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Abstract

Better characterization of the preclinical phase of Alzheimer's disease (AD) is needed in order to 

develop effective interventions. Neuropathological changes in AD, including neuronal loss and the 

formation of proteinaceous deposits, begin up to 20 years before the onset of clinical symptoms. 

As such, the emergence of cognitive impairment should not be the sole basis used to diagnose AD 

nor to evaluate individuals for enrollment in clinical trials for preventative AD treatments. Instead, 

early preclinical biomarkers of disease and genetic risk should be used to determine most likely 

prognosis and enroll individuals in appropriate clinical trials. Neuroimaging-based biomarkers and 

genetic analysis together present a powerful system for classifying preclinical pathology in 

patients. Disease modifying interventions are more likely to produce positive outcomes when 

administered early in the course of AD. In this review, we examine the utility of the neuroimaging 

genetics field as it applies to AD and early detection during the preclinical phase. Neuroimaging 

studies focused on single genetic risk factors are summarized. However, we particularly focus on 

the recent increased interest in polygenic methods and discuss the benefits and disadvantages of 

these approaches. We discuss challenges in the neuroimaging genetics field, including limitations 

of statistical power arising from small effect sizes and the over-use of cross-sectional designs. 

Despite the limitations, neuroimaging genetics has already begun to influence clinical trial design 

and will play a major role in the prevention of AD.
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Introduction

A long prodrome precedes the emergence of the clinical symptoms of Alzheimer's disease 

(AD) (1–3). Increasingly, the time between the first silent pathological changes in the brain 

and the earliest stages of cognitive impairment is understood to be a critical window during 

which prevention and treatment strategies may be most effective (4). This preclinical phase 

of AD pathogenesis that occurs before clinical symptoms emerge is not well characterized. 

By definition, individuals with preclinical AD are not aware that they are affected by any 

neurological pathology, nor are their deficits detectable with cognitive testing. Preclinical 

AD is distinct from mild cognitive impairment (MCI), which is characterized by subtle 

cognitive decline and can sometimes progress to a clinical diagnosis of AD (5; 6). In the 

absence of detectable cognitive decline, we have access to a limited set of research tools to 

explore preclinical AD in humans. These include neuroimaging, genetic testing, and 

biochemical assays of the blood and cerebrospinal fluid (CSF). Thus, neuroimaging genetics 

research is poised to play a critical role in improving the characterization of the earliest 

phases of AD pathophysiology. In the following sections, we will discuss the important role 

of neuroimaging genetics in AD prevention and treatment with a particular focus on the 

preclinical phase of the disease. Specifically, we will review findings resulting from both 

candidate gene and polygenic approaches to neuroimaging genetics studies in AD. The goal 

of this review is to educate readers on the status of the field, including its many limitations, 

and to argue that neuroimaging genetics research utilizing polygenic approaches will lead to 

better characterization of preclinical AD, which is necessary to achieve effective AD 

prevention.

Neuroimaging Preclinical Alzheimer Disease

A common approach for studying preclinical AD is to use a group at increased risk for AD 

as a potential preclinical cohort and compare them to a cohort of controls without the risk 

factor. Increased risk can be defined by the presence of a particular genetic risk variant, such 

as the apolipoprotein E ε4 (APOEε4) allele, a positive family history of AD, subjective 

memory impairment as well as the presence of an early neuroimaging or cerebral spinal 

fluid (CSF) biomarker. Well validated neuroimaging-based biomarkers for AD in these 

types of cohorts include hippocampal volume loss or thinning, cortical thinning of key AD-

related cortical regions, beta-amyloid positivity measured by positron emission tomography 

(PET) and default mode network (DMN) dysfunction measured by resting state functional 

MRI (rs-fMRI) (7–16). There is evidence from familial AD patients that these biomarkers 

precede the emergence of clinical symptoms by at least 3-5 and up to 20 years (1). A 

thorough description of the literature supporting these biomarker data is outside our focus 

and there are many excellent reviews available on these topics (17–21).

Clinical neuroimaging positive for biomarker changes, such as thinning of the hippocampus 

as measured with structural MRI, have been added to the updated AD diagnostic criteria 

(22). The acquisition of MRI-based biomarkers is minimally invasive, making these 

methods preferable to lumbar punctures. Both MRI and PET imaging can and have been 

used in longitudinal studies and provide a quantitative measure of change over time that is 

not influenced by cognitive performance, which can be affected by sleep patterns, illness, 
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stress and other confounding factors. However, characteristics of imaging biomarkers are 

not yet sufficient for a preclinical AD diagnosis on the individual level. This is due to 

several factors, including the lack of extensive longitudinal data to map biomarker changes 

over time in an individual as well as the limitations in resolution and measurement of 

modern imaging techniques. Combining known biomarker trajectories with genetic risk 

stratification may increase prediction power, especially in clinical trial settings, giving 

greater relative importance to possible disease-related changes in individuals at the highest 

genetic risk for AD.

Neuroimaging and AD Candidate Genes

In 2000, the first study to combine neuroimaging and genetic risk for AD in healthy subjects 

found that carriers of the APOEε4 allele had higher activation across several cortical regions 

during a memory task compared to non-carriers (Figure 1A; (23)). This approach, examining 

a selected variant(s) within a single gene and the association of that variant with brain 

structure and function, is a type of candidate gene study. Candidate gene studies in 

neuroimaging are very common, but they are controversial due to difficulties in both 

interpretation and replication of results (24). The now common practice of restricting 

candidates to genes for which a disease association has already been demonstrated has 

helped to make findings more robust. Still, a gene with a relatively large effect on disease 

incidence in a genome wide association study (GWAS) is not necessarily related to 

neuroimaging phenotypes to the same degree. APOE is the most commonly studied 

candidate gene for AD. Because of the large proportion of the variance in AD heritability 

that is accounted for by APOE, investigators have been successful in identifying differences 

in many neuroimaging modalities based on APOE genotype (Figure 1; see (17–19; 21); for 

updated review including recent findings see Supplement).

In addition to APOE, other GWAS-identified AD risk genes have been studied using a 

candidate gene approach. These include CLU, PICALM, and CR1 as well as BIN1, ABCA7 

and EPHA1. Of these genes, the one that has received the most attention in the 

neuroimaging literature is CLU. First linked to AD by May and colleagues in 1990, the 

coincident discovery of CLU in two independent GWASs in 2009 renewed the interest in 

CLU and its role in AD (25–27). The association of rs11136000 to AD has been replicated 

several times (28–30).

Several functional imaging studies have reported an effect of CLU genotype in both task-

based and resting functional MRI (fMRI) paradigms. One fMRI experiment that tested for 

additive effects of CLU and APOE on blood-oxygen-level dependent (BOLD) signal during 

an executive attention task found a negative correlation between genetic risk and the BOLD 

signal associated with executive attention in the medial temporal lobe, as well as other 

regions (31). In another study, healthy older carriers of the CLU risk variant showed 

decreased coupling of the hippocampus and prefrontal cortex during memory retrieval tasks 

(recall and recognition) (Figure 2A,B) (32). In a resting-state fMRI experiment, subjects 

who were homozygous for the CLU risk allele had the same general pattern of positive and 

negative functional connectivity compared to carriers of the protective allele, but the 

magnitude of the connectivity was stronger in both the positive and negative directions 

Harrison and Bookheimer Page 3

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 2C,D) (33). Taken together, these studies indicate a modulatory relationship 

between BOLD signal and CLU genotype.

PICALM, a gene whose protein product is involved in synaptic transmission, has also been 

linked to imaging phenotypes in both structural and functional imaging (34; 35; 33; 36). An 

epistatic effect of PICALM and BIN1, another gene involved in synaptic transmission, on 

amyloid deposition has been reported (36). BIN1 was also linked to smaller entorhinal 

cortex and temporal pole volume in a structural imaging study (34). CR1 has been shown in 

several studies to be associated with smaller entorhinal cortex volume in both young and 

older healthy adult subjects (34; 37). Finally, a positron emission tomography (PET) study 

found that there was a relationship between amyloid deposition and polymorphisms in 

ABCA7 and EPHA1 such that carrying the risk variant of ABCA7 increases likelihood of 

amyloid positivity while the low-risk polymorphism of EPHA1 decreases likelihood of 

amyloid positivity (38). A more complete description of imaging studies focused on these 

GWAS-identified risk genes can be found in Table 1. See Supplement for more details.

Relatively little genetic variance is accounted for by differentiating experimental groups 

based on carrier status of a single risk variant. In the next sections, we will cover polygenic 

scores and regression-based polygenic modeling approaches. These efforts aim to measure 

genetic risk as a continuous metric or as a set of predictors capable of revealing important 

relationships between genetic risk, brain structure and function and preclinical AD.

Polygenic Risk Scores

Combining multiple genetic risk loci into a single metric or score is an attractive way to 

modernize the candidate gene approach by using the metric or score as your “candidate” 

rather than a single gene. Associations between a risk score and, for example, an imaging 

endophenotype cannot be attributed to a single gene, but these associations may be clinically 

useful in the effort to better characterize preclinical AD (39). Such metrics are designed on 

one of two main theoretical bases: first, that multiple risk polymorphisms in the same 

disease-related biological pathway will be more likely to disrupt normal functioning of that 

pathway or second, that multiple risk polymorphisms affecting various neuronal functions 

will together predispose or lead to disease. A polygenic risk score (PRS) can be calculated in 

several ways. Unweighted approaches simply tally the number of known risk alleles carried 

by a given individual. Weighted risk scores apply a statistic that captures the strength of the 

relationship between the genetic variant and disease to differentially weight each risk allele. 

When GWAS data is available, odds ratios are often used to weight risk alleles in a 

polygenic risk score but other effect size measures can be used (39). Another method of 

quantifying polygenic risk is assessing genotype patterns and binning subjects by their 

genotypes at multiple loci. A limitation of this approach is that a large sample is needed in 

order to have large enough sub-groups for meaningful statistical analysis. Finally, testing for 

interaction effects, or epistatic effects, between two or more genes is also technically a 

polygenic approach, although it differs in that risk effects are not additive but rather emerge 

from specific interactions between loci.
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Using a PRS weighted by GWAS-reported odds ratios, Sabuncu and colleagues showed that 

increased genetic risk for AD was associated with decreased cortical thickness in AD-

vulnerable regions, including entorhinal, lateral temporal, inferior parietal and posterior 

cingulate cortices (Figure 3; (40)). In another structural imaging study a large cohort of over 

8,000 cognitively healthy older individuals was used to assess the relationship between a 

GWAS-loci based weighted PRS and several measures including intracranial volume, total 

brain volume, and hippocampal volume (41). The authors reported that higher PRS was 

associated with smaller hippocampal volume, a result that remained significant even after 

removing APOE from the PRS. Decreases in fractional anisotropy (FA) have emerged in the 

APOE literature as a possible early indicator of disease-susceptibility (42; 43). More work is 

needed to ascertain whether or not there is an additive effect of AD risk genes on FA, but 

preliminary efforts in polygenic approaches to account for white matter integrity are 

promising (44).

There is also evidence from the functional imaging literature that epistatic effects are 

detectable. One study tested interactions between single nucleotide polymorphisms (SNPs) 

from 9 AD risk genes identified in GWASs and found that carrying BIN1 risk variants and 

the PICALM protective variant was associated with increased amyloid deposition as 

measured by PET imaging (36). In young adults, it was reported that the effect of APOE and 

CLU risk on BOLD signal during an executive attention task was decreased activation of 

medial temporal structures with increasing genetic risk load (31). Another study of young 

adults using resting state fMRI found that an interaction effect between PICALM and CLU 

risk modulated hippocampal connectivity (33).

Regression Approaches to Polygenic Risk

The use of predictive regression models in clinical biostatistics is extremely common (45). 

Neuroimaging genetics presents a unique problem with millions of genetic markers (in 

whole genome data) that can be used as predictors and many outcome phenotypes of 

interest. Furthermore, linkage disequilibrium, or the tendency of certain genetic loci to be 

inherited together, must be considered when using any regression method since many of 

these models assume that predictors are independent (46). The numerous data reduction or 

selection methods used in regression analyses can be categorized as follows: stepwise 

regression, regularized regression, mixed linear modeling, projection and prior biological 

knowledge (47–51). While the methods are too numerous to review in detail, we highlight a 

few important perspectives with respect to AD.

Stepwise regression optimizes a linear model by successively removing, adding or 

alternating between adding and removing predictors. One study specifically demonstrated 

there is an advantage to using machine-learning based, cross-validated genetic algorithms 

over stepwise regression to predict conversion from MCI to AD (47). Regularized regression 

is similar to stepwise in that it assumes that a small number of the predictors will be the 

most informative. These approaches, like Lasso or sparse regression (e.g., ridge, elastic net), 

penalize larger models in favor of more parsimonious models. Silver and colleagues used 

sparse reduced-rank (Lasso) regression to model groups of SNPs that are all within a single 

biological pathway and calculate the strength of the relationship of that pathway to AD-
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related neuroimaging phenotypes (48). The authors reported that SNPs belonging to insulin 

signaling, vascular smooth muscle contraction and focal adhesion pathways were the 

strongest predictors of structural change over 24 months of follow-up. Another study used 

an elastic net regularization method to explore genetic risk factors for AD affecting the 

hippocampal surface and found that APOE and TOMM40 were associated with hippocampal 

surface differences in anterior and middle regions (52).

Genome-wide complex trait analysis (GCTA; http://cnsgenomics.com/software/gcta/) is an 

example of an optimized linear modeling approach to polygenic risk for phenotypes. 

Developed to determine the portion of variability of a given trait that can be explained by all 

available SNPs rather than those that survive genome-wide significance, GCTA takes 

advantage of linear mixed effect modeling to combine fixed effects like age and sex with 

SNPs as random effects (53). A recent update to the approach ensures that this procedure 

can be completed in reasonable time despite the high computational demand of considering 

millions of SNPs and many phenotypes (54). The authors of the updated GCTA approach 

used a cohort of 1,320 subjects to compute heritability estimates for several structural 

neuroimaging measures including whole-brain cortical thickness (54). Ridge and colleagues 

used the GCTA approach to examine the proportion of the variance in AD status explained 

by 11 known, common genetic risk loci for AD and found that only 8% (standard error 0.03) 

of phenotypic variance was accounted for by these markers, while 33% (standard error 

0.0072) of the variance was due to common SNPs, known and unknown (49). These results 

suggest that there are many more common AD-associated SNPs that have not been 

identified yet and that genetic variants that explain a large proportion of phenotypic variance 

are rare.

To test across many millions of SNP-SNP interactions it is necessary to apply a method that 

is capable of performing the computationally intensive task of high-dimensional predictor 

selection. Hibar and colleagues used a machine learning approach that was designed to 

perform well when the number of predictors is greater than the number of observations, as is 

the case when examining human SNP data, by ranking the normalized predictors by their 

correlation to the dependent variable (55). The authors discovered that the volume of a 

region of the temporal lobe was associated with the interaction between two SNPs across the 

clinical categories in the ADNI sample. Another study, also using ADNI, reduced the 

number of SNP-SNP interactions they tested using a linear regression approach by only 

testing for interactions between SNPs that were members of a common biological pathway, 

such as calcium signaling or axon guidance, which were both associated with entorhinal 

cortex and hippocampal atrophy in their cohort (51). This approach based on prior biological 

knowledge has been shown to be an effective method of predictor selection (56). Similarly, 

SNP data reduction using projection techniques like independent component analysis has 

been used to identify independent groups of genes affecting a given trait (50). Post-hoc 

pathway analysis of the components then can reveal whether they are enriched for genes 

related to, for example, as Meda and colleagues found in their ADNI sample, inflammation, 

diabetes, obesity and cardiovascular disease (50).

In addition to more traditional regression approaches, advanced association models, such as 

canonical correlation, can be used to efficiently analyze large neuroimaging genetics 
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datasets. These methods are outside the scope of this review but please see the Supplement 

for a summary.

Limitations

Power: Effect Sizes and Variant Frequency

A major challenge in neuroimaging genetics is sufficiently powering studies to detect 

hypothesized effects. One problem is the low effect size of common genetic associations to 

disease in human polygenic disorders (57; 58). An exception to this pattern is the APOE 

locus where a commonly occurring variant is strongly associated to increased AD risk. In 

fact, APOE accounts for a larger amount of the variance in AD heritability than any single 

known genetic locus in another human neurobehavioral, polygenic disorder. Theoretically, 

because APOE accounts for a relatively large proportion of the heritability variance in AD, it 

is possible that accurately modeling polygenic risk for AD will be simpler than in other 

common polygenic neurobehavioral diseases. Thus, AD is an attractive neurological 

disorder to neuroimaging genetics investigators who are anxious to demonstrate that their 

field is uniquely positioned to identify early, preclinical predictors of disease.

Today, it is not clear if the underlying genetics of AD are best described as many high-effect 

rare variants (e.g., TREM2 or MAPT) that, in different individuals, each lead to clinical AD 

or many low-effect common variants that together in a single individual can lead to clinical 

AD. To the neuroimaging genetics investigator, there are advantages and disadvantages to a 

common-variant or rare-variant theory of AD genetics. Of course, rare variants occur in so 

few individuals that it is difficult to amass a large cohort of carriers. However, increased 

emphasis on data sharing and access to continuously expanding reservoirs of pooled data 

means that reasonably sized samples of individuals with specific rare variants may be 

plausible (given a minor allele frequency of 0.002, a sample of 20,000 subjects would be 

needed to identify 40 carriers of the TREM2 risk variant) (59). Often, rare variants 

associated with a particular disease have a relatively high effect size, which may make 

differences between carrier groups easier to detect, even at smaller sample sizes. In contrast, 

carriers of common variants are more easily amassed in large numbers, but investigators 

need extremely large cohorts to detect the low-effect size association that usually 

accompanies a disease-related common variant (Figure 4). As discussed in previous 

sections, methods for modeling multiple genetic risk factors in a single experiment are 

actively being developed and may help to exploit the synergistic predictive power of many 

low-effect-size common variants. In a thorough analysis of the PRS literature, Dudbridge 

used heritability estimate, sample size, locus significance threshold and a PRS weighting 

method to generate formulae that allow investigators to estimate the likelihood that future 

studies will be sufficiently powered (39). The findings indicated that perhaps hundreds of 

thousands of subjects would be required to make PRS useful at the individual level. Sample 

sizes are generally not of this magnitude, but they are increasing quickly. Another 

simulation-based study based on 10,000 cases and controls reported that subjects in the top 

5% of genetic risk for hypothetical disease are three to seven times more likely to be 

affected (60). A three to seven fold increase in risk is certainly clinically useful if not 
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conclusive, as it suggests some individuals may be better candidates for clinical trials and 

that more frequent follow-up assessments are indicated.

Cross-sectional Versus Longitudinal Designs

Another major challenge in the field of neuroimaging genetics of AD is the predominant use 

of cross-sectional experimental designs to uncover the pathophysiological trajectory of AD. 

In the literature, inferences about the trajectory of AD are overwhelmingly made from cross-

sectional studies in which data is collected from each subject only once and all the subjects 

are randomly distributed across the age range under investigation with equal number of 

males and females. This approach is makes it particularly difficult to make conclusions on 

the subject level because cross-sectional studies confound between-subject and within-

subject variation (61). Given this limitation, drawing longitudinal conclusions based on 

cross-sectional evidence, even from many studies, is precarious and should be done 

cautiously (62).

The importance of early detection in neurodegenerative diseases like AD is illustrated by the 

extensive neuronal loss already present in mildly symptomatic AD patients (65). In addition, 

recent work has established that AD risk genes are associated with differences in brain 

structure and function even in young people, including children and infants (66; 67). In light 

of these associations in young people, how can investigators optimize experimental design 

for the study of AD risk and preclinical AD? Following subjects in longitudinal designs 

better allows for making inferences about disease trajectory but these studies are difficult in 

practice. In the modern pro-collaboration atmosphere though, multi-cohort longitudinal 

designs are feasible because many sites can each collect longitudinal data on a reasonably 

small number of subjects and then, assuming proper standardization and oversight is in 

place, these subjects can be combined to create a much larger cohort. The Alzheimer's 

Disease Neuroimaging Initiative (ADNI) is a good example of a multi-center effort in 

neuroimaging genetics of AD (63; 64). Optimized longitudinal mapping of AD progression 

will help identify individuals who are in the preclinical phase of AD. These individuals are 

likely to benefit the most from intervention, especially a progression-slowing or halting 

drug. Such a drug is not available today, but the accurate and precise definition of preclinical 

AD will be an essential component to the success of any candidate.

Discussion: Implications for Clinical Trials

Despite major challenges related to statistical power, polygenic risk modeling and 

generalizability, the field of neuroimaging genetics is poised to play a major role in the 

development of effective treatments for AD. Phase 3 AD treatment trials in humans have all 

had negative outcomes, not meeting endpoints despite promising data in model organisms 

and in preceding trial phases (68; 69). This high failure rate may be the result, in part, of 

heterogeneity across the study participants enrolled in these clinical trials. One source of 

heterogeneity is neuropathological variation. The clinical-neuropathological correspondence 

of AD (both pure and AD-vascular mixed pathology) occurs in about 87% of clinical AD 

cases that come to autopsy (70). Thus, more than 10% of clinically diagnosed AD patients 

actually suffer from some other neurodegenerative disorder, such as frontotemporal lobar 

degeneration (FTLD) or corticobasal degeneration (CBD). It is reasonable to assume that 
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subjects with each of these diseases, from pure AD and mixed AD pathology to FTLC and 

CBD, will respond differently, if at all, to potential treatments that target a single molecular 

species, like Aβ oligomers or plaques. One way to help minimize neuropathological 

heterogeneity is through the use of PET imaging. The use PET imaging of Aβ and tau as a 

pre-screening technique in clinical trials, while costly, will allow investigators to amass a 

more neuropathologically homogeneous cohort. Indeed, neuropathological pre-screening 

using PET imaging is currently being implemented for the first time as part of the Anti-

Amyloid Treatment in Asymptomatic AD (A4) trial, the protocol of which requires a 

positive Aβ florbetapir-PET scan for enrollment into the treatment arm (71). Another 

imaging-based method for neuropathological prescreening is diffusion-weighted MRI which 

can be used to estimate the severity of vascular pathology (72).

Neuropathological differences are not the only source of heterogeneity in clinical trial 

subjects. It is also important to consider the heterogeneity of the underlying genetics in each 

individual subject. Depending on the mechanism of the candidate drug, it is possible there 

will be some variation of response in trial participants with different genetic risk factors for 

AD. (73). Also, it is likely that by examining genetic risk, the ability to identify 

asymptomatic individuals who will progress to show cognitive decline is improved. Thus, 

investigators should consider implementing genetic prescreening measures that select for 

clinical trial participants that have certain genetic risk factors for AD (74). Clinical trials in 

AD have already started to use carriage of one or two risk variants (APOE, TOMM40) as a 

prescreening measure (75). Kohannim and colleagues published a study in which they tested 

the hypothesis that a polygenic screening protocol would decrease the sample size necessary 

to detect an effect in a hypothetical trial (76). The authors ranked 394 cognitively healthy 

and MCI ADNI subjects in order of decreasing polygenic risk score, calculated based on 

multiplying risk alleles for APOE, CLU, CR1 and PICALM by the logarithm of the odds 

ratios reported for each gene in GWASs. They found that by selecting only the top 15% of 

subjects with highest genetic risk, the required sample size to show differences in temporal 

lobe atrophy decreased from 142 to 69 (76). This is excellent evidence that genetic pre-

screening would increase statistical power in trials. Binning participants by genetic risk may 

well be the next frontier in AD clinical trial design.

Another important role for neuroimaging genetics in clinical trials is the development of 

hard, non-cognitive endpoints to assess treatment efficacy (77). Most AD trials to date have 

used soft endpoints such as paper-and-pencil memory measures or a composite dementia 

severity scores (68; 69). However, as trials shift their focus to preclinical individuals who 

are asymptomatic cognitive endpoints will no longer appropriate. Thus, neuroimaging-based 

biomarkers as well as others, such as CSF analyte levels, which capture pathological 

changes that precede cognitive decline must be refined for use as clinical endpoints (77).

A neuroimaging genetics approach uses minimally invasive technologies to characterize the 

earliest pathophysiological changes in preclinical AD. In the effort to prevent and treat AD, 

the proximal goal of combining multiple genetic factors, neuroimaging biomarkers and other 

measures to estimate AD-risk is to pre-select clinical trial and research participants. The 

distal goal is to provide more detailed prognoses in the clinic during the preclinical phase 

Harrison and Bookheimer Page 9

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that can be used to create optimized treatment plans and enroll ideal candidates in specific 

clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Differences between carriers and non-carriers of the APOE ε4 (APOEε4) allele have 
been identified using both structural and functional neuroimaging
The association between APOEε4 and AD risk has a moderate effect size. This may increase 

the likelihood of observing differences in neuroimaging phenotypes, which are relatively 

gross measures of neural structure and function. A) Carriers of the APOEε4 risk allele show 

potentially compensatory cortical activity in language areas during the learning and recall 

phases of a word-based paired-associates task. B) The anterior hippocampal network (AHN) 

and posterior hippocampal network (PHN) connectivity is modulated by APOE genotype. 

Bar graphs represent the network as a region of interest and denotes average connectivity in 

each genotype group. C) Structural MRI shows that healthy older carriers of APOEε4 have a 

greater atrophy rate over time in hippocampus and superior temporal gyrus when compared 

to non-carriers. Panels reprinted: A (23), B (82) and C (7).
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Figure 2. A single nucleotide polymorphism within the gene CLU that is associated with higher 
risk for AD has been associated with decreased functional connectivity of the hippocampus in 
two distinct studies
Functional connectivity between the hippocampus and frontal regions during both recall (A) 

and recognition (B) is modulated by CLU genotype such that individuals who carry the risk 

allele show lower connectivity in a dose-dependent manner. In another study, individuals 

who are homozygous for the CLU risk allele show greater connectivity between left 

hippocampus and left medial temporal lobe, as well as higher connectivity between right 

hippocampus and angular gyrus (D). Panels A and B reprinted (32). Panels C and D 

reprinted (33).
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Figure 3. Polygenic risk scores have been used to show relationships between aggregate genetic 
risk for AD and morphological differences in AD-vulnerable cortical regions
A) A polygenic score for AD risk based on 26 common variants was negatively correlated 

with average thickness in a set of AD-vulnerable cortical regions in healthy older adults. The 

26 variants, based on closest gene, were within or near DAB1, CR1, BIN1, SSB, C6orf155, 

ARID18, CLU (two SNPs), KCNU1, MS4A6A, C11orf30, PICALM, CNTN5, BCL3 (two 

SNPs), PVRL2 (5 SNPs), TOMM40 (3 SNPs) and APOE (see Supplementary Table 2 in 40). 

B) The relationship between risk score and cortical thickness was driven by a strong age-

associated decline in cortical thickness amongst individuals at highest genetic risk for AD. 

Panels reprinted (40).
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Figure 4. Practical and theoretical parameters of genetic risk factors in AD
The relationships between variant/allele frequency, effect size and sample size are such that 

designing adequately powered studies is challenging. CLU, APOE and TREM2 are plotted as 

representative genes for the following three scenarios: first, a commonly occurring risk 

variant with a small effect size (CLU, risk allele is major allele with frequency at 60% and 

effect size of 0.86 (78)), second, a moderately common risk variant with a moderate effect 

size (APOE ε4 risk allele frequency is 12-14% with an effect size of 2.5 (26; 78)), and third, 

a rare variant with a relatively large effect size (TREM2 risk variant is minor allele with a 

frequency of 0.2% and effect size of 3 or more (59; 83)). Note that there are no examples of 

genes in two extremes in this three dimensional space: high frequency variants that have 

large effect sizes and low frequency variants that have very small effect sizes. The lack of 

risk variants of the latter description could be due to the practical difficulties of measuring 

very small risk effects mediated by very uncommon variants.
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Table 1
GWAS-Identified Risk Genes for AD: Neuroimaging Modalities in the Literature and 
Representative References

OR = odds ratio, from (78) ; sMRI = structural magnetic resonance imaging; DWI = diffusion weighted 

imaging; t-fMRI = task-based functional MRI; rs-fMRI = resting state functional MRI; PET = positron 

emission tomography

Gene OR sMRI DWI t-fMRI rs-fMRI PET Comment

CLU 0.86 (0.84 – 
0.89)

Bralten et al., 2011a; 
Stevens et al., 2014 

(37; 79)

Braskie 
et al., 
2011 
(80)

Erk et al., 
2011; 

Green et 
al., 2014 
(31; 32)

Zhang et al., 
2014 (33)

Protein co-chaperone

PICALM 0.87 (0.85 – 
0.89)

Biffi et al., 2010; 
Bralten et al., 2011a; 
Furney et al., 2011 

(34; 35; 37)

Zhang et al., 
2014 (33)

Hohman et al., 
2013 (36)

Synaptic transmission

CR1 1.18 (1.14 – 
1.22)

Biffi et al., 2010; 
Bralten et al., 2011b 

(34; 81)

Innate immunity

BIN1 1.22 (1.18 – 
1.25)

Biffi et al., 2010 (34) Hohman et al., 
2013 (36)

Synaptic transmission

ABCA7 1.15 (1.11 – 
1.19)

Hughes et al., 
2014 (38)

Lipid homeostasis

EPHA1 0.90 (0.88 – 
0.93)

Hughes et al., 
2014 (38)

Adhesion and contact 
mediated signaling
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