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SUMMARY

Type-1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting 

prototypical “Interferon Signature Genes” which encode antiviral and inflammatory mediators. 

For a global view of IFN signatures and regulatory pathways, we performed gene expression and 

chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These 

distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN, and revealed 

underlying changes in chromatin configuration. We combined 1398 human and mouse datasets to 

computationally infer ISG modules and their regulators, validated by genetic analysis in both 

species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others 

appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 
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blockade pharmacology, different clusters being affected under tonic or IFN-stimulated 

conditions, and the IFN signatures previously associated with human diseases, revealing 

unrecognized subtleties in disease footprints, as affected by human ancestry.

INTRODUCTION

Type-1 Interferons (IFN) are a family of primordial cytokines that play a key role in 

responses to viral pathogens. They are a conduit between pathogen recognition by 

intracellular or extracellular sensors and the activation of anti-infectious mechanisms. IFN 

induces a set of “Interferon Signature Genes” (ISGs) that elicit a range of antiviral effectors 

(Schneider et al., 2014). ISGs also have pleiotropic effects on a broad array of 

immunological functions (Theofilopoulos et al., 2005), either directly by modulating cell-

surface interaction molecules, or by perturbing signals from other cytokines or growth 

factors. IFN-induced responses are typically fast and have a strong positive feed-forward 

component, in particular the synthesis of more IFN, which ensures that a full response is 

activated even by low initial triggers, and spreads the alarm between neighboring cells. IFNs 

are thus key components of cell-intrinsic immunity, and one or more IFN types can be 

produced by any nucleated cells.

IFNs signal through a common heterodimeric receptor (IFNAR1/IFNAR2), or through 

IFNAR1 alone (de Weerd et al., 2013). The receptor subunits are associated with JAK1 and 

TYK2 kinases, whose activation results in phosphorylation of STAT1 and STAT2 

transducers, which then associate with IRF9 to form the ISGF3 complex which activates 

ISG transcription (Stark and Darnell, Jr., 2012). But, besides this canonical conduit, IFN 

also activates several other signaling pathways: other STAT family members such as 

STAT3, especially in the absence of STAT1; the MAPK cascades (p38 and ERK); PI-3K 

and the mTOR-Akt-S6K axis (reviewed in (Uddin and Platanias, 2004; Ivashkiv and Donlin, 

2014)). These additional signals directly partake in ISG induction, and likely modulate 

parallel cytokine or homeostatic signals. The immediate response to IFNs includes an 

amplification component (Stat1, Irf7 and Irf9 and some Ifn genes are ISGs themselves) as 

well as negative feedback loops: the strong negative regulators SOCS1, USP18, ISG15 are 

among the most strongly responsive human ISGs.

These signals elicit a canonical set of ISGs, which has been reproduced in many studies. The 

IFN signature includes several protein families with antiviral activity but is broader than a 

simple antiviral program, and the IFN signature also includes other cytokines (IL15, CSF1, 

TNF), chemokines, and cell-cell interaction modifiers (MHC-I, Lgals9). A common core of 

the IFN signature is induced in essentially all cell-types, but other ISGs are induced only in 

specific cell-types. It is unclear whether these cell-specific components result from 

differences in the balances of JAK or STAT regulators, or in the pre-existing chromatin 

states that enable responses at specific loci (van Boxel-Dezaire et al., 2006).

IFNs and the response they elicit are associated with a wide range of diseases. Several 

diseases are directly linked to an expanding group of monogenic deficiencies with enhanced 

or insufficient IFN activity (Crow, 2015). In addition, the interferon transcriptional signature 

is found elevated in blood cells in many diseases (Theofilopoulos et al., 2005; Forster, 
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2012), including bacterial or parasitic infections as might be expected (Berry et al., 2010) 

but also a range of auto-inflammatory disease like Systemic Lupus Erythematosus (SLE), 

Multiple Sclerosis (MS), dermatomyositis, Sjogren’s disease, Scleroderma, Rheumatoid 

Arthritis or Sarcoidosis, and neuropsychiatric pathology. While plausible pathogenic 

scenarios can be proposed to account for these overexpressed IFN signatures, it is uncertain 

if IFN is a causative or a secondary consequence, or if a heightened IFN signature reveals 

over-activity of signaling pathways that are shared with the true pathogenic path.

The Immunological Genome Project (ImmGen) aims to perform a thorough dissection of 

gene expression and its regulation in the immune system of the mouse, including a 

systematic analysis of responses to cytokine triggers. Here, we have charted the 

transcriptional response to IFN across many hematopoietic cell-types, and performed 

detailed dynamic and chromatin analyses in B lymphocytes (dedicated databrowsers at 

www.immgen.org). We statistically integrated these data together with other large datasets 

that query the IFN response across genetic variation in humans and mice, and constructed a 

combined regulatory network for IFN. Predictions from this network, validated by genetic 

perturbation in both species, allowed us to parse the contributions of canonical and non-

canonical signaling pathways. This novel regulatory map provides an Illuminating reference 

to understand the association between the IFN signature and disease, as it differs across 

human populations, or the pharmacology of IFN-interfering drugs.

RESULTS

Cell- and time-specificity of the IFN response

We first set out to define the IFN signature across immunocyte lineages. Injection of 

purified IFNα in vivo best captured the relevant responses in unperturbed cells, and avoided 

unrelated responses associated with classic IFN inducers (TLR agonists) or viral infection. 

Type-I IFN families contain several members, whose effects largely overlap but are not 

completely identical (Thomas et al., 2011), but we focused this work on recombinant IFNα.

Cell-type specificity—The eleven cell-types constituting the ImmGen core lineage panel 

(chosen for representativity and for the possibility to purify from one mouse sufficient 

numbers for robust profiling) were double-sorted from C57BL/6 (B6) mice to high purity, 2 

hrs after subcutaneous IFN injection. After filtering for expression and reproducibility, a set 

of 975 genes was found to be induced in at least one cell-type (> 2-fold induction and FDR 

<0.1, induction ranging from 2 to 95-fold; heatmap of Fold Changes in Fig. 1A; Tab. S1A). 

A smaller set of transcripts was repressed (504 transcripts, mostly to a modest 1.5 – 3 fold; 

Tab. S1C). A core set of 166 ISGs was induced in all cells, which included the most robust 

responders (FoldChanges (FC) up to 60), highly connected in interaction databases, enriched 

(p<10−27) for antiviral effectors (Oas, Ifit, Mx or Gbp families), and included key regulators 

of the IFN response (e.g. Stat1, Irf7/9, Usp18). At the other end of the spectrum were small 

genesets uniquely induced in only one cell-type, mainly in granulocytes (GN) or dendritic 

cells (DC), but the bulk (~700) of the ISGs we uncovered were shared between several but 

not all cell-types (some segregated by lineage, e.g. common to all myeloid cells, or to all T 

lymphocytes). Cell-restricted ISGs were more modestly induced (FC 2 to 4), did not include 
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antiviral effectors or any specific gene family, although several of these ISGs were 

consistent with IFN’s pro-inflammatory function (Tnf, Il15, Csf1, Ccl2, Ccl4 in several cells, 

Il23r in GN, Ptgs2 in DC). We calculated an “IFN score”, which integrates the normalized 

expression of the common ISG set. Myeloid cells (GN, DC) have higher scores than 

lymphoid cells, at baseline and after IFN exposure (Fig. 1B).

Dynamic analysis—Finely resolved temporal transcriptome profiling can bring valuable 

information concerning regulatory network structure. We thus profiled CD19+ B 

lymphocytes purified at 23 times (15mn to 15hrs) after IFN injection. Most genes were 

induced rapidly, peaking at ~2 hrs and declining rapidly thereafter (Fig. 1C). Despite a wide 

range of change (FC from 2 to 40), most ISGs reached their maximum FC in a synchronized 

manner (per max-normalized representation of Fig. 1D), consistent with the notion that the 

IFN response is rapidly curtailed by negative feedback mechanisms. This temporal profile, 

which was similar for common and B-cell-specific ISGs (Fig. S1D), could be fit to a simple 

impulse model (Chechik and Koller, 2009) with a positive induction slope (Fig. 1E). After 

applying weighted average smoothing to the expression profiles, we quantified several 

temporal metrics: time to ½ onset, magnitude (maximum FC), and induction slope (Fig. 1F, 

Tab. S1D). A single-parameter model that considered only the magnitude of the 

representative impulse function (function fit to the median expression profile) explained 

most (~60%) of the total variance, the remaining variance being explained by subtle 

differences in onset time and induction slope. Indeed, plotting the induction slope vs the 

max FC distinguished two response modalities, one homogenous set with a unimodal 

relation between slope and maxFC, and another set with a more “explosive” response 

(steeper slope and shorter time to ½ onset; Fig. 1F).

ISGs sensitivity to IFN was evaluated across a 104 range of doses in B cells (2 hrs, in vitro 

for optimal control of exposure). There were no clear subgroups but sensitivity to IFN was 

notably spread, with a 50-fold difference in the “ED50“ for half-max response (Fig. 1G; Tab. 

S1B). No significant association between sensitivity and kinetic parameters was noted, 

although there was a trend for slower-responding genes being more sensitive.

Transcriptional consequences of IFN signaling modes

Tonic activity of the IFN signaling pathways, partially in response to IFN induced by 

commensal microbes (Abt et al., 2012), has a perceptible influence on immunologic activity 

as it enhances the sensitivity to acutely produced IFN and other cytokines, likely via 

sustained expression of key transducers (Gough et al., 2012). Ifnar1-deficient mice (Muller 

et al., 1994), which are completely refractory to IFN, provide a means to assess which ISGs 

are sensitive to tonic IFN at baseline, i.e. those with reduced expression in resting Ifnar1-

deficient mice. Profiling B cells and MFs from these mice revealed that some ISGs were 

under-expressed, but not all (Fig. 2A, S2A, Tab. S1E; essentially all the transcripts affected 

by the Ifnar1 deficiency were ISGs). We compared this dependence on tonic IFN signals to 

the amplitude of IFN reactivity (Fig. 2B). While there was a trend towards higher tonic 

dependence for the most responsive ISGs, it was not uniform, with a clear contingent of 

genes with high responsiveness to IFN but low dependence on tonic signaling (blue in Fig. 

2B; these outliers were not simply those with low expression at baseline, Fig. S2B). Perhaps 
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counter-intuitively, transcripts least dependent on tonic IFN signals tended to have the 

fastest responses (Fig. 2C). Together, these data suggest that ISG expression that relies on 

constitutive IFN does not simply reflect the most sensitive end of the IFN signaling 

spectrum, but an inherently different modality with quantitatively distinct targets.

IFN binding to the IFNAR receptor activates two JAK kinases, JAK1 and TYK2, which in 

turn activate the STAT1/2 pathway. While JAK1 is essential, TYK2 is partially dispensable 

for IFN responses in mice (Vogl et al., 2010). We revisited this question by profiling cells 

from TYK2 deficient B10.Q mice (Shaw et al., 2003) at baseline or 2 hrs after in vivo IFN. 

Comparison of the IFN response in B10.Q and B6 mice (Fig. 2D, S2C) showed a gradation 

of effects: some ISGs were fully responsive in TYK2-deficient cells (along the diagonal in 

Fig. 2D; “TYK2-independent” hereafter), while others showed decreased responsiveness to 

variable degrees (captured by a TYK-2 index, Tab. S1F). We related the influence of TYK2 

on ISG expression at baseline and after IFN stimulation by comparing the B10.Q/B6 

FoldChange in the two conditions (Fig. 2E). Many ISGs were unaffected by the deficiency 

in either condition, those that were affected tended to show a greater impact at either 

baseline or IFN-stimulated conditions. Perhaps predictably, this distinction coincided largely 

with the sensitivity to tonic signaling defined above (Fig. 2F). Thus, TYK2 is required at 

variable levels depending on the target ISG, and this preference also varies with the context 

of IFN signals. Strikingly, TYK2-independent ISGs were more sensitive to low IFN doses 

(lower ED50; Fig. 2G, left), as were the tonic-sensitive ISGs (Fig. 2G right).

We performed an “enhanced sequence motif analysis”, searching for overrepresentation of 

TF-binding motifs in the regions of accessible chromatin at or upstream of transcriptional 

start sites (TSS) defined by ATAC-seq (see below). At FDR<0.05, only ISRE and related 

motifs scored significantly when comparing ISG and non-IGS loci in B cells (p=10−36). 

Tonic-sensitive ISGs had better scores for the ISRE motif (Fig. 2H), perhaps owing to a 

better representation of canonical bases at positions 5′ of the core motif (Fig. 2H, top). 

Together, these metrics distinguish different categories of ISGs: those whose response is 

independent of Tyk2 are tonic-sensitive, more sensitive to low doses of IFN, possibly owing 

to better-fitting ISRE motifs, but have slower response kinetics.

Mechanistic aspects of ISG induction: chromatin analyses

How are activating signals evoked by IFN interpreted at the transcriptional level? IFN-

induced transcription may result from de novo recruitment of transcription factors (TF) and 

RNA Polymerase-II (Pol-II) complexes to ISG promoters. In addition, transcriptional 

elongation may be facilitated: in several systems of rapidly inducible responses, transcripts 

are initiated at baseline but Pol-II is blocked by elongation inhibitory factors, and the 

activating signal relieves this block (Adelman and Lis, 2012).

To visualize changes in Pol-II loading, we profiled chromatin-bound Pol-II by ChIP-seq of 

splenic B lymphocytes over several hours after in vivo IFN. In general, the profiles showed a 

strong increase of Pol-II associated with ISG promoters and intragenic regions, waning past 

8hrs (Fig. 3A, S3A, Tab. S2B). This increase in gene-associated Pol-II indicated enhanced 

recruitment, but inspection of more promoter regions (Fig. 2B) revealed a more variegated 

effect. We analyzed separately ISGs that encode regulators or effectors of the response to 
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IFN, as Gilchrist et al have proposed that release of paused Pol-II is more common for genes 

encoding regulators of inductive responses than for their targets (Gilchrist et al., 2012). 

While most ISGs showed a strong increase in promoter-proximal Pol-II after IFN treatment, 

there were a few exceptions (Setbd2 and Zeb2) for which Pol-II was maximal at baseline. 

We calculated a “pre-loading ratio” (normalized reads over the entire gene, at baseline vs at 

max response). Although significantly below 1 for most ISGs, we did observe a higher value 

overall for regulator than for effector ISGs (Fig. 3B, Wilcoxon p=0.001), denoting a greater 

extent of pre-loaded Pol-II for regulators. Directly comparing changes in Pol-II loading at 

the TSS vs the gene body (Fig. 3C) showed that for fast-responding ISGs the two were 

largely correlated and of the same magnitude (for late-responding ISGs, preferential Pol-II 

loading at the TSS at 30 mn preceded that in the gene body at 1 hr). To more finely 

appreciate how the release of promoter-proximal paused Pol-II contributed to the IFN 

response, we determined the traveling ratio ((Reppas et al., 2006): the ratio of Pol-II density 

in the body of the gene over that near the TSS) before and after induction. Traveling ratios 

for ISGs matched the genome-wide distribution prior to induction, and only the fastest 

responders showed a slight increase in this ratio during the peak response (Fig. 3D).

As for mRNA abundance, the Pol-II loading profiles at 7 time points could be fit to an 

impulse function, and we used the impulse model to impute additional time-points to better 

compare Pol-II and mRNA time-courses. There was a good concordance between temporal 

Pol-II and transcript abundance profiles, the time of median ½ max increase in Pol-II 

loading occurring ~30 mn than earlier changes in mRNA (Fig. 3E – the explosive nature of 

these events are illustrated in movie M1). Thus, unlike what had been proposed for fast 

responses in the innate immune system, the response to IFN predominantly involves Pol-II 

recruitment to ISG loci, likely by newly bound STAT1/2 and other activators. Faster transit 

from the TSS may also contribute somewhat to the response, particularly for the fastest 

regulatory ISGs.

IFN signaling involves the nuclear translocation of activated STAT1/2 complexes that bind 

DNA and activate transcription. We combined chromatin immunoprecipitation (ChIPseq) 

and ATACseq (Buenrostro et al., 2013) to map and quantitate Stat1/2 binding (6703 Stat2 

peaks; 46% increased > 2 fold by IFN, mainly mapping to TSS and enhancers, less so to 

super-enhancers; Tab. S2E) and the changes in chromatin accessibility that accompany ISG 

activation (Fig. 4, Tab. S2C). Chromatin from splenic B lymphocytes was assessed, before 

or 90 mn after in vivo IFN treatment, the time when transcription-related changes were 

likely to be most prominent. The representative profiles (Fig. 4A) illustrate the strong 

changes in chromatin accessibility in and around ISGs, with increased accessibility at the 

TSS and in some other intragenic or upstream locations, while other open regions in the 

same loci remained unchanged. When the position of these IFN-altered regions were plotted 

relative to the closest ISG (Fig. S4), many fell within the −2 to −200 Kb distance generally 

typical of upstream ATACseq motifs, but some were found at surprisingly larger distances 

(> 1 Mb from the closest ISG; not shown). These induced ATAC-seq peaks were enriched in 

ISRE motifs (p<10−20) and generally corresponded to increased Stat2 binding (e.g. the 

Usp18 upstream enhancer, Fig. 4A). Yet in some cases changes in Stat2 binding and 

chromatin accessibility were disconnected (e.g. the Bst2 promoter, where the ATAC signal 

Mostafavi et al. Page 6

Cell. Author manuscript; available in PMC 2017 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



does not follow the sharply increased Stat2 binding). Thus, the response to IFN involved 

rapid changes in specific locations of chromatin, although some ISGs showed no increased 

Stat2 binding and modest chromatin changes (e.g. Ppa1). In addition, there were no changes 

in H3-K4me1 methylation, which we mapped as a reference for enhancer location. For a 

genome-wide perspective, we computed the IFN-induced change in normalized read-count 

relative to baseline (ATAC-FC). Of 42,316 significant peaks, 476 regions showed IFN-

increased ATACseq signals (at ATAC-FC>2 and p<0.05) and 256 decreased (Tab. S2C,D). 

There was a strong correlation between the increased ATAC signal around the TSS and 

increased mRNA levels (Fig. 4B, left), and this was also the case for some, but not all, of the 

intragenic or upstream ATAC-seq peaks (right). For those ISGs active in B cells (from Fig. 

1A), there was also a strong correlation between increased ATAC and Stat2 binding (Fig. 

4C, left); interestingly, for ISGs only active in other cell-types, some degree of Stat2 binding 

was noted (right panel).

We also found that transcripts with different sensitivity to tonic signaling had distinct 

accessibility signals at the TSS: there was a general correlation between a gene’s expression 

and the ATAC-seq signal, and tonic-independent ISGs followed the genome-wide trend; but 

tonic-sensitive ISGs showed a markedly lower TSS accessibility (Fig. 4D). In addition, 

tonic-sensitive loci showed higher Stat2 binding, at baseline and after IFN exposure (Fig. 

4E), suggesting that these ISG loci have a distinct enhancer/promoter configuration.

Regulatory network inference

Network inference—We sought to computationally reconstruct a regulatory network of 

the transcriptional response to IFN by combining these mouse data with datasets from 

primary human CD4+ T cells or monocytes of the ImmVar study (Lee et al., 2014; Raj et al., 

2014; Ye et al., 2014), from baseline or IFN-challenged conditions (in all, 1,398 profiles 

from 12 distinct data groups; Fig. 5A, Tab. S3A). Sources of perturbation in these data 

groups included genetic variation (between outbred humans or inbred mice), cell-type 

variation, and response time. We first verified the comparability of responses to IFN in 

mouse and human immunocytes, and estimated that 74% of the testable ubiquitous ISGs 

respond in both species (Fig. S5A). Using datasets that covered two species and different 

cell-types (Fig. 5A) increased power and ensured coverage of the most conserved elements 

of the IFN regulatory network.

Derivation of the IFN regulatory network consisted of three steps: 1) computing a co-

expression network between a set of potential regulators and targets for each datagroup 

(Pearson correlation); 2) normalizing the co-expression networks (per-gene normalization); 

and 3) combining datagroup-specific networks using a “uniformly”-weighted network 

combination (Mostafavi and Morris, 2010), which was then sparsified (FDR threshold of 

0.01). To enrich the search space for causal associations, only gene families of known 

regulatory function were considered as regulators (TFs, kinases, phosphatases). Targets were 

120 ISGs common to both human and mouse, lymphoid and myeloid cells (FC>1.5 in both 

species and both cell-types). The inferred network consisted of 2,691 links between 92 

predicted regulators and 102 ISGs (Tab.s S3B–F). To visually clarify regulator/target 
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relationships we applied the LAS biclustering algorithm (Shabalin et al., 2015) and 

identified a solution with five regulatory modules (C1 through C5).

These links applied in both human and mouse cells, with comparable scores for links 

computed with datasets from either species (Fig. S5B) and were not dominated by 

contribution from a few datasets in a drop-one analysis (Fig. S5C). Link scores were also 

high in both baseline and IFN-stimulated datasets (Fig. S5D), although links associated with 

regulatory clusters showed some quantitative bias (C3 links stronger in baseline conditions, 

C5 in IFN-stimulated datasets). This robust core network was later extended to include a 

larger set of 629 ISGs with more distributed responses (Tab. S3G), based on the strength of 

co-expression between these remaining ISGs and the core set of regulators.

Fig. 5B displays the scores for regulator/target pairs that form the five clusters, a striking 

pattern from which several observations emerged, serving both to validate the results and to 

open new vistas on ISG regulation. Most obviously, the main regulators thus identified were 

STAT1/2 and IRF9, which together form the canonical ISGF3 complex and, with IRF7, 

were the main predicted regulators of ISGs in clusters C3 and C4, consistent with the scores 

for core ISRE motif (Fig. 5C). But, in addition to these expected regulators, the inferred 

network predicted less anticipated links: other regulators correlated with induction of C3 

ISGs included SP100, SP110, and NMI. Second, while C3 and C4 were predominantly 

controlled by ISGF3 and consorts, these factors were predicted to have less or no impact on 

other ISG clusters, in particular C1 and C5 for which different regulators were predicted 

(KAT2B, TBK1, LYN, ETV6; Fig. 5B). Fig 5D highlights the highly coordinated control of 

C3 members.

Parsing ISGs into these five clusters (using the extended gene lists, Tab. S3G) brought forth 

functional distinctions. C3 was composed predominantly of antiviral effectors (e.g. OAS and 

IFIT families, RSDA2; p<10−25), as well as the key positive and negative regulators (USP18, 

STAT1 and IRF9 themselves). In contrast, the other clusters contained essentially no 

antiviral components, but were enriched for RNA processing (C1 and C2, p<10−5), 

metabolic regulation (C4, p<10−5), and inflammation mediators or regulators (IL15RA, 

CD274, CXCL10 in C5, p<10−9). C3 was strongly enriched for the ISGF3-binding ISRE 

motif (Fig. 5C; p<10−20), but ISRE was under-represented in peaks located around non-C3 

loci when compared to C3 (p<10−3), most strikingly for C5 (Fig. 5C), concordant with its 

independence of STAT1/2. Another motif associated with IFN responses, the gamma-

activated-sequence (GAS) motif, was only mildly enriched among these ISGs (p<10−4), and 

with no preference for any of the clusters.

Experimental Network Validation—In addition to re-discovering known regulators, we 

validated the IFN regulatory network using genetic perturbation. First, we used data from 

RNAi knockdown experiments after LPS stimulation (Chevrier et al., 2011) (a large 

component of LPS response is a secondary response to induced IFN). We could directly 

assess the accuracy of 20% of our predicted links with this dataset, observing a significant 

agreement between the inferred links and the RNAi results (Fig. 5E; AUROC ranging from 

0.6–0.8, Fig. S5F). This applied to expected links involving STAT1/2 or IRF9, but also to 

more novel ones involving NMI, ETV6 or ATF3 as regulators. We also tested 
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transcriptional responses to IFN in Lyn-deficient cells (in mixed bone-marrow transfers). 

Although LYN, a predicted regulator of C5, has previously been associated with responses 

to IFN (Uddin et al., 1998), we observed only minimal consequences of its deficiency (not 

shown), perhaps because of compensatory activity of FYN or other kinases. Finally, we 

tested the compatibility of our predictions with differential ISG induction in fibroblasts from 

a STAT1-deficient patient, compared with four healthy controls (Chapgier et al., 2006). As 

illustrated in Fig. 5F, there was good concordance between our predicted STAT1 score and 

the effect of the STAT1 deficiency on individual ISGs. Interestingly, ISGs that were off-

diagonal in Fig. 5F (i.e. with less actual change than predicted by the network score) were 

those with a high predicted STAT2 score, suggesting that STAT2 complements more 

effectively the STAT1 deficiency for these targets. Finally, there was a strong relationship 

between computational network predictions regarding ISGF3 and Stat2 binding in ChIPseq 

(Fig. 5G, S5G). Target genes with the 10% highest ISGF3 network scores showed strong 

and highly responsive Stat2 binding (Fig. 5G, top - all with FC>10; Irf9, the sole exception, 

already had strong Stat2 at baseline); those with the lowest ISGF3 scores had much lower 

and predominantly non-responsive Stat2 binding (Fig. 5G, bottom).

Implications of the IFN regulatory model for human pathology and therapeutics

Since ISG over-expression is associated with several human pathologies, and since 

therapeutics that modulate IFN or its signals are used in several clinical contexts (Crow et 

al., 2015), it was of interest to test whether the structures defined above have direct 

implications for human genetic variation, pathology or therapy. We collated (list and refs in 

Tab. S4A) genesets differentially expressed in whole blood or PBMCs studies encompassing 

acute or chronic microbial infection or vaccination, autoimmune diseases and major 

depression (MD). These genesets mainly contained ISGs induced in all cell types, consistent 

with their mixed-cell origin. Several interesting observations emerged from mapping these 

ISGs onto the IFN regulatory network (Fig. 6A). (i) The regulatory clusters were differently 

represented: most ISGs overexpressed in these disease-related signatures were assigned to 

C3 (p<10−20), the remaining belonging to C5 (p<3×10−6), with an under-representation of 

ISGs assigned to C1, 2 or 4 (p<2×10−7). (ii) The distribution of C3 ISGs triggered by active 

microbial infections (TB, Candidiasis, Yellow fever vaccine) differed from those in 

autoimmune diseases or MD (Figs. 6A, S6A), the latter including relatively less of the most 

STAT1/2-dependent targets at the top of the cluster. Most different were the chronic viral 

infections states (EBV, CVID, HIV), with even less involvement of C3 ISGs (chronic HCV 

appeared more like an acute infection in this regard), (iii) The ISGs over-expressed in IFN-

resistant MS patients were also shifted, with an overrepresentation of the bottom of C3.

We analyzed these relationships more closely for SLE, one of the diseases for which the 

relation between dysregulated IFN and the pathology is perhaps strongest. We retrieved 

available PBMC expression profiles from two recent studies that compared SLE patients and 

age/gender-matched controls, with cohorts of comparable sizes and age distribution, but of 

European and East Asian ancestry, respectively (Chiche et al., 2014; Lee et al., 2011). After 

modeling the effect of standard confounding factors (age, gender, and batch), we computed 

the association score between diagnosis of SLE and the expression levels of individual genes 

in the two studies (“Osaka” and “Marseille”, Fig. 6B, Tab. S4B). Most associated genes 
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were ISGs (enrichment p<10−20), mostly from C3 (p<10−6), only a few C5 ISGs showing a 

significant association. SLE-associated transcripts predominantly belonged to the tonic-

sensitive category (Fig. 6C). There was good concordance between the two studies (overlap 

π1 =49%), except that roughly half of the ISGs associated with SLE in Marseille gave little 

of no signal in Osaka (although we cannot formally rule out clinical differences between the 

cohorts, the range of disease activity was similar in the two studies). We searched the 

various scores and clusters described above, and the requirement for TYK2 appeared to 

distinguish SLE-associated gene sets: the majority of SLE-associated ISGs that scored in 

both studies were sensitive to TYK2 deletion in baseline conditions (consistent with their 

sensitivity to tonic signaling). In contrast, most of those scoring in Marseille but not Osaka 

showed less requirement for TYK2 for expression at baseline but more so under IFN-

challenged conditions (and correspondingly belonged to the tonic-insensitive group). This 

dichotomy was evocative, since a TYK2 SNP is reproducibly associated with SLE in GWAS 

studies of European but not Asian cohorts, even though the SNPs have a high frequency in 

both populations (see (Lee et al., 2012) for refs and meta-analysis). This variant did not 

differentially influence baseline or induced ISG levels in ImmVar donors of either ancestry 

(not shown). Thus, disease-associated ISGs are far from being a homogenous set that would 

be activated in lockstep; rather, they belong to specific regulatory clusters, with subtle 

variations between diseases and between human populations.

Finally, we asked if the different facets of the network would be similarly impacted by 

pharmacological inhibitors of JAK kinase activity (JAKi). For best relevance to the clinical 

setting, these experiments were performed in vivo and, given the indications above that 

targets of tonic and active IFN activation pathways are quantitatively different, we tested the 

effect of JAK inhibition in both contexts. The kinase inhibitor Tofacitinib (Tofa), a small 

molecule that preferentially blocks JAK1 activity (Clark et al., 2014), was administered in a 

clinically relevant regimen to mimic the human exposure, at doses that largely block 

phospho-Stat1 activation by IFN, alone or prior to a 2-hr parenteral IFN challenge. Under 

baseline conditions, a small set of transcripts was downregulated in splenic B cells after 

Tofa treatment, most of which were ISGs (Fig. 7A). These effects were modest (2-fold 

downregulation at most), also observed in other cell-types (not show), and vanished in 

Ifnar1-deficient mice (Fig. S7A). Not all ISGs were affected and fittingly since it is tonic 

signaling that Tofa inhibits under these conditions, these JAK1i-downregulated transcripts 

were those most influenced by tonic IFN (Fig. S7A). When Tofa was given in the context of 

an IFN challenge, a partial reduction was observed, which again did not affect all ISGs 

equally (captured by a drug “IFN-inhibition index” Fig. 7B). Interestingly, this inhibition 

was inversely related to the effect of the inhibitor on the same ISGs under tonic conditions 

(Fig. 7C, Tab. S5A). The distinction was even more striking when the responses were 

mapped onto the network structure defined above. At baseline, JAKi primarily affected 

tightly connected ISGs of the C3 cluster (Fig. 7D, left), but these were largely spared by the 

drug under IFN challenge when ISGs belonging to C5 or C2 were those most affected. Thus, 

inhibition of JAK1 signaling affects different targets under tonic or IFN-challenged 

conditions (much as the TYK2 deficiency did), and these sets correspond to distinct facets of 

the IFN regulatory network.
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DISCUSSION

In line with ImmGen goals, we have generated a deep resource of transcriptional data 

surrounding the response to IFN in vivo, probing the regulatory network with diverse set of 

perturbants in a large-scale integration of datasets from mouse and human. While the results 

depict a response that is rather monotonic in timing, contrasting for instance with the 

cascading events that follow antigen-driven T cell activation, the analysis revealed a 

multifaceted ensemble that is far from monomorphic, involving several signaling and 

regulatory controls. Distinct sub-signatures are defined by the kinetic and regulatory 

parameters, and these facets are intertwined, such that induction kinetics, tonic effects, 

chromatin structure, TYK2-dependence and pharmacologic specificity are all 

interconnected. For instance, ISGs that are sensitive to tonic signaling at baseline are a 

subgroup with high sensitivity to low IFN doses but slower response kinetics, high 

dependence on ISRE and ISGF3, preferential association to SLE, and high sensitivity to 

JAKi treatment in the unchallenged state. These distinctions have direct implications for our 

understanding of the mechanisms of the IFN response, its association to human pathologies 

and for pharmacologic modulation.

Time-resolved chromatin analyses paint a clear picture of the transcriptional events that lead 

to fast ISG transcript accumulation. First, chromatin changes are observed at all ISGs and 

are largely correlated with ISG mRNA accumulation, consistent with the results of 

Jovanovic et al, who noted that ISGs are induced by an increased transcription rate 

combined with constantly fast mRNA processing and degradation rates (Jovanovic et al., 

2015), with no evidence for shifts in post-transcriptional control (miRNA, translational 

stabilization). Second, the increase of promoter-paused Pol-II shortly preceding mRNA 

buildup, together with the changes in chromatin accessibility that correlate with mRNA 

induction, are more compatible with a model of transcriptional induction via heightened 

formation of initiation complexes, rather than by release of blocked Pol-II. On the other 

hand, facilitated elongation does take part in ISG induction, with a transiently increased 

traveling ratio.

Tonic sensitive genes appear to have high Stat1/2 binding at baseline and after activation, 

despite TSS chromatin counterintuitively less accessible than the genome-wide average. 

There is a relative dearth of CpG islands around the TSS of these genes (19% vs 47% 

genomewide, p= 2×10−5), in keeping with the results of Carrozzi et al (Ramirez-Carrozzi et 

al., 2009) who showed that many ISGs belong to a class of inducible genes that require 

SWI/SNF-dependent nucleosome remodeling for their activation. This may account for the 

slightly delayed response of these ISGs.

The detailed analysis of cell-specific responses provides a roadmap of IFN-induced 

responses across cell-types, beyond the core response shared by all cells (van Boxel-Dezaire 

et al., 2006). Indeed, the most frequent patterns are those with variegated expression, shared 

between some but not all immunocyte lineages, often less dramatically induced than the 

common antiviral ISGs, although with the same impulse response peaking at 2 hrs. For those 

variegated ISGs that could be considered by our network inference, we observe a 

preponderance of non-canonical regulators, less frequent ISRE motifs at the TSS relative to 
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the set of common ISGs, and correspondingly membership in clusters C1, C2, or C5 (of the 

158 of these variegated ISGs, 117 were assigned to C1, C2, or C5, in the expanded cluster 

analysis).

These data, together with those generated in the context of the ImmVar project, allowed us 

to perform an integrative analysis, unusual in its scale, benefiting from the trans-species 

conservation of the IFN response and from the diverse sources of perturbation in the 

datasets: genetic variation, time course of activation, cell differentiation. There was support 

for the links in several datasets, and the predictions were validated with both human and 

mouse genetic deficiencies. However, this strategy did limit the scope to the frequently 

induced ISGs, and did not comprehensively extend to the most cell-specific components. 

Comfortingly, the co-expression-based network rediscovered the ISGF3 complex (STAT1/2, 

IRF9) as the dominant regulator, and the STAT1/2 scores predicted by the model concord 

well with the consequence of the mutation in a STAT1-deficient patient’s fibroblasts. In 

addition, the network brings forth previously unrecognized regulators (ETV6, ATF3) that 

were validated by RNAi knockdown, and some (LYN, TBK1 and the NF-kB pathway) with 

previously reported relevance (Uddin and Platanias, 2004; Tenoever et al., 2007), but which 

were not followed upon as extensively as STATs in recent years. Outside of the JAK/STAT 

axis, IFN is documented to signal via the Pi3K/mTOR, MAPK and Crk pathways, and it is 

plausible that the different transcriptional clusters reflect these parallel signaling routes. The 

results also highlight the regulatory heterogeneity of ISGs, a substantial fraction of which 

have little or no links to STAT1/2 and ISGF3, paralleling the fraction of the response to 

IFNg that does not require STAT1 (Gil et al., 2001).

Admittedly, several known players are missing from the predicted network, e.g. known 

negative-feedback regulators (SOCS1 or USP18) and most strikingly the essential signal 

transducer, JAK1. Network inference requires some variation in the data, genetic or 

otherwise, to support the links, and JAK1 may not have scored because it is not responsive 

to activation and has limited genetic variation across healthy mice or humans (JAK1 also 

stands out in having no described disease association in GWAS databases). This invariance 

contrasts with the greater tolerance for variation in TYK2, reflected in inter-population 

variation and in GWAS hits.

The distinction between the regulatory structures at play during tonic signaling versus acute 

IFN exposure mirrors the transcript signature of pharmacologic JAK inhibition: treatment 

mainly affects the STAT-controlled antiviral cluster C3 at baseline. Yet, in conditions of 

IFN challenge that are more comparable to those encountered during acute viral infection, 

ISGs regulated by non-canonical factors, mostly pro-inflammatory in nature, are most 

affected. This difference might explain why JAK1 blockade does not result in significant 

exacerbation of acute infections (Cohen et al., 2014) when the antiviral program would be 

least affected by the drug. On the other hand, perturbation of antiviral mechanisms under 

tonic IFN may be linked to the herpes zoster reactivation observed in a number of patients 

(Clark et al., 2014), implying that tonic IFN is relevant for the control of viral latency.

Finally, the parsing of IFN targets and regulatory pathways sheds new light on the over-

represented IFN signature found in a number of diseases, and provides a reference map 
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against which the functional and regulatory diversity of these signatures can be appreciated. 

With the exception of monogenic interferonopathies in which IFN is clearly the culprit 

(Crow, 2015), it is a matter of debate whether these signatures are causally related to the 

disease, or an ancillary side-effect of the true disease root or of downstream inflammation. 

The differences in cluster membership or ISRE scores between IFN signatures in acute/

active infection, chronic infection and autoimmune conditions indicate that these signatures 

are not merely a generic indicator of IFN overproduction, but reflect different relationships 

to pathogenesis. For instance, the signature of chronic hepatitis C virus infection resembles 

that of recent vaccination or active TB more than that of other chronic infectious states like 

EBV or HIV, suggesting that chronic HCV may behave like a recurrent acute infection. The 

comparable signatures of autoimmune disease and major depression prompt the speculation 

of an unrecognized auto-inflammatory component to the latter.

Mapping SLE-associated ISGs against this background revealed a striking dichotomy for 

European vs Asian ancestry. Half of the ISGs associated with SLE in European patients 

showed no association whatsoever in Japanese patients. These two genesets differed with 

regards to tonic IFN sensitivity and to dependence on TYK2. It may not be a coincidence 

that TYK2 genetic variants are associated with SLE in European but not East Asian cohorts, 

when TYK2 is associated with SLE in European but not Asian populations. A parsimonious 

interpretation is that two distinct ISG components are dysregulated in SLE: one shared 

between European and Asian patients, primarily reflecting heightened tonic IFN; another 

requiring TYK2 and solely over-expressed in European patients through a mechanism that 

remains unclear (these ISGs are equally responsive to IFN in cells from donors of Asian 

ancestry). Limitations to these interpretations include differences in study designs and 

statistical power. Regardless of the answer, however, these results suggest that the 

relationship between IFN and SLE is not a simple one.

In conclusion, profiling and integrating diverse genomic data types relevant to IFN 

transcriptional response enabled us to discover varied regulatory mechanisms for induction 

of ISGs. This complexity highlights, and at the same time facilitates tackling, the 

heterogeneity of interferon disease signatures in diverse immune diseases.

EXPERIMENTAL PROCEDURES

Data can be viewed with dedicated databrowsers on the ImmGen website 

(www.immgen.org) and have been deposited at NCBI Gene Expression Omnibus under 

GSE75306

Mice

C57BL/6J, Tyk2 spontaneous mutant B10.Q (JAX 2024), and Ifnar1 KO mice from the 

Jackson Laboratory were analyzed 2 hrs after 10,000 U IFNα sc unless otherwise specified. 

Tofacitinib was administered by oral gavage, 25 mg/kg twice daily.
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Expression profiling

Immunocytes were double-sorted and profiled on Affymetrix ST1.0 microarrays according 

to ImmGen SOP (Heng et al., 2008). For the dose-response, magnetically purified splenic B 

cells were treated in vitro with graded doses of IFNα for 2hrs.

Chromatin

B splenocytes were magnetically-purified after in vivo IFN. ATACseq libraries were 

constructed exactly per (Buenrostro et al., 2013), and sequenced; for PolII and Stat1, 2 

ChIPseq per (Rahl et al., 2010) and sequenced (Tab. S2A). After trimming and mapping to 

mm10, peaks were called by MACS (from merged datasets) and reads quantitated in 

corresponding regions of individual datasets.

ATACseq-enriched TF binding motif

ATAC-defined peak regions were scored for 263 PWMs (HOMER), and over-represented 

PWMs in peaks surrounding ISG loci identified by the hypergeometric test.

Regulatory network inference used 12 large baseline or IFN-stimulated datagroups (Tab. 

S3) from mouse and human. 1,152 potential regulators and 110 target ISGs in both species 

were defined from GeneOntology responsiveness to IFN, respectively. z-score normalized 

co-expression matrices (Wang et al., 2009) were defined for each datagroup. These networks 

were then combined with “uniform” weighting, where each edge in the final network is 

computed as the average of the corresponding links in all 12 networks. Final network was 

sparsified using a 0.01 FDR threshold (Wang et al., 2009). Interferon-related disease 

signatures were retrieved from relevant publications that used blood expression data (genes 

and refs in Tab. S4 ad Supplement)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Breadth and kinetics of the transcriptional response to IFN
Mice were challenged in vivo with IFNa, and cells sorted for gene expression profiling. (A) 
Expression changes for 975 ISGs that are significantly induced in at least one of 11 cell-

types (ubiquitously-induced core set at bottom). (B) Mean IFN signature score for each cell-

types before or after IFN challenge. (C) Temporal foldchange (vs untreated) for 182 ISGs 

induced in B cells in vivo. (D) As C, scaled to maximum induction for each gene. (E) Same 

data, yellow line is the impulse function fit to average standardized temporal profile (each 

ISG’s standardized z-score in grey). (F) Maximum FC vs Slope of Onset, each point is a 

gene, color-coded according to its t1/2onset. (G). Dose-response in splenic B cells IFN-

stimulated in vitro, as a proportion of the maximal response. See also Fig S1 and Tab. S1.
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Fig. 2. Signal requirements for tonic and induced ISG expression in B cells
(A). Comparison of B cell and macrophage profiles of WT or Ifnar1-deficient mice. Red: 

common ISGs per Fig. 1. (B) ISG response intensity (change 2 hrs after IFN) and 

dependence on tonic IFN signaling at baseline (Foldchange between untreated B cells, WT 

and Ifnar1-KO). (C) Positioning of “Tonic-hi” and “Tonic-lo” ISGs (per B) relative to 

response kinetics of Fig. 1F. (D) Foldchange/Foldchange plot comparing ISG induction in B 

cells from WT or Tyk2-deficient mice. (E) Expression ratios (Tyk2-deficient / WT) in resting 

or in IFN B cells. B cell ISGs in red. (F) As E, highlighting tonic-sensitive and tonic-

insensitive (per B). (G) ISG response intensity vs ED50 (Fig. 1F), highlighting TYK2-

dependency (left) or sensitivity to tonic signaling (right). (H) Max ISRE motif scores 

(JASPAR) in TSS and 5′ upstream regions of ISGs distinguished by sensitivity to tonic 

signaling; consensus sequence for each set, ignoring outliers, shown at top (Wilcoxon rank 

sum test p.vals). See Fig S2 and Tab. S1E.
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Fig. 3. Recruitment of RNA Pol-II on ISGs during the IFN response in B cells
ChIPseq of bound Pol-II in B cells from IFNa treated mice (0–48hrs). (A) Pol-II 

accumulation at ISG and control loci (same scale). (B) Gallery of normalized Pol-II on TSS 

of ISGs with primarily regulatory or effector functions. “Pre-loading” ratio (red) for each 

gene is the ratio of Pol-II accumulation (integrated read counts through entire gene) at 

baseline vs maximum after IFNa. (C) Relation between fold increase in Pol-II (ratio over 

baseline levels) at TSS and within gene body at two times. Early- (t1/2onset <45min) and late- 

(45min<t1/2onset <2hr) induced ISGs are shown, r=0.32, p=5×10−3 (0.5hr); r=0.44, p=7×10−5 

(1hr) (D) Traveling ratio (intragenic/TSS-associated Pol-II) cumulative density at different 

times; Mann-Whitney U test p.vals for early or late-induced ISGs vs genome-wide (E) 
Computational fit to impulse function of ISG RNA abundance and Pol-II at TSS. See Fig 

S3.

Mostafavi et al. Page 20

Cell. Author manuscript; available in PMC 2017 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Chromatin modifications during the IFN response in B cells
ATACseq of accessible chromatin regions in B cells (baseline or 90 mn) after IFNa in vivo. 

(A) ATAC-seq and Stat2 ChIPseq read tracks (fixed scale) with H3K4me1 ChIPseq. (B) 
Change in ATACseq peaks vs changes in transcript level for peaks located in different gene 

regions. r=0.39, p=2×10−16 (TSS), r=0.17, p=10−3 (Gene body); r=0.20, p=9×10−6 

(Upstream) (C). Relation between IFN-induced changes in ATAC peak intensity and Stat2 

binding for ISGs responsive in B cells (left) or only active in non-B cells (right), color-

coded according to its ATAC-seq signal (IFN). r=0.51, p=10−14 (B cell ISG); r=0.21, 

p=4×10−6 (ISG inactive in B cells) (D) Relation between TSS ATAC signal and expression 

(tonic-sensitive, red, and tonic-insensitive transcripts, blue) (per Fig. 2B). r=0.25, p=2×10−16 

(0hr) and r=0.23, p=2×10−16 (90min) (E) Stat2 ChIPseq signal intensity, according to 

sensitivity to tonic IFN. See Fig S4 and Tab. S2C.
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Fig. 5. Trans-species regulatory network inference
(A) Datasets used for network inference. (B) Heatmap of inferred regulatory scores 

(sparsified at FDR<0.01) connecting regulators in rows (kinases, phosphatases, TFs) and 

targets (columns), color-coded to strength of predicted association. Regulators and targets 

biclustered into 5 clusters, color-coded at top. (C) FIMO scores in TSS of target ISGs for 

ISRE. (D) Network-based representation of regulator-target links, color-coded by cluster 

membership (per B); only showing links passing Bonferroni p<10−6. (E) Each testable 

regulator-target link shown as a dot, placed by its z-score from regulator RNAi knockdown 

((Amit et al., 2009)) and network score. Predicted links for ISGF3, NMI, ETV6, and ATF3 

in color. (F) Correspondence between predicted STAT1 regulator score for each ISG and 

expression Foldchange in fibroblasts from a STAT1-deficient patient. Predicted STAT2 

regulatory strength for these ISGs color-coded. Dot size shows magnitude of response in 

wild-type condition. See Fig S5 and Tab.s S3B-G. (G) Relation between IFN-induced 

changes in ATAC peak intensity and Stat2 binding for ISGs with top or bottom 10% Stat1/2 

network scores (color-coded for Stat2 signal intensity).
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Fig. 6. Projection of the IFN response network onto human disease signatures
(A) Predicted IFN regulatory network, per Fig. 5 (left), arranged into 5 biclusters (middle) 

and their presence in IFN signatures reported in 16 human diseases/conditions (in columns, 

right). (B) Association between expression and SLE diagnosis in case/control Europeans or 

East Asian cohorts. Cluster membership color-coded per 5B. (C) As B, color-coded for tonic 

IFN sensitivity per Fig. 2B. (D). Tyk2 dependence for ISG expression at baseline or after 

IFN, color-coded for association of expression with SLE in both (green) or only European 

(orange) SLE patients. See Fig S6 and Tab.s S4A and S4B.
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Fig.7. Pharmacological inhibition of different facets of the ISG network
Mice gavaged with JAKi inhibitor Tofacitinib, and immunocytes profiled directly or 2 hrs 

after IFNa treatment. (A) Inhibition of baseline gene expression in macrophages or B cells. 

Common ISGs in red. (B) Profiling of JAK inhibition with 2hr IFN challenge, relating 

intensity of IFN response in untreated mice and JAK1-inhibition index (0 = no inhibition, 1 

= full inhibition of response). (C) Negative relation between inhibition of acute IFN 

response by JAK1i (inhibition index from B) and inhibition at baseline (1-foldchange of 

panel A). (D) Effect of JAK1 inhibition (color-coded by pvals for observed foldchanges) in 

two conditions plotted on framework of regulatory network of Fig. 5. See Fig. S7 and Tab. 

S5A.
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