Skip to main content
. 2016 Feb 4;15:15. doi: 10.1186/s12937-016-0132-6

Table 5.

Cardio-renal-metabolic parameters according to quintile categories in each dietary pattern

Variable Seaweeds, vegetables, soy products and mushrooms Fish and meat Noodle and soup
Quintile 1 Quintile 5 Model 1 Model 2 Quintile 1 Quintile 5 Model 1 Mode l 2 Quintile 1 Quintile 5 Model 1 Model 2
AST (U/L) 22 [19, 29] 22 [17, 26] −2.07* −1.71 21 [18, 27] 23 [19, 28] 1.14 0.98 21 [17, 25] 23 [18, 29] 3.25** 2.60*
ALT (U/L) 24 [17, 41] 22 [16, 33] −1.52 −0.80 23 [16, 34] 25 [17, 34] 0.94 0.69 19 [15, 30] 26 [18, 39] 4.17*** 3.29*
γ-GTP (U/L) 28 [18,48] 22 [15, 36] −2.46* −1.95 25 [18, 44] 25 [18, 38] 0.13 −0.01 22 [16, 30] 30 [21, 50] 3.62*** 2.75**
Uric Acid (mg/dl) 5.5 ± 1.2 5.4 ± 1.2 0.12 0.51 5.6 ± 1.2 5.4 ± 1.2 0.75 0.63 5.2 ± 1.2 5.8 ± 1.2 0.85 0.27
eGFR (ml/min/ 1.73 m2) 81 ± 18 77 ± 16 - 0.17 77 ± 18 78 ± 17 - 0.08 78 ± 19 79 ± 17 - −0.39
Total cholesterol (mg/dl) 190 ± 27 186 ± 29 −1.64 −1.70 184 ± 30 187 ± 27 0.16 0.09 188 ± 30 185 ± 27 0.39 0.22
HDL-C (mg/dl) 59 ± 14 62 ± 14 1.08 0.60 58 ± 13 59 ± 14 −0.03 −0.07 62 ± 15 57 ± 13 −1.39 −0.59
Triglycerides (mg/dl) 101 [71,163] 96 [64, 144] −1.74 −1.06 94 [66, 144] 112 [67, 152] 0.88 0.78 89 [64, 135] 116 [78, 164] 2.82** 1.73
Fasting blood glucose (mg/dl) 137 ± 34 131 ± 27 0.01 0.49 133 ± 32 138 ± 35 1.01 0.81 132 ± 31 137 ± 30 0.72 0.43
HbA1c 7.1 ± 1.1 6.9 ± 1.1 −0.48 −0.04 6.9 ± 0.9 7.1 ± 1.1 1.02 0.95 6.9 ± 1.0 7.0 ± 1.0 1.66 1.21
Systolic BP(mmHg) 128 ± 13 127 ± 15 0.12 0.83 127 ± 14 126 ± 15 0.09 −0.10 126 ± 15 128 ± 13 1.83 0.92
Diastolic BP (mmHg) 79 ± 10 75 ± 10 −1.00 −0.53 78 ± 13 76 ± 11 −0.19 −0.33 75 ± 14 78 ± 10 0.99 0.27
UAE (mg/g creatinine) 10 [6, 21] 10 [5, 17] −2.12* −1.74 10 [6, 24] 10 [7, 23] −0.80 −0.88 11 [6, 30] 9 [6, 19] −0.39 −1.18
baPWV (cm/s) 1528 ± 294 1556 ± 262 −1.62 −1.53 1536 ± 258 1535 ± 248 0.79 0.72 1549 ± 288 1536 ± 262 −0.91 −0.94

Data are mean ± SD, median [range: 25 % to 75 %] or number of subjects (percentage) before adjustment. *P < 0.05, **P < 0.01, ***P < 0.001

Model 1: Trend estimation for linear trends across quintiles is based on linear regression analysis for continuous variables or logistic regression analysis for categorical variables adjusted for age and gender. Model 2: Trend estimation for linear trends across quintiles is based on linear regression analysis for continuous variables or logistic regression analysis for categorical variables adjusted for age, gender, BMI, morningness-eveningness questionnaire, Pittsburg Sleep Quality Index, Beck Depression inventory, current smoking, and physical activity. Standardized regression coefficients are shown. ALT alanine aminotransferase, AST aspartate aminotransferase, baPWV brachial-ankle pulse wave velocity, BP blood pressure, eGFR estimated glomerular filtration rate, HDL-C high-density lipoprotein-cholesterol, UAE urinary albumin excretion, γ-GTP γ-glutamyl transpeptidase