leads to
greatly improved accuracy in the probability estimation of
chromatin codes’. Furthermore, we expected the improved
estimation of the chromatin code probability landscape to lead
to improved chromatin state detection. To this end, we have
developed a novel approach for identification of chromatin states
that models the chromatin code organization while considering
statistical dependencies and interactions between chromatin
factors at the same genomic location.

Using our probabilistic, dependency aware approach, we
systematically identified and characterized 30 chromatin states
from genome-wide profiles of 73 histone marks and non-histone
chromatin proteins from the Drosophila melanogaster S2-DRSC
celll. Among these states, we identified three distinct functional
groups of enhancer-like states carrying the widely used active
enhancer marks H3K4mel and H3K27ac, where only one of these
groups was strongly associated with active enhancers and
explained the majority of STARR-seq!” detected strong
enhancers. In addition, we discovered a specific chromatin state
with a previously uncharacterized association with Pol II pausing.
We also observed that the spatial organization of chromatin states
in actively transcribed genes were mostly determined by an
absolute distance to transcription start site (TSS) and appeared to
be invariant to gene length. In particular, a specific group of
chromatin states only appeared in active genes with long
introns and exhibited remarkably different spatial organization.
Identification of these novel properties of chromatin states
provides new insights into the regulatory information carried
by the chromatin factors.

Results

Systematic identification of chromatin states. To identify
chromatin states from genome-wide D. melanogaster chromatin
profiling data, we first inferred chromatin factor interactions
through a maximum entropy model of all chromatin factor
profiles”. The chromatin state identification algorithm can be
interpreted as discovering chromatin states as valleys in the
energy landscape of the maximum entropy model of chromatin
code (Fig. 1a and Methods), where lower energy corresponds to
higher probability. The energy of each set of chromatin codes was
directly computed from the model based on estimated
interactions. For example, a chromatin code containing mostly
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positively interacting and few negatively interacting chromatin
factors would have low energy and equivalently higher
probability.

More specifically, the algorithm finds the local minima in the
energy landscape by simulating a Hopfield-network-type
dynamical system naturally derived from the maximum entropy
model. Initialized from any chromatin code, the dynamic
system monotonically decreases the energy by walking down
the energy landscape until reaching a local minimum.
This procedure identifies all observed chromatin codes residing
in the same valley of the chromatin factor energy landscape by
detecting that they reach the same local minimum. On an
intuitive level, our algorithm essentially groups chromatin codes
that are very similar to each other given the interactions of
chromatin factors.

When applied to the 73 chromatin factor profiles of
D. melanogaster S2-DRSC cells, the algorithm identified 30
chromatin states with specific functional properties and spatial
characteristics (Figs 1b, 2 and 3, and Supplementary Data 1). The
connections between chromatin states were naturally revealed by
the spatial connectivity between each pair of states (Fig. 1b).
The spatial connectivity organization of chromatin states is
highly consistent with functional similarities of chromatin states
shown by chromatin factor composition and enrichment patterns
of diverse functional genomic elements (Figs 2 and 3, and
Supplementary Data 2 and 3).

Architecture of the chromatin state landscape. We discovered
several groups of chromatin states exhibiting unexpected
properties based on the enrichment of chromatin states in diverse
functional genomic elements. The chromatin states we identified
can be summarized into three groups: (1) the enhancer-like states,
(2) the canonical active gene state sequence and (3) the inactive
gene states (Fig. 1b).

Among the enhancer-like states (those carrying widely used
active enhancer marks H3K27ac and H3K4mel), we found
distinct groups with striking functional differences and
their differentiating marks are valuable in identifying more
functionally specific chromatin states. With regards to the
canonical active gene state sequence, the majority of active genes
have a canonical 5 — 3’ chromatin state sequence that spans the
TSS states, Gene Start states and ends at the Gene End states. We
discovered that transition positions between chromatin states in
the whole sequence are dependent on the distance to TSS, but
invariant to gene length (see Canonical spatial sequence of active
gene chromatin states section). The inactive gene states include
the well-known Polycomb-Repressed state (marked by
H3K27me3 and Polycomb group proteins), the Heterochromatin
states (marked by H3K9me3 and HP1la) and the Ground state.
The Ground state covers the majority of inactive genes and
intergenic regions, and shows no enrichment of any chromatin
factor; thus, it may be considered as a default chromatin state.

We summarized the nomenclature and distinctive features of
each chromatin state in Supplementary Table 1 and showed that
previous studies did not distinguish the key functional states that
we discuss below (Supplementary Note 1 and Supplementary
Figs 1-5). Furthermore, we systematically analysed the depen-
dency of chromatin state identification on each single chromatin
factor through perturbation analyses. We demonstrated that the
identification of the vast majority of the chromatin states were
not affected by removing any single chromatin factor, whereas
flipping the on-off state of single chromatin factors had a larger
effect and, as such, revealed key identity chromatin factors for
each chromatin state (Supplementary Note 2, Supplementary
Figs 6-8 and Supplementary Data 4).
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Figure 1| Discovery of chromatin states from the chromatin code energy landscape. (a) Schematic overview of the chromatin state identification
algorithm. Chromatin factor pattern energy landscape is given by the chromatin factor interaction model learned from large-scale chromatin profiling data
(blue and green edges indicate positive and negative interactions, respectively; a positive interaction indicates that the presence of one factor has a positive
effect on the presence probability of the other factor, whereas a negative interaction indicates a negative effect. See Methods section for formal
mathematical definitions). Our chromatin state discovery algorithm uses optimization-based approach to identify the stable energy minima in the energy
landscape starting from any chromatin factor pattern. Chromatin factor patterns within the same energy valley are recognized by the algorithm as arriving
to the same local minimum and are grouped as a chromatin state. (b) Overview of the spatial and functional organization of the chromatin states
discovered by our approach. The major groups of chromatin states include the following: (1) the enhancer-like states that include distinct functional groups
of states carrying the widely used active enhancer marks H3K27ac and H3K4mel, (2) the active gene state sequence, for which we indicate the 5’ — 3’
sequence of states with a grey arrow, and (3) the inactive gene states. Significant findings about specific chromatin states are remarked. Edge width and
colour indicates spatial connectivity score between chromatin states; a score of 30 indicates that the frequency of observing the two states in question
being adjacent to each other in the genome is 30 times higher than expected by chance. Node colour darkness indicates the level of spatial connectivity
score of the state to itself; most states appear very stable as indicated by the high self-connectivity score.

Discovery of functional diversity among enhancer-like states.
We identified a meta-group of states, which we call enhancer-like
states, carrying the widely used enhancer marks, H3K27ac and
H3K4mel (Figs 1b and 2). However, unexpectedly we also found
that the enhancer-like states were each associated with distinct
genomic elements and possessed different chromatin factor
compositions. Based on their genomic element enrichment,

we grouped enhancer-like states into Strong Enhancer (SE), Weak
Enhancer and Long Intron states.

Strong Enhancer states were compositionally distinct from
other enhancer-like states for chromatin factor marks, for
example, exhibiting low levels of H3K36mel and H3K27mel
(91.4% of Weak Enhancer and Long Intron states possess
H3K36mel, whereas this is only true for 22.4% of SE states;
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Figure 2 | Distinct functional properties of chromatin states reflected in state-specific chromatin factor compositions. Chromatin factor compositions
of each chromatin state, showing the average frequency of observing each of the 73 chromatin factors within each state. Each chromatin state

displays distinctive marks. The x axis shows the 73 chromatin factors, whereas the y axis shows the 30 chromatin states. It is noteworthy that for chromatin
factors H3K23ac-, H1-, H3- and H4-, the average frequency of these protein/marks being absent rather than present is shown, in consistency with the
model. Only chromatin factors enriched with P-value <0.01 by permutation test are shown. The null distribution of the permutation test is computed by

permuting chromatin state annotations by 50-kbp-length blocks.

similar patterns were observed for H3K27mel). They were also
the only group of enhancer-like states that showed significant
active enhancer activity as identified by genome-wide screening of
regulatory sequences with STARR-seq!” (Fig. 3). Even though SE
states only cover 3.7% of the genome (Supplementary Table 2),
over 75% of STARR-seq enhancers with over fourfold reporter
expression change and over 87% of STARR-seq enhancers with
over eightfold reporter expression change were detected within
100bp of a SE state (Supplementary Fig. 9).

Compared with the widely adopted approach of using
H3K27mel and H3K4mel marks to define active enhancers,
SE states had 2.7-fold higher specificity for the enrichment of
STARR-seq enhancers. The higher specificity is explained by that
in contrast to the SE states, only weak or no enrichment for
STARR-seq enhancer elements or DNase I hypersensitive sites
sites were observed for Weak Enhancer and Long Intron states
(Fig. 3), even though they also carried H3K27ac and H3K4mel.
Compared with the Weak Enhancer states and Long Intron states,
SE states had respectively 4.6 and 9.6-fold higher specificity for
the enrichment of STARR-seq enhancers responsible for over
4-fold expression change. Thus, we identified chromatin states
that are much more specifically enriched in active enhancers and,
consequently, we suggest that additional marks such as the
absence of H3K36mel or H3K27mel should be used to
distinguish SE states from other enhancer-like states (Fig. 2).
These marks have not been previously identified as predictive of
enhancer activity.

SE1 state is highly predictive for Pol II pausing. Chromatin
states in the TSS region have been shown to be predictive of the
expression level of genes"3715, but the connection between
chromatin in the transcription initiation region and the

regulatory potential of gene transcription was not understood.
We found that in terms of chromatin states, most active gene
promoters fall into one of two groups, revealed by visualizing the
space of promoter chromatin states with multidimensional
scaling (Supplementary Fig. 10). Although as expected the
majority of genes have promoters whose chromatin is largely in
the TSS and Gene Start states surprisingly, the other group of
genes have a high proportion of their promoters in the SE1
chromatin state (we will denote these SE1 + promoters).

We found these SE1+ promoters to be strongly associated
with Pol II pausing (Fig. 4a,b). Pol II pausing is a widespread
phenomenon in both fly and mammals that has been discovered
to take part in the rapid response to signals that initiate
transcription in many processes, such as development and
immediate early gene response in neurons'®=2%, Strikingly, 72%
(532 out of 744) of active genes with paused promoters in S2
cells!” had SE1+ promoters, even though only 23% of all active
genes in S2 cell were SE1+ (P-value<2.2e — 16, Fisher’s exact
test). In fact, the proportion of the transcription initiation region
of a gene that was in the SEl state was predictive of Pol II
pausing, with higher SEI state proportions correlating to higher
probability of Pol II pausing (area under curve (AUC) = 0.801;
Fig. 4c). Furthermore, in paused genes, the distance between
TSS and the nearest SE1 element was significantly shorter than
that of TSS and nearest SE1 elements of non-paused genes
(P-value<2.2e — 16, Wilcoxon’s signed-rank test; Supplementary
Fig. 11). Consistent with the important role Pol II pausing plays
in development'®!820 we found that many developmental
process genes were strongly enriched among genes with SE1+
promoters (Supplementary Table 3).

The association between the SE chromatin state and Pol II
pausing did not appear to be explained simply by enhancer
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Figure 3 | Integrative functional characterization of chromatin states. Chromatin states show distinct functional genomic elements enrichment patterns.
Enrichment for various genomic elements (for example, the presence of long introns or TSS) or external experimental observations (for example,
sequences capable of driving reporter expression in STARR-seq assays or DNase | hypersensitivity sites) were measured as the difference between log
odds of observed overlapping region proportion and the log odds expected, assuming independence in spatial positioning. Only functional element
enrichment or depletion with P-value <0.01 by permutation test is shown. The null distribution of the permutation test is computed by permuting

chromatin state annotations by 50-kbp-length blocks. In the x-axis: CRM, cis-regulatory modules from REDfly database!; DHS, DNase | hypersensitive
sites'0; Enhancer (STARR-seq), active enhancer elements in S2-DRSC cell identified by STARR-seq with over fourfold expression change'®; Exon: Genes
(chrX), genes located in chromosome X, which is dosage compensated; Gene (Active), actively transcribed genes according to RNA-seq; Gene (Inactive),

inactive or low expression genes according to RNA-seq; TFBS, transcriptional factor binding site from REDfly database'’; Transposon, annotated
transposons from FlyBase annotation'?; TSS (Active), actively transcribed TSS according to RNA-seq (see Methods for details); TSS (Inactive), lowly

expressed or repressed TSS according to RNA-seq.

activity, as STARR-seq enhancer elements alone were
not sufficient to accurately predict pausing (Fig. 4c and
Supplementary Fig. 11). In addition, to ensure that our
results were independent of the Pol II binding data that was
one of the inputs to our chromatin state identification model, we
performed chromatin state identification without these data. We
found that removing Pol II binding data had a negligible effect on
predicting Pol II pausing promoters (71.2% active pausing
promoters in S2 cells are SE1+; AUC=10.798), demonstrating
that histone marks and chromatin protein alone provided
sufficient information for achieving the pausing prediction
performance.

We next examined the DNA sequence basis of SE1 by motif
enrichment analysis. Interestingly, the GAGA motif is both very
strongly and specifically enriched within the SE1 chromatin state
(Supplementary Fig. 12). The GAGA motif was previously found
to be overrepresented in promoters with Pol II pausing in the
Drosophila embryo®!?? and is required for establishing Pol II

pausing at the hsp70 gene?>?*. GAGA factor protein, which binds
the GAGA motif and has been previously shown to bind paused
genes and promote pausing by recruiting NELF?>2%, was also
present in SE1 (Fig. 2). GAGA factor protein is thus a potential
factor in connecting the SE1 chromatin state with pausing.
We also found several other motifs enriched in SE1, including the
Pause Button motif, which has been previously associated with
pausing®!; however, no other enrichment was as specific to SE1 as
the GAGA motif (Supplementary Fig. 12).

The discovery of the SEI state challenges the conventional view
that enhancer chromatin states are mutually exclusive with the
active TSS state, and that the absence of the active TSS mark
H3K4me3 acts as an enhancer mark. The SE1 chromatin state
shows molecular signatures of both enhancers (such as H3K4mel
and H3K27ac) and active TSS (such as H3K4me3), and is located
near or immediately downstream of the TSS. Our finding thus
suggests that, in contrast to prior belief, enhancer states and TSS
state marks do not antagonize each other. Instead, enhancer state
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proportions of SE1 state. The distributions of each chromatin state group that is enriched near the TSS (SE, Weak Enhancer, Gene End, Gene Start and TSS
states) within — 1.5 to 1.5kb region are shown for both paused (top) and non-paused (bottom) active genes. The colour legend are as follows: SE states:
green; Weak Enhancer states/Long Intron states: light green; TSS states: red; Gene Start states: light blue; Gene End states: blue. (b) Pol ll-paused genes
are highly enriched in genes with SE1+ promoter. Genes are ordered by proportion of SET state. Left panel shows paused genes by a black tick mark. Mid
panel shows the presence of the SET state along the transcription initiation region of each gene (green). Right panel shows TSS states for the same genes
(red). (c) SE1 proportion within —500bp to + 1kb relative to TSS region is a strong predictor of Pol Il pausing. TPR (true positive rate) shows the
proportion of pausing genes above a given threshold of SE1 proportion within all pausing active genes. FPR (false positive rate) shows the proportion of
non-pausing genes above a given threshold of SET proportion within all non-pausing active genes. Area under receiver operating curve (AUC) is also shown.

can be an integrated component of the promoter and may play a
role in determining its regulatory properties.

Canonical spatial sequence of active gene chromatin states. Our
analysis revealed that the spatial organization of chromatin states
for the majority of active genes is uniformly anchored by an
absolute distance to the TSS (Fig. 5a-c). Given this relatively
stable structure, we used a hierarchical nomenclature to represent
chromatin state groups by spatial order. From 5’ to 3/, we formed
three groups of chromatin states: TSS, Gene Start and Gene End
(Figs 1b, 2 and 3). Chromatin states within each group were also
indexed following the 5'-3' order, for example, within TSS states,
TSS1 was the farthest 5'-state and TSS5 was the farthest 3'-one.
We note that the Gene Start and Gene End state nomenclature do
not imply that they necessarily appear at gene start or gene end,
but that they are chromatin states whose positioning appear to be
determined by an absolute distance to TSS regardless of gene
length.

This canonical active gene chromatin state sequence, spanning
from the TSS states to the Gene End states, had each state
enriched at a typical distance relative to the TSS (Supplementary
Fig. 13). This chromatin state sequence was also observable
at the single gene level (Supplementary Fig. 14). Moreover, the
chromatin state transition points, for example, TSS — Gene Start
states and Gene Start — Gene End states, appeared at specific
distances relative to the TSS and these distances are invariant to
gene length (Fig. 5b,c). Although it is well known that the TSS
and the 3'-region of active transcribed genes have distinct
chromatin features, to our knowledge, this gene-length invariant
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property of active gene chromatin state spatial organization has not
been previously reported. This observation supports the pivotal
role of TSS in organizing the chromatin state of active genes.

The five most upstream TSS chromatin states spanning
approximately — 300 to approximately +300bp of active TSS
(Supplementary Fig. 13) were all marked by the previously
known active TSS mark H3K4me3, as well as the absence of the
H3K36me3 elongation mark and the H3K4mel enhancer mark
(Fig. 2). TSS states were highly enriched in DNase I hypersensi-
tive sites, in line with their function involving TF binding (Fig. 3).
Despite the apparent similarities of these TSS states, they did
appear to possess distinct characteristics. One example is TSS3,
which peaked at 200~0bp upstream of the TSS and showed
exclusive and strong enrichment of many core promoter and
TF motifs (Supplementary Fig. 12). TSS3 demonstrates our
chromatin state discovery method’s ability to finely dissect highly
similar states with distinct properties.

Progressive change in chromatin factor compositions was
observed moving down the sequence towards the 3'-end. Seven
Gene Start states located 200-1,000bp downstream of TSS
(Supplementary Fig. 13) were enriched in both the active TSS
mark H3K4me3/2 and the elongation mark H3K36me3 (Fig. 2),
whereas five Gene End states that appear at over 1-1.5kb
downstream of the TSS (Supplementary Fig. 13) could be
identified by the absence of H3K4me3 and the presence of
elongation marks H3K79mel and H3K36me3 (Fig. 2).

A special subset of the active gene states, Gene Start DCC1/2
and Gene End DCCl1/2, was exclusively observed on the
X-chromosome (Fig. 3). These states were uniquely marked
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different gene.

by components of the dosage compensation complex (DCC)
including MSL1 and the MSL1-catalysed histone mark H4K16ac
(Fig. 2). The dosage-compensated X-chromosome active genes
were upregulated in Drosophila males to compensate for
differences in copy number between females and males®’

Long Intron state marks alternative chromatin state sequence.
In most active genes with large introns, we discovered an alter-
native type of spatial organization that is distinct from the
canonical TSS— Gene Start— Gene End path (Fig. 5a-c). This
alternative chromatin state sequence featured large domains of
Long Intron states, which is a group of enhancer-like states with
no or little enrichment of active enhancers. Long Intron states
were unique for their enrichment of long (> 1kb), but not short,
introns in active genes (Fig. 3) and they were distinct from other
active gene states in that they formed large continuous chromatin
state domains on the chromosome (Supplementary Data 1). Long
Intron states differed from other enhancer-like states in many
transcription elongation-associated chromatin marks, such as
enrichment of H3K79me2 and H2Bubi marks (89% of Long
Intron states regions had H3K79me2 and only 21.8% of non-
Long Intron enhancer-like states regions had H3K79me2; similar
patterns for H2Bubi were observed). In general, Long Intron
states shared many chromatin marks with enhancer states (all
Long Intron states possessed both of the commonly used
enhancer marks H3K4mel and H3K27ac, except Long Intron 1,

which was only enriched in H3K4mel, but not H3K27ac) but
have not been clearly distinguished before.

D. melanogaster has a compact genome with far shorter
intergenic regions than the human genome®®. However, some
genes harbour very large introns spanning tens of kilobases.
Evolutionary ev1dence suggests selective pressure in preserving
these introns?® and this may be explained by cis-regulatory
elements within long introns. Indeed 55.6% of STARR-seq
enhancers were located within introns!?, We propose that the
Long Intron chromatin states may protect the activity of
regulatory elements such as enhancers that are located within
long introns. In line with this hypothesis, we observed that both
the presence and the adjusted proportion of SE states (the
proportion of SE states in regions excluding Long Intron states)
were positively correlated with the proportion of Long Intron
states in a gene (Supplementary Fig. 15). In contrast, Gene Start
and Gene End states, which would appear in the position of
Long Intron states in the canonical active gene chromatin state
sequence, negatively correlated with SE states (Supplementary
Fig. 15), suggesting that the Long Intron state may antagonize the
canonical active gene chromatin state sequence and protect
intronic enhancers.

Discussion
The large-scale chromatin profiling efforts present both exciting
opportunities and challenges in understanding the system of
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chromatin and transcriptional regulation. Here we introduced
effective methods for extracting the chromatin state information
from chromatin profiles, characterized the structure of the
identified chromatin state landscape and performed systematic
analyses pursuing the function of the discovered chromatin states.
Our chromatin state discovery method based on chromatin factor
dependencies allowed comprehensive chromatin state identifica-
tion leveraging associations among chromatin factors identified
from the data, without making any assumptions of spatial
dependencies of chromatin states. Our work provides a new
perspective on the regulatory roles and mechanisms of chromatin
organization, including revealing the functional and composi-
tional differences of enhancer-like chromatin states with a more
specific detection of active enhancers, a novel association between
a specific chromatin state (SE1 state) and Pol II pausing, and the
characterization of the active gene chromatin state sequence with
both a canonical sequence organized by distance to the TSS and an
alternative chromatin state sequence featuring Long Intron states.

Our finding of the diversity of enhancer-like states enabled us
to identify new marks for more specific detection of active
enhancers. Histone marks H3K27ac, H3K4mel, depletion of
H3K4me3 and occasionally H3K9ac have been widely used as
enhancer marks in different organisms for identifying active
enhancers?®~32, but our results suggest that these marks are
insufficient for pinning down states with active enhancer activity.
Additional marks, such as the absence of H3K36mel or
H3K27mel, are required to distinguish SE states from other
enhancer-like states. Furthermore, the H3K9ac mark can only be
used for specifically detecting the SEI state, as this mark is not
present in other SE states. In addition, unlike other enhancer-like
states, the SEI state is not depleted of H3K4me3, which was
previously considered an enhancer mark.

The chromatin states we characterized also contribute to
identifying novel chromatin functions. To our knowledge, the
strong positive association between chromatin state and Pol II
pausing has not been previously reported and our finding that
SE1 marks a group of genes highly enriched in the Pol II paused
genes suggests a novel link between chromatin state, enhancers
and transcription regulation by Pol II pausing. This finding may
contribute to further elucidation of the mechanism of Pol II
pausing.

Despite significant progress, further work is necessary to
understand the mechanism of the discovered associations
between chromatin factors and chromatin states. For example,
H3K36mel and H3K27mel, which distinguish SE states from
other enhancer-like states, have not been associated with
enhancer activity before and it is of significant interest whether
they are directly involved in suppression of enhancer activity.
Furthermore, the current availability of chromatin profiling
data limits our analysis to a single cell type. We expect that as
the experimental barriers for scaling up chromatin profiling
experiments get resolved, our analytical framework will be useful
for analysing and understanding cell-type specificity and the
dynamics of chromatin states.

Methods

Chromatin state identification. Chromatin states were identified by an
optimization-based algorithm based on the chromatin code energy landscape
given by a probabilistic model. Our probabilistic model of chromatin codes is
a maximum entropy model with group L, regularized pairwise and third-order
interactions estimated from modENCODE chromatin profiling data for
S2-DRSC cell’. Specifically:

The energy of a chromatin code is calculated as — Z“ huf (X). Thus, the energy
of a chromatin code is always equal to the negative log probability plus a constant.

8

X is a chromatin factor pattern encoded as a binary vector of length 73, with each
entry indicating the presence of one chromatin factor (0 indicates the absence and
1 indicates the presence, with the exceptions that for H3K23ac-, H1-, H3- and H4-,
0 indicates the presence and 1 indicates the absence). Each f,(X) is a binary feature
representing the presence of single chromatin factor or co-occurrence of a pair or
triplet of chromatin factors, and 4, is the corresponding self, pairwise and triplet
interaction scores that will be learned from chromatin profile data. u is the index
for the features of X. The 37, &,f,(X) term in our model specifically are

decomposed to self, pairwise and triplet interaction terms, which can be written as

DOHXi+ Y JXXi+ ) JuXiXiXe
i i<j i<j<k
where i, j, ke {1,2 ... 73} are indices of chromatin factors. H;, J;; Jijx corresponds to
4, and X;, X, X corresponds to f,(X). Z is the normalization constant that
ensures that the sum of probabilities of all possible X equals to 1.

The model was trained with modENCODE chromatin data for S2-DRSC cell as
described previously® and the model can be downloaded with the code at https://
bitbucket.org/jzthree/chromatin-state.

To classify patterns to states, we used a Hopfield network-like dynamical
system, which can also be interpreted as a steepest descent optimization algorithm
to navigate the landscape by finding the local minima of the valley a chromatin
code resides in. The algorithm iteratively selects the lowest energy pattern in the
neighbourhood of the selected pattern until reaching the local minimum
(Supplementary Note 3). The neighbourhood of a chromatin code is defined to be
all codes that differ from that code at only one chromatin factor. The local
minimum that this algorithm finally reaches identifies the valley that a pattern
resides in. This algorithm for finding the local minimum of the energy landscape
can be viewed as a variant of the algorithm for recalling the attractors in a Hopfield
network.

When applied to the D. melanogaster modENCODE chromatin profiling data,
the algorithm described above identified 30 major, most frequent chromatin states
that covered 94% of the genomic regions covered by the chromatin profiles data.
We then further integrated the remaining mini states with the major states that
they were highly connected to by iteratively combining the least frequent mini state
with another state, which had the highest spatial connectivity score to that mini
state, until all mini states were combined with the top 30 states (Supplementary
Note 3). The final chromatin state compositions were highly similar to the top 30
chromatin states before combination (Supplementary Fig. 16). The chromatin state
annotations generated in this study are provided in Supplementary Data 1.

Data processing. Chromatin ChIP tilling array data were normalized to probe
t-values as described in Zhou et al.® (raw CEL file downloaded from ftp://
data.modencode.org/ in July 2012, see Supplementary Data 5 for complete list).
Probes that mapped more than once within any 1-kb region were removed before
the analysis. After computing probe t-values, we applied a moving window of
200 bp with step size 50 bp. Genomic bins with lower than 100 bp probe sequence
coverage were not used for further analysis throughout the manuscript. Probe
t-values within a bin were averaged and then binarized as described in Zhou et al.®
The resulting data matrix was of size 73 chromatin factors by 2,141,361 bins.
The processed data are available for download at https://bitbucket.org/jzthree/
chromatin-state. D. melanogaster Apr. 2006 (BDGP R5/dm3) genome assembly is
used throughout this study.

Spatial organization. The spatial connectivity score of chromatin states measures
the tendency of two chromatin states being adjacent with each other in the genome.
Specifically, spatial connectivity score was computed as the log ratio of the
frequency of observed chromatin state pairs in adjacent non-overlapping bins and
the expected frequency by chance computed from chromatin state proportions.

Spatial Connectivity Score(state A, state B)

) P(adjacent pairs of state A and B)
= lo;
8 P(state A)P(state B)

The P(statement) notation stands for proportion of genomic regions satisfying the
condition described by the statement.

Experimentally annotated genomic element enrichment analysis. To identify
which genomic elements were overrepresented in each chromatin state,

we performed systematic enrichment analysis. We calculated the enrichment score
as the log odds of the proportion of a chromatin state overlapping with a genomic
element type, normalized by subtracting the expected log odds assuming
independence between the chromatin state and the genomic element type,

or log(l E(;J‘(IQBO - log(l f(&%(g()m). P(AB) indicates the proportion of overlapping

region between the chromatin state and the genomic element type. P(A) and P(B)
indicate the proportion of individual state and genomic element type, respectively.
Genomic elements used were obtained from several sources. Gene, intron, exon,
5’-untranslated region, 3'-untranslated regionand transposon coordinates were
obtained from Flybase r5.46 annotations'?. Curated cis-regulatory modules and
TF-binding sites were exported from the REDfly database (downloaded on 12
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February 2012)!!. Active enhancer elements in S2 cell were experimentally
determined by STARR-seq!’. Active and repressed genes were classified based on
the RNA-seq data of S2-DRSC cell'®, As the distribution of log reads per kilobase
of transcript per million mapped reads (RPKM) is bimodal and we refer to the
higher mode as active and the lower mode as inactive genes®*. We thus fit a
mixture of two univariate Gaussians model to set the threshold for classifying
active and inactive genes based on the log RPKM, with a gene classified as active if
the probability that the signal coming from the high expression component is > 0.9
(RPKM >2.101) or inactive if the probability that the signal coming from the low
expression component is >0.9 (RPKM < 0.435).

Association between SE1 and Pol Il pausing. To study the association between
the SE1 state and Pol II pausing, we annotate the Pol II paused promoter based on
Muse et al.'”. SE1+ promoters were defined based on the proportion of the — 500
to + 1,000 bp relative to TSS region that is in the SE1. The threshold, 4.4%, was
Number of SE1 + Pol II paused genes /Number of SE1 + genes
Number of SE1 — Pol II paused genes/ Number of SE1 — genes®

determined by maximizing

is notewothy that only the active genes determined from RNA-seq data as described
above were classified as SE1+ or SE1 —. The majority (92%) of the Pol II-paused
genes are active genes. Receiver-operating characteristic curves were computed for
evaluating the prediction performance of using the percentages of SE1 state, as well
as STARR-seq enhancers, in the — 500 to 4+ 1,000 bp region to predict paused genes
among all active genes. AUC was calculated for quantifying receiver-operating
characteristic-based prediction performance. Gene Ontology term enrichment was
calculated for all SE1+ genes across all biological process terms™.

To evaluate the effect of removing the Pol II data for predicting paused genes,
we replaced the Pol II binding data with the imputed Pol II binding profile. The
imputed Pol II binding profile was based on conditional probabilities of Pol II
conditioned on other chromatin factor profiles given by the maximum entropy
chromatin model as described in ref. 9. Genomic bins with conditional probability
of Pol II presence > 0.5 were imputed as Pol II positive. Then the same chromatin
state identification procedures and analyses were performed on the imputed data
and compared with original results.

Code Availability. The code is available at https://bitbucket.org/jzthree/chroma-
tin-state.
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