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SUMMARY

In many experiments, time series data can be collected from multiple units and multiple time
series segments can be collected from the same unit. This article introduces a mixed effects
Cramér spectral representation which can be used to model the effects of design covariates on the
second-order power spectrum while accounting for potential correlations among the time series
segments collected from the same unit. The transfer function is composed of a deterministic
component to account for the population-average effects and a random component to account for
the unit-specific deviations. The resulting log-spectrum has a functional mixed effects represen-
tation where both the fixed effects and random effects are functions in the frequency domain. It
is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to
a functional mixed effects model. A data-driven iterative estimation procedure is offered for the
periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional
covariance of the random effects, and unit-specific random effects prediction via the best linear
unbiased predictor.

Some key words: Cramér representation; Mixed effects model; Smoothing spline; Spectral analysis; Replicated time
series.

1. INTRODUCTION

In biomedical experiments, it is common to collect time series data from multiple subjects
and use the time series as the basic unit in the analysis to study the effects of design covariates.
These studies can include multiple time series segments collected from the same unit, which can
be potentially correlated. The motivating study considered in this article measures three epochs
of heart rate variability from subjects during three stages of sleep where it is believed that the
heart rate variability spectra are associated with sleep and the presence of disease (Malik et al.,
1996; Hall et al., 2004). When the focus of the analysis is on the effects of the design covariates
on the first moment, such data can be modelled by mixed effects models. However, few methods
exist when the interest is on the second-order spectra.
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A model for replicate time series collected from independent units was introduced by
Diggle & Al Wasel (1997) which models unit-specific spectra through a log-linear mixed effects
model. Iannaccone & Coles (2001) generalize this model by allowing for the nonparametric
spline estimation of the fixed effects. More recently, Freyermuth et al. (2010) introduced a tree-
structured wavelet method for the estimation of the spectra of replicated time series. These mod-
els are designed exclusively for the analysis of a collection of time series under a very simple
nested structure, where the individual time series are mutually independent. A novel contribu-
tion of our article is the introduction of the mixed effects Cramér representation for modelling a
collection of stationary time series that exploits the flexibility of the linear mixed effects model
(Laird & Ware, 1982) where many designs can be handled by correctly specifying the design
matrices. This model can take into account potential correlations among the spectra of time series
segments from a common unit.

The asymptotic properties of periodograms for deterministic spectra are well known and are
the foundation for most nonparametric spectral estimation procedures. We investigate the asymp-
totic properties of the periodograms of collections of time series that can be modelled through a
mixed effects Cramér spectral representation and show that when the replicate-specific spectra
almost surely lie in a Sobolev space, the log-periodograms uniformly converge to a functional
mixed effects model that is comprised of the log-spectral fixed effects, the log-spectral random
effects and additive noise with known variance.

Mixed effects models with functional random and fixed effects have been the focus
of considerable research including Rice & Silverman (1991), Brumback & Rice (1998),
Staniswalis & Lee (1998), Rice & Wu (2001), Guo (2002), Wu & Zhang (2002), Morris &
Carroll (2006), Qin & Guo (2006) and Zhang & Chen (2007). The functional models of Guo
(2002), Morris & Carroll (2006) and Qin & Guo (2006) can flexibly encompass a variety of
designs through the specification of design matrices for both the random and fixed effects in a
manner similar to the traditional linear mixed effects model. Guo (2002) and Qin & Guo (2006)
define the covariance kernels of the random effects as the reproducing kernel of a Sobolev space
while Morris & Carroll (2006) parametrically define the covariance kernels through a small num-
ber of covariance parameters. Our proposed mixed effects model for the log-periodograms is
similar to these three models in that design matrices can be specified to flexibly incorporate
a variety of designs, but differs in that the only assumptions made of the covariance kernels
of the log-spectral random effects are inherited from the assumption that the random effects
are independent second-order stochastic processes with trajectories almost surely in a Sobolev
space (Lukic & Beder, 2001). Another distinction between our proposed model and the models
of Guo (2002), Morris & Carroll (2006) and Qin & Guo (2006) is that they assume that the ran-
dom effects are Gaussian whereas our model does not assume a distribution for the log-spectral
random effects.

To fit the mixed effects model for the log-periodograms, we propose an iterative algorithm that
begins with an initial smoothing spline estimator of the log-spectral fixed effects. This initial esti-
mator is obtained by approximating the minimizer of a penalized sum-of-squares which ignores
the within-unit log-spectral correlation and can be viewed as an extension of the estimators
of Cogburn & Davis (1974) and Wahba (1980) to the regression setting. Despite the empiri-
cal findings of Qin & Wang (2008), which show that the negative penalized Whittle-likelihood
under the proper selection of smoothing parameters can produce more efficient spectral estimates
than the penalized sum-of-squares for a single deterministic spectrum, we base our fixed effects
estimator on a penalized sum-of-squares because of its computational feasibility and transpar-
ent form as a multivariate low-pass filter applied to the ordinary least squares estimates of the
log-periodograms at each frequency.
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Smoothing spline estimates of fixed effects from correlated data are consistent if the within-
unit correlation is ignored but they are not efficient (Welsh et al., 2002; Lin et al., 2004). Iterative
procedures for functional models that nonparametrically account for the within-replicate correla-
tion when unique replicates are independent are offered by Yao & Lee (2006) and by Krafty et al.
(2008). We extend these ideas to formulate an iterative procedure for the log-periodogram mixed
effects model. First, the log-spectral fixed effects are estimated. Conditional on estimates of
the fixed effects, the functional covariances of the random effects are estimated as the outer
product of smoothed deviations of unit-specific log-periodograms from their estimated mean
with smoothing parameters selected for the optimal estimation of the covariance functions via a
Kullback–Leibler criterion (Krafty et al., 2008). The estimates of the first two moments of the
log-spectra are used to estimate the unit-specific random effects through plug-in estimates of the
best linear unbiased predictors. Fixed effects are then re-estimated by approximating the mini-
mizer of the penalized sum-of-squares after removing the estimated unit-specific random effects
from the log-periodograms.

2. MODEL

2·1. Mixed effects Cramér spectral representation

We introduce the mixed effects Cramér spectral representation for modelling a collection of
n = ∑N

j=1 n j time series from N independent units, where n j time series are observed from
the j th unit. This model consists of a stochastic transfer function that is composed of pop-
ulation fixed effects and unit-specific random effects. Let U jk = (u jk1, . . . , u jk P)

T ∈ U and
Vjk = (v jk1, . . . , v jk Q)

T ∈ V be vectors of covariates for the kth replicate of the j th indepen-
dent unit which index the fixed effects and the unit-specific random effects, respectively. These
covariates can include continuous covariates as well as indicator variables for categorical vari-
ables. Our motivating study of heart rate variability, discussed in greater detail in § 5, consists of
n = 375 epochs of heart rate variability measured at n j = 3 different sleep stages from N = 125
independent subjects. In addition to its dependence on sleep stage, the expected spectrum of
heart rate variability is hypothesized to be associated with the presence of insomnia. The fixed
covariates are modelled with P = 6 by indicator variables to indicate the presence of insomnia
and stage of sleep. The covariates of the random effects are modelled with Q = 2 to capture the
variation in the across-the-night average heart rate variability between different subjects and the
correlation in the heart rate variability from the same subject at different stages of sleep.

The transfer function of the kth replicate of the j th independent unit is decomposed into
A0(ω; U jk)A j (ω; Vjk), where A0 is a fixed effects term and A j is a random effects term.
To formally define our model, let the population fixed effects term A0 be a complex valued
function over R × U such that for every U jk ∈ U , A0(·; U jk) is Hermitian, square-integrable
over [−1/2, 1/2], and has period 1 as a function of frequency. The unit-specific random
terms are defined for j = 1, . . . , N as the complex valued random functions A j over R × V
such that for every Vjk ∈ V , A j (·; Vjk) are Hermitian, square-integrable over [−1/2, 1/2],
and have period 1 as trajectories over frequency. Additionally, A j and A j ′ for j, j ′ |= 0 are
independent and identically distributed conditional on Vjk when j |= j ′, and it is assumed that
supω∈R,Vjk∈V E{|A j (ω; Vjk)|2}<∞.

The mixed effects Cramér spectral representation defines the kth replicate time series of the
j th independent unit {X jkt } as

X jkt =
∫ 1/2

−1/2
A0(ω; U jk)A j (ω; Vjk)e

2π iωt d Z jk(ω) (k = 1, . . . , n j ; j = 1, . . . , N ), (1)
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where Z jk are mutually independent identically distributed mean-zero orthogonal increment pro-
cesses over [−1/2, 1/2] that are independent of A j ′ for all j and j ′, and E{|d Z jk(ω)|2} = dω.
The time series {X jkt } exists with probability one, is mean zero second-order stationary and has
spectral density |A0(ω; U jk)|2 E{|A j (ω; Vjk)|2}. Additionally, any second-order stationary time
series with a spectral density possesses a mixed effects Cramér spectral representation. Condi-
tional on A j , the time series {X jkt } is also mean zero second-order stationary and we define the
replicate-specific spectra and the population average spectrum as

f jk(ω; U jk, Vjk)= |A0(ω; U jk)|2|A j (ω; Vjk)|2, f (ω; U jk)= |A0(ω; U jk)|2.

We focus on inference on the log-spectral scale and without loss of generality assume that
the replicate-specific spectra are parameterized such that E{log |A j (ω; Vjk)|2} = 0 for all ω ∈ R

and Vjk ∈ V .

2·2. Semiparametric log-spectral model

We will assume semiparametric models for both the fixed and random components of the trans-
fer functions. The semiparametric model of the fixed effects component of the transfer function is
defined for U jk = (u jk1, . . . , u jk P)

T as A0(ω; U jk)=
∏P

p=1 h0
p(ω)

u jkp , where the h0
p are deter-

ministic Hermitian functions over R with period 1 that are bounded away from zero. The random
components of the unit-specific transfer functions are defined for Vjk = (v jk1, . . . , v jk Q)

T ∈ V
as A j (ω; Vjk)=

∏Q
q=1 h jq(ω)

v jkq where h jq are mutually independent Hermitian random func-
tions with period 1 that are bounded away from zero, h jq and h j ′q are independent and identi-
cally distributed for j |= j ′, and E{|h jq(ω)|4}<∞. Define the functions βp(ω)= log |h0

p(ω)|2
and α jq(ω)= log |h jq(ω)|2 as well as the p-dimensional vectors β(ω)= {β1(ω), . . . , βP(ω)}T

and the q-dimensional vectors α j (ω)= {α j1(ω), . . . , α j Q(ω)}T. This transfer function model
induces the semiparametric mixed effects model on the replicate-specific log-spectra

log f jk(ω; U jk, Vjk)= U T
jkβ(ω)+ V T

jkα j (ω). (2)

If we define the covariance function for the qth log-spectral random effect as �q(ω, ν)=
E{α jq(ω)α jq(ν)} and let �(ω, ν)= diag{�1(ω, ν), . . . , �Q(ω, ν)} be the diagonal Q × Q
matrix of these covariances, the first two central moments of log-spectra are

E{log f jk(ω; U jk, Vjk)} = U T
jkβ(ω),

cov{log f jk(ω; U jk, Vjk), log f j�(ν; U j�, Vj�)} = V T
jk�(ω, ν)Vj�.

2·3. Modelling log-spectral effects in a Sobolev space

The mixed effects Cramér spectral representation (1) and semiparametric log-spectral model
(2) offer a general model for collections of time series data that can be potentially correlated.
Many applications, such as the study of heart rate variability explored in § 5, involve unit-specific
log-spectra which are smooth. Section 3 develops a data-driven estimation procedure when the
unit-specific log-spectra are real-valued periodic functions that are absolutely continuous, have
absolutely continuous first derivatives and L2 integrable second derivatives. Although the space
of such functions can be expanded in a cosine series, we find it advantageous for later theoretic
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exposition to represent this space as

W 2
2,per =

{ ∞∑
m=−∞

ame2π imω : am ∈ C, am = a−m,

∞∑
m=−∞

m4|am |2
}
.

Penalized estimation procedures will be developed by viewing this space as the reproduc-
ing kernel Hilbert space under the well-studied periodic Sobolev norm which is exam-
ined in Cogburn & Davis (1974) and in § 4·2 of Gu (2002). Consider the decomposition
W 2

2,per = W0 ⊕ W1 where W0 = { f ∈ W 2
2,per :

∫ 1/2
−1/2 f ′′(ω) dω= 0} and W1 = { f ∈ W 2

2,per :
∫ 1/2
−1/2

f (ω) dω= 0} are viewed as Hilbert spaces under the respective inner products 〈 f, g〉0 =
{∫ 1/2

−1/2 f (ω) dω}{∫ 1/2
−1/2 g(ω) dω} and 〈 f, g〉1 = ∫ 1/2

−1/2 f ′′(ω)g′′(ω) dω. The spaces W0 and W1

are reproducing kernel Hilbert spaces with reproducing kernels R0(ω, ν)= 1 and R1(ω, ν)=
2

∑∞
m=1(2πm)−4 cos{2πm(ω − ν)} so that W 2

2,per is a reproducing kernel Hilbert space with
reproducing kernel 1 + R1(ω, ν).

3. ESTIMATION

3·1. Log-periodogram mixed effects model

Let T = 2L for a positive integer L and assume that we observe epochs of length T of a
collection of time series {X jk1, . . . , X jkT } that follow a mixed effects Cramér spectral represen-
tation for k = 1, . . . , n j and j = 1, . . . , N . Let ω� = �/T for �= (1 − L), . . . , L be the Fourier
frequencies and define the finite Fourier transforms as d jk� = T −1/2 ∑T

t=1 X jkt e−2π iω�t and sub-
sequent periodograms as I jk� = |d jk�|2. Theorem 1 establishes asymptotic properties of the log-
periodograms when the replicate-specific spectra are in W 2

2,per and allows the log-periodograms
to be approximated by a functional mixed effects model.

THEOREM 1. Assume that h0
p ∈ W 2

2,per for p = 1, . . . , P, h jq ∈ W 2
2,per almost surely for q =

1, . . . , Q, and Assumptions A1–A5 in the Appendix. Let κ jk� = log I jk� − log f jk(ω�; U jk, Vjk)

and note that κ jk� = κ jk−�. As T → ∞, κ jk� are asymptotically independent for �= 0, . . . , L,
the κ jk� are asymptotically distributed as log(ψ) for �= 1, . . . , (L − 1) where ψ ∼ χ2

2 /2, and
κ jk0 and κ jkL are asymptotically distributed as log(φ) where φ ∼ χ2

1 .
Let γ ≈ 0·577 be the Euler–Mascheroni constant. For � |= 0, L, let γ� = E{log(ψ)} = γ

and σ 2
� = var{log(ψ)} = π2/6. Define γ0 = γL = E{log(φ)} = (log 2 + γ )/π and σ 2

0 = σ 2
L =

var{log(φ)} ≈ 4·935. Uniformly in j, k and �, as T → ∞

E(κ jk�)= −γ� + O(T −1),

var(κ jk�)= σ 2
� + O(T −1),

cov(κ jk�, κ j ′k′�′)= O(T −1) ( j |= j ′, k |= k′, |�| |= |�′|).

The first part of Theorem 1 demonstrates that analogous distributional properties to the well-
studied properties of log-periodograms for deterministic transfer functions exist for the Cramér
spectral representation model. Letting y jk� = log I jk� + γ�, the log-periodograms approximately
follow the functional mixed effects model

y jk� ≈ U T
jkβ(ω�)+ V T

jkα j (ω�)+ ε jk� (3)
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where ε jk� are zero mean independent random variables for �= 0, . . . , L with var(ε jk�)= σ 2
� .

The second part of Theorem 1 provides the uniform convergence of the first two moments of
this smooth signal plus noise model and subsequently allows functional mixed effects modelling
techniques to be applied to (3) to obtain consistent estimates of βp, �q and α jq .

3·2. Fixed effects

The proposed estimator of β is based on minimizing the penalized sums-of-squares

1

nT

N∑
j=1

n j∑
k=1

L∑
�=1−L

{y jk� − U T
jkβ(ω�)}2 +

P∑
p=1

λp

∫ 1/2

−1/2
β ′′

p(ω)
2 dω (4)

over ⊗P W 2
2,per given smoothing parameters λp � 0. By the representer lemma for smooth-

ing splines, if U j are the n j × P matrices with kpth elements u jkp and U = (U T
1 , . . . ,U

T
N )

T

is full rank, then a unique solution exists. To find this solution, let Y j� = (y j1�, . . . , y jn j�)
T,

Y� = (Y T
1�, . . . , Y T

N�)
T and Y = (Y T

1−L , . . . , Y T
L)

T. Further, let R be the T × T matrix of the repro-
ducing kernel R1 of W1 evaluated the Fourier frequencies. The matrix R has the singular value
decomposition FT DF , where F is the matrix of the discrete Fourier transform that has �mth
element T −1/2 exp{−2π i(m − L)(�− L)/T } (Gu, 2002, § 4·2). The minimizer of (4) over
⊗P W 2

2,per is defined for ω ∈ R as d̂ + [{R1(ω, ω1−L), . . . , R1(ω, ωL)} ⊗ IP ]ĉ for d̂ ∈ R
P and

ĉ ∈ R
PT that satisfy

T 1/2(eo ⊗ U TU )d + {(DF ⊗ U TU )+ nT (IT ⊗�)}c = {F ⊗ (U TU )−1U T}Y,
(eT

o F ⊗ Ip)c = 0P ,

where �= diag(λ1, . . . , λP), e0 is the T -vector of zeros except for a one in the (L + 1)st
element, and 0p is the P-vector of zeros. Cogburn & Davis (1974) developed and Wahba (1980)
popularized an approximation to the minimizer of the penalized sums-of-squares over W 2

2,per
that results in an estimator that is equivalent to applying the classical Butterworth filter to the
log-periodograms. We apply this approximation to the minimizer (4) and estimate β(ω) with

β̂(ω)= 1

T

L∑
�=1−L

L∑
m=1−L

{U TU + n(2πm)4�}−1U TY�e
2π im(ω−ω�). (5)

When n = 1 and P = 1, the proposed estimator is equivalent to the estimator proposed by Wahba
(1980) and is subsequently a generalization of this well-studied estimator to the regression setting
with multiple log-spectra. Using simple algebra to express

{U TU + n(2πm)4�}−1U TY� = {IP + n(2πm)4(U TU )−1�}−1{(U TU )−1U TY�}

illuminates that the proposed estimate is a type of multivariate low-pass filter applied to the ordi-
nary least squares estimates at each frequency. It is dependent on the smoothing parameters such
that as max λ j → 0, β̂ approaches a spline interpolation of the ordinary least squares estimates.
Theorem 2 establishes the optimal decay of λ j if both the number of independent units and the
number of time-points is large, as well as the point-wise consistency of β̂.
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THEOREM 2. Assume the conditions of Theorem 1, regularity assumptions on the covariate
design given by Assumptions A6 and A7, and that n j is bounded away from zero and infinity
through Assumption A8. Let λ= maxp λp, and assume that there exists a constant C such that
minp λp/λ >C. As N , T → ∞, the optimal mean-square convergence rate is achieved when
λ∼ (N T )−4/5, under which

sup
p=1,...,P;ω∈R

E{|β̂p(ω)− βp(ω)|2} = O(N−4/5T −4/5)+ O(T −1)+ O(N−1).

Traditionally, the large sample properties of smoothing splines are explored either when the
number of independent units is bounded, most famously in the estimation of a single curve when
N = 1 and n1 = 1 (Wahba, 1990), or in the longitudinal data setting where N may be large but the
number of observations per individual unit are bounded (Lin et al., 2004). Theorem 2 shows that
the amount of smoothing for the estimation of fixed effects depends on both N and T and conse-
quently smoothing parameter selection procedures directed towards the prediction of individual
log-spectra, i.e., ignoring N , will behave suboptimally. One popular approach to the data-driven
selection of smoothing parameters for linear smoothers is generalized crossvalidation (Gu, 2002).
The generalized crossvalidation procedure to select the parameters� indexing the estimate β̂ as a
linear smoother of the ordinary least squares estimates of β at each Fourier frequency minimizes

G(�)=
∑L
�=1−L{(U TU )−1U TY� − β̂(ω�)}T{(U TU )−1U TY� − β̂(ω�)}

PT
[
1 − ∑L

m=1−L trace{IP + n(2πm)4(U TU )−1�}−1/P
]2 .

3·3. Functional covariance

We propose an estimate of the functional covariance of the log-spectral random effects condi-
tional on the estimate β̂ through the outer product of smoothed unit-specific quantities. Define
the residuals y∗

jk� = y jk� − U T
jk β̂(ω�) and Y ∗

j� = (y∗
j1�, . . . , y∗

jn j�
)T. We propose to estimate

�q(ω, ν) for ω, ν ∈ R as

�̂q(ω, ν)= N−1
N∑

j=1

α̃ jq(ω)α̃ jq(ν), (6)

where α̃ j = (α̃ j1, . . . , α̃ j Q)
T is based on minimizing

1

n j T

n j∑
k=1

L∑
�=1−L

{y∗
jk� − V T

jkα j (ω�)}2 +
Q∑

q=1

θq

∫ 1/2

−1/2
α′′

jq(ω)
2 dω

over ⊗Q W 2
2,per given the smoothing parameters θq � 0. Approximating the solution to the penal-

ized sums-of-squares, we estimate �̂q(ω, ν) as the qth diagonal element of the Q × Q matrix

1

N T 2

N∑
j=1

L∑
�,m,r,s=1−L

{V T
j V j + n j (2πm)4�}−1V T

j Y ∗
j�Y

∗T
jr V j

× {V T
j V j + n j (2πs)4�}−1e2π im(ω−ω�)+2π is(ν−ωr )
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where Vj is the n j × Q matrix with kqth element v jkq and �= diag(θ1, . . . , θQ). Theorem 3
finds the optimal decay of the smoothing parameters θq for the estimation of �q as well as the
point-wise mean-squared consistency of the estimate of �q .

THEOREM 3. Assume the conditions of Theorem 2 and the existence of the first eight moments
of X jkt given in Assumption A9. Let θ = maxq θq , and assume that there exists a constant C
such that minq θq/θ >C. As N , T → ∞, the optimal mean-square convergence is achieved when
θ ∼ (N−2/3 + T −4/3), under which

sup
q=1,...,Q;ω,ν∈R

E{|�̂q(ω, ν)− �q(ω, ν)|2} = O(N−2/3 + T −1).

The amount of smoothing for method-of-moments type estimation of �q requires a smoothing
parameter that decays with respect to the number of time-points at a rate of T −4/3, whereas
the amount of smoothing for α̃ jq to predict the unit-specific log-spectra α jq would decay at a
rate of T −4/5 (Wahba, 1980). Consequently, selecting smoothing parameters to optimally predict
unit-specific random effects when forming a method-of-moments estimate for the functional
covariance will result in over-smoothing. This result partially motivates the development of an
iterative procedure in § 3·5 for the estimation of βp and �q that allows for different amounts of
smoothing to be used for the estimation of the fixed effect coefficients and the covariance of the
random effects. The functions α̃ j will be thought of as nuisance parameters for the estimation of
the functional covariance and not estimates of the unit-specific random effects.

Krafty et al. (2008) offer a crossvalidation procedure for the data-driven selection of smooth-
ing parameters θq that uses the quasi Kullback–Leibler distance conditional on fixed effect
estimates as a measure of lack-of-fit over the functional covariance space. To approximate
the first two moments of all data from an independent-unit, let W be the QT × QT block
matrix with �mth Q × Q block �(ω�−L , ωm−L), and �ε be the T × T matrix with �mth ele-
ment σ 2

� δ|�−L|,|m−L|. Theorem 1 implies that E(Y ∗
j )≈ 0n j T and var(Y ∗

j )≈ (IT ⊗ Vj )W (IT ⊗
V T

j )+ (�ε ⊗ In j ) where Y ∗
j = (Y ∗T

j (1−L), . . . , Y ∗T
j L )

T. We use a leave-out-one procedure to esti-

mate the quasi Kullback–Leibler distance of Y ∗
j conditional on β̂ between the within-unit

covariance obtained by using smoothing parameters � and the true within-unit covariance.
Letting �̂(− j)(ω, ν :�) be the estimate of the matrix �(ω, ν) using smoothing parame-
ters � and excluding data from the j th independent unit, Ŵ (− j)(�) be the corresponding
QT × QT block matrix with �mth Q × Q block �̂(− j)(ω�−L , ωm−L :�), and �̂ j (�)= (IT ⊗
Vj )Ŵ (− j)(�)(IT ⊗ V T

j )+ (�ε ⊗ In j ), we select � to minimize

K(�)=
N∑

j=1

log |�̂ j (�)|+ + Y ∗T
j �̂ j (�)

−Y ∗
j ,

where |�̂ j (�)|+ is the product of the positive eigenvalues of �̂ j (�) and �̂ j (�)
− is its Moore–

Penrose inverse.

3·4. Unit-specific random effects

Estimates of the best linear unbiased predictors of unit-specific random effects allows for the
pooling of information across units and serves as the cornerstone of unit-specific random effect
estimation (Robinson, 1991). The plug-in estimate of the best linear unbiased estimate of α j (ω)
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for ω ∈ R based on Y ∗
j is

α̂ j (ω)= {�̂(ω, ω1−L), . . . , �̂(ω, ωL)}(IL ⊗ V T
j ){(IT ⊗ Vj )Ŵ (IT ⊗ V T

j )+ (�ε ⊗ In j )}−Y ∗
j

(7)

where �̂(ω, ν) and Ŵ are the estimates of �(ω, ν) and W with their dependence on smoothing
parameters suppressed for notational simplicity.

3·5. Iterative estimation of βp and α jq

The estimates obtained by first estimating β through (5) then estimating �q through (6) are
consistent. However, Welsh et al. (2002) and Lin et al. (2004) showed that failing to account
for within-unit correlation in the smoothing spline estimation of fixed effects results in sub-
optimal estimates. Adapting the ideas proposed by Yao & Lee (2006) for principal component-
based penalized spline models to our periodic spline model for log-periodograms, we propose to
increase the efficiency by iterating between the estimation of the random effects after removing
estimates of the fixed effects and the estimation of the fixed effects after removing estimates of
the random effects. Formally, if we set α(0)jq (ω)= 0, the estimates β(m), �(m)q and α(m)j are defined
for iteration m = 1, 2, . . . by

1. letting y(m)jk� = y jk� − V T
jkα

(m−1)
jq (ω�) and Y (m)� = {(y(m)11� , . . . y(m)1n1�

), . . . , (y(m)N1�, . . .

y(m)NnN �
)}T, define β̂(m) through (5) with Y� replaced with Y (m)� ;

2. defining �̂(m)q and α̂(m)j for j = 1, . . . , N through (6) and (7) with β̂ replaced with β̂(m) in
the definition of y∗

jk�.

This algorithm can be repeated until same convergence criteria are met and, if M is the final
iteration of the algorithm, set β̂ = β̂(M), �̂q = �̂

(M)
q and α̂ j = α̂ j

(M).

3·6. Point-wise confidence intervals for fixed effects

We propose a parametric bootstrap procedure for obtaining point-wise confidence intervals
for the log-spectral fixed effects. Although the proposed model in (2) and iterative procedure for
obtaining point estimates given in § 3·5 do not assume a distribution for the log-spectral random
effects, we propose parametric Gaussian bootstrap sampling of the log-spectral random effects.
Morris (2002) discusses the underestimation of variability in nonparametric bootstrap sampling
of mixed effects models.

The bth bootstrap sample of the collection of time series for b = 1, . . . , B is generated
by first generating the log-spectral random effects α[b]

jq for j = 1, . . . , N and q = 1, . . . , Q

as independent mean zero Gaussian random processes with covariance kernel �̂q . These

random effects are used to compute the replicate specific spectra f [b]
jk (ω)= exp[U T

jk β̂(ω)+
V T

jk{α[b]
j1 (ω), . . . , α

[b]
j Q(ω)}T]. Dai & Guo (2004, Theorem 2) allow for the approximate simu-

lation of time series epochs with a given spectrum and we use this to simulate time series epochs
X [b]

jkt for t = 1, . . . , T with spectrum f [b]
jk . The log-periodograms of the time series X [b]

jkt are
computed and used in the data-driven iterative algorithm to obtain the fixed effects coefficient
estimates from the bth bootstrap sample, β̂[b]

1 , . . . , β̂
[b]
P . We estimate the (1 − α)% confidence

interval for βp(ω) as {ξp(ω;α/2), ξp(ω; 1 − α/2)}, where ξp(ω;α) is the α percentile of the set

{β̂[b]
p (ω)− Biasp(ω)}B

b=1 and Biasp(ω)= B−1 ∑B
b=1 β̂

[b]
p (ω)− β̂p(ω).
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4. SIMULATIONS

Simulation studies were conducted to investigate the empirical performance of the pro-
posed iterative estimation procedure and to compare it to the performance of three alterna-
tive procedures. The first alternative estimation procedure is the noniterative procedure, or
the procedure proposed in § 3·5 with M = 1, which is implemented to allow for the empiri-
cal assessment of the benefits in iterating. The proposed iterative estimation procedure can be
viewed as a data-driven smoother applied to the collection of log-periodograms which is for-
mulated to exploit the dependence structure across time series. A naive approach would be
to obtain replicate-specific log-spectral estimates by applying a smoothing procedure to repli-
cate specific log-periodograms while ignoring the dependence structure among time series.
Fixed effect estimates can then be obtained through ordinary least squares at each frequency.
The second alternative estimation procedure considered examines the empirical properties of
this approach, which we will refer to as presmoothing, by applying the generalized crossvali-
dated spline smoother of Wahba (1980) to each replicate-specific log-spectra. Estimation pro-
cedures that smooth across frequency are essential in the consistent estimation of a spectrum
from a single time series. However, consistent estimates of log-spectrum fixed effects can be
obtained from the log-periodograms of a collection of time series without smoothing across
frequency when N is large. The third alternative estimation procedure explores the empirical
properties of estimating the log-spectral fixed effects without smoothing across frequency by
computing the ordinary least square estimates of the log-spectral fixed effects at each Fourier
frequency.

The simulation settings consider n j = 5, P = 2 and Q = 1. Replicate-specific log-spectra are
obtained as g jk(ω)= β1(ω)+ u jkβ2(ω)+ α j (ω) for β1(ω)= 2 cos(2πω), β2(ω)= 2 cos(4πω)
and α j = ξ j1 + ξ j2 cos(2πω)+ ξ j3 cos(4πω), where (ξ j1, ξ j2, ξ j3)

T are independent mean zero
normal random vectors with variance matrix diag(2·5, 2, 1), and u jk are independent uniform
random variables over [0, 1]. After a replicate-specific log-spectrum is simulated, the square-
root of the spectrum is calculated and used as the replicate-specific transfer function to simulate
the time series X jkt in accordance with Dai & Guo (2004, Theorem 2). Five hundred random
samples of N independent units of time series epochs of length T are drawn for the six possible
combinations of N = 50, 100 and T = 50, 100, 200. Ninety-five per cent bootstrap confidence
intervals for the log-spectral fixed effects from B = 1000 bootstrap samples are computed for
each simulated random sample.

The performance of the estimation procedures are evaluated through the square error of the
log-spectral fixed effects over the Fourier frequencies, of the replicate-specific log-spectral esti-
mates and of the estimates of the covariance kernel as displayed in Table 1. The average across the
curve coverage of the 95% point-wise bootstrap confidence intervals for the six settings ranged
from 90·4 to 95·5%. In each of the six settings, the proposed iterative procedure has smaller
square error than the other methods for the estimation of the log-spectral fixed effects, the predic-
tion of replicated-specific log-spectra, and for the estimation of the covariance kernel. Although
the errors of the estimates of the replicate-specific spectra via the proposed iterative estima-
tion procedure decreased as either N or T increased, the error of the estimates of the replicate-
specific spectra obtained through presmoothing did not change with N . This finding, which is
a consequence of the fact that the estimated best linear unbiased estimate of a subject-specific
log-spectrum requires the estimation of the covariance kernels that depends on N whereas the
performance of presmoothing the data for the estimation of a the replicate-specific log-spectrum
only depends on T , implies that the relative gain in efficiency for the estimation of the replicate-
specific spectra between the proposed iterative procedure and presmoothing decreases as the
ratio of T to N increases.
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Table 1. Results of the simulation studies. Square error averaged over
the Fourier frequencies are displayed for the estimation of β1, β2, g jk ,

and � from 500 random samples per setting

Square error ×102

T Method N = 50 N = 100
β̂1 β̂2 ĝ jk �̂ β̂1 β̂2 ĝ jk �̂

50 Iterative 7·9 11·0 22·8 57·3 3·9 9·3 21·3 32·8
Noniterative 13·9 29·1 24·5 58·9 7·9 17·8 22·5 34·0
Presmooth 15·0 34·8 275·6 — 9·6 28·0 286·9 —
OLS 17·2 26·7 — — 11·2 17·2 — —

100 Iterative 7·3 2·1 7·2 51·2 3·8 1·5 5·9 24·8
Noniterative 12·4 19·8 8·5 51·9 6·6 11·7 6·8 25·1
Presmooth 12·2 20·0 49·5 — 7·1 14·6 48·1 —
OLS 15·5 25·3 — — 10·1 15·1 — —

200 Iterative 5·3 0·7 2·8 33·4 2·8 0·4 1·5 20·5
Noniterative 9·4 13·2 3·6 36·2 4·6 8·0 2·2 26·2
Presmooth 9·3 13·7 9·4 — 4·6 8·7 9·4 —
OLS 12·8 21·3 — — 7·3 12·3 — —

OLA, ordinary least squares.

5. ANALYSIS OF HEART RATE VARIABILITY

Heart rate variability is the measure of variability in the elapsed time between consecutive
heart beats. The spectral analysis of heart rate variability is important in the study of various
physiological outcomes and provides indirect measures of autonomic nervous system activity
(Malik et al., 1996). Researchers have devised methods to assess heart rate variability continu-
ously and non-invasively throughout sleep (Hall et al., 2004, 2007). In the present study, sleep
and heart rate variability were concurrently assessed in a sample of N = 125 men and women
between the ages of 60 and 89 years. Data were collected in participants’ homes to enhance the
ecological validity of study measures. Of these participants, 76 were poor sleepers due to insom-
nia while 49 were poor sleepers due to emotional strain of caregiving for a spouse with advanced
dementia. The present analysis uses epochs of heart rate variability tachograms, or the series
of the elapsed time between consecutive heart beats indexed by beat number, of the first 500
continuous heart beats during each of the first three periods of non-rapid eye movement. The
data for each subject are comprised of patient type, either insomnia or caregiver and three time
series, heart rate variability for the first three periods. Heart rate variability during the first three
periods, their associated log-periodograms and estimated best linear unbiased predictors of the
log-spectra for a caregiver participant are displayed in Fig. 1.

The goal of our analysis is to quantify the expected differences in heart rate variability spectra
between individuals with insomnia and caregivers during different periods. We model the heart
rate variability log-spectrum for the j = 1, . . . , 129 subjects at the first k = 1, 2, 3 periods as
log f jk(ω; U jk, Vjk)= U T

jkβ(ω)+ V T
jkα j (ω), where

⎡
⎢⎣

U T
j1

U T
j2

U T
j3

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0 S j 0 0

0 1 0 0 S j 0

0 0 1 0 0 S j

⎤
⎥⎦ ,

⎡
⎢⎣

V T
j1

V T
j2

V T
j3

⎤
⎥⎦ =

⎡
⎢⎣

1 −1

1 0

1 1

⎤
⎥⎦ ,

and S j is the indicator variable for the j th subject being an insomniac. The fixed effects β1, β2, β3
are the mean log-spectrum at periods 1, 2 and 3, respectively, for caregivers, β4, β5, β6 are the
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Fig. 1. Data from a sample caregiver subject in the heart rate variability study. Displayed are the heart rate variability,
log-periodogram and estimated best linear unbiased log-spectral predictor from the first three periods of non-rapid

eye movement.

differences in the mean log-spectra between individuals with insomnia and caregivers at periods
1, 2 and 3 respectively, �1 accounts for the variability in the across-the-night average log-spectra
among subjects and �2 is the covariance kernel among adjacent periods within a subject.

The estimated fixed effects are displayed in Fig. 2 along with point-wise 95% bootstrap confi-
dence intervals from B = 1000 random bootstrap samples. The mean log-spectrum for caregivers
over different periods, reflected in β̂1, β̂2 and β̂3, are very similar with a slight gain in power at
frequencies <0·05 cylces/beat as the night progresses. The expected log-power at all frequen-
cies for individuals with insomnia is greater than that for caregivers at the first and third periods,
reflected through β̂4 and β̂6, but less than that for caregivers during the second period, reflected in
β̂5. The monotonic decrease in β̂4, β̂5 and β̂6 reveals that the ratio of power from low frequencies
when compared with high frequencies is exaggerated for each of the first three periods among
individuals with insomnia compared to caregivers. Clinically, this increase in the ratio of power
in low to high frequencies is an indirect measure of an increase in the sympathetical balance and
has been shown to be associated with acute stress (Hall et al., 2007). Figure 3 shows that both the
estimated variability in the across-the-night average log-spectrum among subjects from �̂1 and
the estimated within-subject variability between adjacent periods from �̂2 are larger for higher
frequencies.

6. DISCUSSION

The model and estimation procedure introduced in this article offer tools for analysing collec-
tions of time series from designed studies and can be extended in several directions to encompass
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Fig. 2. Estimated log-spectral fixed effects and 95% point-wise bootstrap confidence intervals from 1000 bootstrap
samples for the analysis of heart rate variability.
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Fig. 3. Contour plots the estimated covariance kernels of the log-spectral random effects in the mixed effects Cramér
spectral representation model for heart rate variability.

other popular settings. We have focused on estimation based on the first two moments of the log-
spectra. It is possible to extend our procedure to Whittle-likelihood-based inference. In addition,
many applications involve the analysis of replicated time series that are not stationary. The incor-
poration of the tensor-product design employed by Guo et al. (2003) into our proposed model to
allow for the spectral analysis of replicated nonstationary time series could provide a useful tool
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for the analysis of replicated locally stationary time series. We hypothesize that the computational
burden associated with Whittle-likelihood-based inference and the tensor-product analysis of
locally stationary time series for a collection of time series could make these two extensions
nontrivial. Although the mixed effects Cramér spectral representation holds when unit-specific
spectra are not smooth, our estimation procedure is formulated for applications such as the anal-
ysis of heart rate variability where a global smoothness criterion is appropriate. Extending the
iterative estimation procedure to utilize tools that can capture local properties, such as free knot
splines or wavelet bases, could prove useful in many applications.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online provides proofs of the theorems.

APPENDIX

Regularity assumptions

The properties established in the theorems are dependent on regularity assumptions about the distri-
butions of Z jk and f jk(ω; U jk, Vjk) and on the covariate design. For the noise process, we will make
Assumption A1 which assures that X jkt can be written as a linear process, the Cramér type condition
in Assumption A2 which guarantees that the distribution of the Fourier transform of z jkt is absolutely
continuous, and the existence of the fourth moment in Assumption A3.

Assumption A1. Let z jkt = ∫
e2π iωt d Z jk(ω). The random variables z jkt are white noise with mean zero

and unit variance.

Assumption A2. There exists an integer ρ > 0 such that
∫ ∣∣E

(
eisz jkt

)∣∣ρ ds <∞.

Assumption A3. Fourth moments of z jkt exist such that supω E{|Z jk(ω)|4}<∞.

Assumption A2, which excludes z jkt with discrete distributions, is satisfied when z jkt possesses a dif-
ferentiable density. Regularity on f jk(ω; U jk, Vjk) will be induced through regularity assumptions on A j ,
U and V . Assumption A4 assures that the unit-specific spectra are bounded away from zero while Assump-
tions A5–A7 place regularity conditions on the covariate design.

Assumption A4. There exists an ε > 0 such that supω,Vjk
pr{|A j (ω; Vjk)|2 < ε} = 0.

Assumption A5. The sets U and V are compact.

For a square matrix M , let σ−(M) and σ+(M) be its smallest and largest eigenvalues. We will assume
the following.

Assumption A6. There exist positive constants D1 and D2 such that limN→∞ σ−(U TU/n)= D1 and
limN→∞ σ+(U TU/n)= D2.

Assumption A7. There exist positive constants D3 and D4 such that σ−(V T
j Vj )� D3 and σ+(V T

j Vj )�
D4 for all j .
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The asymptotic properties are explored when the number of replicates per unit are bounded through
Assumption A8.

Assumption A8. There exists positive n− and n+ such that n− � n j � n+ for all j .

The consistency of the covariance kernel of the log-spectral random effects requires the existence of
the first eight moments of X jkt through Assumption A9.

Assumption A9. The first eight moments of h jq and Z jk are bounded such that supω,q E{∣∣h jq(ω)
∣∣8}<

∞ and supω E{∣∣Z jk(ω)
∣∣8}<∞.
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