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Abstract

Discriminating between bipolar disorder (BD) and major depressive disorder (MDD) is a major 

clinical challenge due to the absence of known biomarkers; hence a better understanding of their 

pathophysiology and brain alterations is urgently needed. Given the complexity, feature selection 

is especially important in neuroimaging applications, however, feature dimension and model 

understanding present serious challenges. In this study, a novel feature selection approach based 

on linear support vector machine with a forward-backward search strategy (SVM-FoBa) was 

developed and applied to structural and resting-state functional magnetic resonance imaging data 

collected from 21 BD, 25 MDD and 23 healthy controls. Discriminative features were drawn from 

both data modalities, with which the classification of BD and MDD achieved an accuracy of 

92.1% (1,000 bootstrap resamples). Weight analysis of the selected features further revealed that 

the inferior frontal gyrus may characterize a central role in BD-MDD differentiation, in addition to 

the default mode network and the cerebellum. A modality-wise comparison also suggested that 

functional information outweighs anatomical by a large margin when classifying the two clinical 

disorders. This work validated the advantages of multimodal joint analysis and the effectiveness of 

SVM-FoBa, which has potential for use in identifying possible biomarkers for several mental 

disorders.

Index Terms

classification; feature selection; multimodal fusion; bipolar disorder; major depression

I. Introduction

Mood disorders have become the most costly brain diseases in the world [1], among which 

both bipolar disorder (BD) and unipolar or major depressive disorder (MDD) are 

characterized by depressive episodes. Currently, neither the clinical features of depression 

nor any known neuropsychological indicators readily differentiate trajectories of either 

MDD or BD, especially in the early course of illness [2]. Indeed, during the course of BD, 

depressive episodes usually present more often than manic or hypomanic symptoms, while 

sub-threshold manic symptoms can also be concealed in a mixed episode [3, 4]. Thus, 

around 80% of BD patients who are going through depressive episodes receive an incorrect 

diagnosis (mostly misdiagnosed as MDD) within the first years of seeking treatment [5, 6], 

leading to inappropriate and longer medication periods, poorer prognosis and greater health 

care expenses [7, 8]. Currently, there are no objective and clinically useful diagnostic 

markers for either disorder; hence, a better understanding of the pathophysiology of both 

mood disorders is urgently needed for developing more effective treatments and establishing 

the differential diagnosis.
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On the other hand, feature selection can be preferable and may be imperative when it comes 

to neuroimaging data. The inherent characteristics of high feature dimension and small 

sample size of participants present severe challenges to researchers who wish to apply 

pattern classification. Recently, several neuroimaging studies have directly compared 

patients with BD and MDD using magnetic resonance imaging (MRI), which provides non-

invasive observation of the structural characteristics and functional states of the brain. These 

studies exploited different measurements, including structural features such as gray matter 

volume [9], fractional anisotropy value of white matter [10], hyper intensities, and 

functional activity patterns during task or rest [11–14], suggesting that with appropriate 

analytical strategies, both structural and functional MRI data are capable of detecting brain 

abnormalities for distinguishing between BD and MDD. However, the above studies mostly 

focused on only one modality. As each imaging modality provides a different view of the 

brain, joint analysis of multimodal data may extend the limited information captured by 

isolated regional measures of structure or function and provide a better system-wide 

understanding of brain alterations related to mental illnesses [15, 16].

Most previous studies of BD and MDD tended to employ univariate approaches, despite the 

fact that the brain actually functions in a multivariate way [17]. Recent studies have 

suggested that, when analyzing fMRI data with sophisticated machine learning algorithms, 

informative fMRI patterns could be targeted to distinguish MDD patients [18] or even 

directly differentiate BD from MDD [19]. In this study, we improve the differential 

diagnosis between clinically diagnosed BD (type I) and MDD patients by implementing a 

novel feature selection method for use on multimodal MRI data.

The proposed method, called “SVM-FoBa”, is able to adaptively choose highly 

discriminative feature subsets by means of a forward-backward search strategy. Though a 

similar technique has been proposed with least square regression [20], the present method is 

fully integrated within a linear support vector machine (SVM) [21], whose multivariate 

objective function will be used to evaluate the effectiveness of a feature. The corresponding 

technical details are discussed in Section II.D.

The multimodal brain imaging features utilized here include the fractional amplitude of low-

frequency fluctuation (fALFF) of resting-state functional MRI (fMRI) data, which has been 

suggested to reflect the intensity of regional spontaneous brain activity with high 

performance [22], and also voxel-wise gray matter (GM) volume obtained by voxel-based 

morphometry (VBM) from structural MRI [23] [24]. Inspecting two modalities at the same 

time should provide more comprehensive insight into brain disorder.

In short, the main goal of the present study was to identify the informative and biologically 

relevant features that can efficiently distinguish between patients with BD and MDD. With 

multimodal fusion effectively harnessed, the linear classifier can facilitate modal 

understanding by providing in-depth feature information (patterns from feature weights) in 

order to interpret results based on localized brain regions.
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II. Materials and methods

A. Subject Inclusion and Exclusion

The research project was approved by the University of Western Ontario Research Ethics 

Board, in keeping with the Declaration of Helsinki. All research participants were provided 

with a written description of the study and had the opportunity to ask questions about the 

procedure. Written, informed consent was then obtained from willing participants.

A total of 21 participants with BDs and 25 age matched MDDs were recruited from the First 

Episode Mood and Anxiety Program in London, Ontario, Canada. Each participant met 

diagnostic criteria for bipolar disorder, type I, or major depressive disorder (MDD) using the 

structured clinical interview for DSM disorders-IV, research version (SCID-IV) or the 

diagnostic interview for genetic studies (DIGS). In addition, agreement between the clinical 

chart diagnosis and the SCID/DIGS diagnosis of MDD or BD-type I was required for the 

patient groups. Medications were unchanged for three weeks prior to scanning.

Patients were excluded if they had a history of head injury leading to unconsciousness for 

longer than a few seconds, or significant non-psychiatric medical illness. Individuals with an 

active substance use disorder (except possibly caffeine and/or nicotine abuse/dependence), 

posttraumatic stress disorder or obsessive-compulsive disorder were also excluded. Youth 

were excluded if they were in imminent danger to themselves or others, if they were actively 

psychotic, or if they had exclusions for MRI scanning. Any family history of BD in the 

MDD group was exclusionary.

For comparison purposes, 23 healthy participants were also included as the control group. 

The HC group had no history of significant head injury, major medical illness, psychiatric 

medication use or personal (as determined by the SCID or DIGS) or family history of 

psychiatric illness, with the exception of caffeine and/or nicotine abuse/dependence. There 

were no significant age differences between the three subject groups in these measures, but 

the bipolarity index (BPI) was significantly different between BD and MDD. A summary of 

demographic information is presented in TABLE I.

B. Image Acquisition

All MRI imaging was collected using a 3.0 T MRI scanner (MAGNETOM Verio, Siemens, 

Erlangen, Germany) at the Lawson Health Research Institute, and a 32-channel phased-array 

head coil (Siemens). A T1-weighted, 3D magnetization-prepared rapid gradient echo 

sequence was used to collect anatomical images. Acquisition parameters were as follows: 

TR = 3000 ms, TE = 2.98 ms, flip angle = 9°, FOV = 256 mm × 256 mm, matrix size = 256 

× 256, 176 sagittal slices, voxel size = 1 mm × 1 mm × 1 mm. Functional scans consisted of 

gradient-echo, echo-planar scans (TR = 2000 ms, TE = 30 ms, flip angle = 90°, FOV = 240 

mm × 240 mm, matrix size = 80 × 80, 40 axial slices, thickness = 3 mm) with no parallel 

acceleration, covering whole brain with an isotropic spatial resolution of 3 mm for a total 

time of approximately 8 min (164 brain volumes). Participants were given the following 

instructions before scanning: “Lie comfortably, as still as possible with your eyes closed and 

let your mind wander without falling asleep.” No participant reported falling asleep during 

the scan when asked immediately after scanning.
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C. Image Preprocessing and Preperation

The structural MRI data were preprocessed in SPM8 toolbox (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8) with the VBM8 (http://dbm.neuro.uni-

jena.de/vbm/download/) and DARTEL package. The images were first segmented into gray 

matter, white matter (WM), cerebrospinal fluid (CSF), bone, and soft tissue. The DARTEL 

algorithm registered these tissue segmentations back and forth with the default templates 

based on the MNI152 brain, and finally generated population-specific templates. GM and 

WM density images of all subjects were subsequently normalized to the corresponding 

template. All these tissue images were corrected for individual head size in VBM8. After 

that, the modified gray matter volume of each region from the 116-area automated 

anatomical labeling (AAL) template [25] was extracted and locally averaged as an 

independent feature. Thus, a sample vector with a feature dimension of 116 was obtained for 

each subject. Gender was later regressed out to mitigate possible bias between groups. This 

feature from structural MRI will be henceforth called VBM-GM.

The preprocessing of the resting state fMRI data was carried out using DPARSF toolbox 

[26], including discarding the first 10 volumes of each functional time series to allow for 

magnetization equilibrium, correcting the slice timing for the remaining 154 images and 

realigning them to the first volume to provide for head motion correction, time series 

despiking, spatial smoothing with a Gaussian kernel of 6 mm full-width at half maximum 

(FWHM), normalizing the mean-based intensity, temporal band-pass filtering (0.01–0.10 

Hz), removing linear and quadratic trends, performing linear and nonlinear spatial 

normalizing of the structural images to the MNI152 brain template, co-registering the 

anatomical volume with the mean functional volume, regressing out nuisance signals such as 

those from white matter, CSF, as well as six motion parameters, and resampling of the 

functional data into MNI space with the concatenated transformations. An fALFF index map 

was then generated to provide information regarding the amplitude of brain activity. Similar 

to the steps involved in the processing of GM, by separately averaging the fALFF values 

within each region of the 116 areas determined by the AAL mask, a functional sample set 

with 116 feature dimensions was obtained for later analysis. Gender factor was also 

regressed out for fALFF.

D. Feature Selection

Feature selection is often considered necessary for classifying neuroimaging data, especially 

when hundreds of thousands of features are presented as opposed to only dozens of samples, 

resulting in the curse of dimensionality [14]. In this study, though we have already reduced 

the number of features from ~70k to hundreds by using the AAL template, employing a 

feature selection process can further help precisely locate the regions of interest and 

facilitate data visualization. Also, a sparse feature set can provide substantial improvement 

to the performance of a more generalized classifier.

For neuroimaging data processing, conventional univariate feature selection approaches 

ignore the mutual information among features with certain independence or orthogonality 

assumptions, while in fact the intermingled activity pattern can serve as the optimal feature 

subset. Specifically, it is highly possible that some features that have little contribution to 
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classification on their own (which will be filtered out using univariate methods) may yet 

provide a performance boost if combined with other features [27], i.e., unsynchronized 

fluctuations might emerge as an informative pattern [17].

Unlike univariate feature selection, multivariate feature selection takes relevancy of a group 

of features into account. Nonetheless, searching for the globally optimal subset with a given 

size is known to be NP-hard [28]. Exhaustive search can quickly become computationally 

infeasible when the dimensionality of the feature space becomes high. Although 

approximation of global optima can be achieved by some sophisticated methods, such as the 

genetic algorithm [29, 30], model understanding may present serious challenge. 

Consequently, researchers typically resort to algorithms aiming at obtaining the sub-optimal 

or locally optimal feature sets.

E. Development of SVM-FoBa

Known to be computationally advantageous, greedy search strategies normally serve in two 

directions: forward selection and backward elimination. Forward selection involves a 

bottom-up search model that starts with an empty set. During each iteration step, one feature 

is added to the current set F in order to aggressively reduce the loss function J. However, 

forward selection will yield nested set of features, in which features selected at step k are 

always included in the subset of step (k + 1). That is to say, the forward selection is not 

capable of inspecting other possible combinations of features than such additive ones.

Backward elimination, on the other hand, is the top-down analogy to forward selection. 

Starting with the complete set, features are removed one at a time so that the negative impact 

on performance shall be kept minimal. This iteration continues until the change of loss 

function J exceeds a certain threshold. Clearly, backward elimination generates nested 

subset as well. Furthermore, when dealing with high dimensional data, the backward 

approach can be computationally demanding since the combination of features will be 

checked from the universal set. Another major flaw of backward elimination is the 

propensity for overfitting. Should a perfect prediction be made the first time based on the 

complete feature set, removing one feature with the lowest increment to J would still result 

in overfitting.

In brief, both forward and backward strategies have their limitations. However, if the 

forward selection were to be combined with backward elimination, the error induced by 

earlier steps could have been adaptively corrected. Hence, we are motivated to develop 

“SVM-FoBa”, an SVM-based adaptive forward-backward greedy algorithm. During each 

iteration of SVM-FoBa, when a new feature is added by a forward step, backward step will 

step in to recheck the new feature subset as a whole, or even remove features with minor 

performance loss. This combination can be integrated with various prediction models for 

feature selection, such as least square regression [20]. In the current study, we invoked the 

value of the optimization objective function of the linear SVM as the loss function J, which 

can be written as:
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where xi is the sample with yi corresponding to its label, w is the weight vector, b is the 

offset, C is the hyperparameter (1 by default), and [·]+ denotes the hinge function that [t]+ = 

max{0, 1 − t}.

Thus, by implementing SVM-FoBa on the brain imaging data of BD and MDD, the 

corresponding change of the objective function could directly characterize the impact of a 

feature on differentiating two types of patients.

As mentioned above, a forward step of SVM-FoBa always singles out the features with the 

largest decrement of the objective function, while the backward feature elimination will then 

be applied if needed. This procedure is repeated until the decrement of the objective function 

between consecutive steps has reduced below a given threshold ε. Obviously, balancing the 

forward and backward steps is the key to the algorithm. We certainly want to make 

reasonably aggressive backward steps to eliminate errors caused by earlier forward steps, 

while progress contributed by the forward steps should also be preserved as much as 

possible. We thus introduce the following definition, along with the notations, for clarity.

Definition—Assuming that at stage k, a feature ik is added to the feature subset Fk−1 by 

forward step, thereby generating a subset of Fk, with Jk being the corresponding value of the 

optimization objective function. The decrement of the objective function is denoted as , so 

that . Backward step then locates a feature jk ∈ Fk, whose elimination induces 

the smallest increment in the objective function, denoted as . With a given constant 0 < θ 

< 1, if , we define that at least one error has occurred in earlier forward steps.

Therefore, once errors induced by earlier forward steps are detected, backward elimination 

processes will automatically step in and repeat until all the errors are corrected. It is worth 

noting that the hyperparameter θ determines the bias between the forward and backward 

steps. As long as n forward steps have been carried out, the objective function J will be 

reduced by at least n(1 − θ)ε regardless of how many backward steps have been involved in 

the course, suggesting that the algorithm will stop after a finite number of forward steps. 

Thus, if the value of θ is small, the whole protocol will be toward the forward steps with less 

error correction, resulting in aggressive optimization; on the contrary, a large θ emphasize 

more on the backward procedures, suggesting slower convergence rate of the algorithm. In 

this work, we used θ = 0.5 as the trade-off value. Moreover, unlike forward selection or 

backward elimination alone, SVM-FoBa does not yield a series of nested subsets of features. 

As much more comprehensive combinations of features can be tested in a reasonable 

amount of time, we expected to see the features with the greatest discriminative power to be 

factored into the final classification model.

The pseudo-code for SVM-FoBa is demonstrated in Fig. 1. In this study, we adapted 

LibSVM [31] with SVM-FoBa algorithm to accomplish the feature selection. It is still worth 
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noting that, with improvements over the conventional greedy methods in principle, SVM-

FoBa does not necessarily excel in all aspects according to “no free lunch” theorem [32]; 

performance may also vary when it comes to different data sets, based upon which the 

classifiers will produce distinct biases.

III. Results

A. Comparison With Typical Feature Selection Methods

To validate the effectiveness of SVM-FoBa, we conducted a comparison study by testing 

different feature selection methods on public data sets. Other than SVM-FoBa, four 

conventional feature selection methods were included: the univariate T-test and Fisher score 

[14] ranking, the forward selection and the SVM-RFE algorithm [20]. The T-test and Fisher 

score ranking are commonly used in brain imaging studies. For comparison purpose, the 

forward selection method also utilized the multivariate objective function as its loss 

function. Standard backward elimination was not included due to insurmountable 

computational cost on high dimensional data. For each method, the selected feature set was 

entered into a linear SVM classifier for performance evaluation.

In simulation, we wanted to confirm the advantages of SVM-FoBa when starting with 

hundreds or thousands of features with limited samples that are similar to the real scenarios 

of neuroimaging study. Thus, public biomedical data sets with comparable number of 

instances were chosen for binary classification test, including the LSVT Voice 

Rehabilitation [33], the Colon Cancer [34] and the Leukemia Cancer [35] data sets (see 

TABLE II for detailed information). To avoid possible bias introduced by certain 

partitioning of training and test samples, we performed a leave-one-out cross-validation 

(LOOCV) procedure, which is known to be an unbiased estimator of the generalization 

performance of a classifier [36]. Specifically, on each fold of the LOOCV, all but one of the 

samples was used to train the classifier, while the remaining sample was saved for validating 

the results. This procedure proceeded until each sample had performed once as the test set. 

The classification accuracy, along with the sensitivity and specificity rates were then 

calculated based on how many correct predictions were made with all the folds added up 

against the sample size. The results are demonstrated in TABLE II.

It is worth noting that the univariate feature indices (T-test and Fisher score) only provide a 

ranked list of features. Hence, for comparison purposes, we extracted the feature subset with 

the highest rank, where the set size was identical to the optimal number of features indicated 

by the SVM-FoBa algorithm. For example, as shown in TABLE II, with SVM-FoBa 

achieving its best prediction power for “Leukemia Cancer” data set when 30–38 features 

were selected (equal performance from 30 to 38 features), the same interval of top rated 

features were also chosen for T-test and Fisher score methods.

Generally, SVM-FoBa yielded better performance than the other four feature selection 

methods, particularly in sensitivity and specificity rates. According to Bayes' theorem, minor 

specificity decrement can cause considerable detection power loss. Thus, even if the 

improvement of SVM-FoBa is small in some cases, clinical diagnosis may ultimately benefit 

from this. Also, when compared to other multivariate feature selection approaches (the 
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forward selection and SVM-RFE), SVM-FoBa extracted more compact feature subsets. This 

can be of great importance when trying to interpret the most prominent features, which, in 

the context of medical image data, might be the essential biomarkers; redundant features can 

harm the clinical judgment with irrelevant factors involved.

B. Feature Selection of fALFF and VBM-GM data

We applied SVM-FoBa with LOOCV on fALFF and VBM-GM data (each contained 116 

features) for all three types of between-group classification conditions (BD vs. MDD, BD vs. 

HC, and MDD vs. HC). Similar to the strategy involved in Section II.A regarding public 

data sets, the corresponding accuracy rates and optimal number of features are calculated 

and listed in TABLE III.

Thus, with the optimal number of features provided, we were interested in which features 

contributed most to group discrimination. This was done by exploiting the quantitative 

advantage of the linear SVM classification model, whereby features with the greatest 

absolute weight value (averaged across all folds of LOOCV) could be factored out. We 

denote such important features as the “significant features.”

It should be noted that, in addition to the absolute weight value that represents the 

contribution made to the classifier, the sign of the weight can also provide critical 

information due to the linearity of the binary decision function. Namely, the sign of a weight 

indicates into which label a sample will be classified. For example, as in the context of “BD 

vs. MDD”, BD is deemed as the negative sample with the label “−1”, whereas MDD is 

assigned with “+1”. In this case, a feature with positive weight should reflect its negative 

connection to BD, since a test sample with larger value along that dimension will imbue the 

decision function with greater impetus to be positive, i.e., to classify this sample as MDD. 

Conversely, a BD sample should present with a smaller value along that specific dimension. 

Thus, for each feature selection condition in TABLE III, we drew a set of the top n 

significant features, with n being equal to the optimal number of features that SVM-FoBa 

suggested to select. These most discriminative features are listed in TABLE IV. Using the 

BrainNet Viewer toolbox [37], a visualization of these features is also generated by mapping 

their weight values to the corresponding brain regions, as is shown in Fig. 2.

On each fold of the LOOCV, the SVM-FoBa algorithm selected a set of highly 

discriminative features. However, since the training process was based on a slightly different 

subset of samples from fold to fold, the chosen feature set also varied each time. For 

instance, according to TABLE III, while 16 was decided as the optimal feature number 

when classifying BD and MDD subjects on fALFF data, that did not necessarily mean that 

the same 16 features were drawn across all the 46 cross-validations (CV); rather, as each CV 

fold chose its own 16 features, the average classification accuracy ranked the highest among 

all possible feature sizes. Therefore, we would particularly like to know which features were 

constantly chosen during the whole CV procedure, which we call “consensus features” 

hereafter. By recording the frequency of features being selected in the training process, we 

extracted the consensus feature(s) prevailing in all cross-validation iterations for each of the 

6 conditions (two modalities × three types of classification). Besides, since the consensus 

features were constantly selected by the algorithm, consistent and significant contributions 
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should have been made by these features across the entire CV process. It is not surprising, 

therefore, that for each classification condition, the consensus features constitute a subset of 

the significant features (see terms with black dot in TABLE IV, as well as the areas shaded 

with vertical green stripes in Fig.2).

Combining the results of both fALFF and VBM-GM, it can be observed that sub-regions 

related to the bilateral inferior frontal gyri (IFG) were frequently chosen with large weights 

among all 6 conditions (see Fig. 2). Considering that BD was always the negative sample, 

and all the significant features concerning IFG were of positive weights, a negative 

correlation between BD and other subject groups regarding the status of IFG is implied. 

Roughly speaking, a smaller IFG index value, either by fALFF or VBM-GM, would suggest 

a larger likelihood of BD classification. Interestingly, a series of the significant features with 

respect to discriminating BD patients also falls within the default mode network (DMN), 

including the angular gyrus, the anterior cingulate cortex, the cuneus area, and the fusiform 

and precentral gyri. Additionally, the cerebellum plays an important role in discriminating 

different subject groups in 5 out of 6 conditions. In particular, the vermis was identified, 

consistent with previous findings [38–40].

Aside from the common discoveries observed above, we were also curious to identify which 

specific group-discriminating information could be found using each modality separately. 

By analyzing the weights of the significant features, we found that the left angular gyrus, 

exclusively selected with fALFF data, was not only a consensus feature, but also provided 

significant predictive power to differentiate BD from MDD or HC. A recent multimodal 

research study suggested that the angular gyrus could play a role in discriminating BD and 

schizophrenia [41]. In addition, the bilateral pallidum and paracentral lobules, as well as the 

left inferior occipital cortex were identified by fALFF with negative weights only in the BD 

vs. MDD condition. Likewise, the right rolandic operculum and the right superior temporal 

gyrus were positively associated with the classification of MDD in fALFF (positive weights 

in BD vs. MDD, negative weights in MDD vs. HC), while the right Heschl’s gyrus was 

uniquely chosen to distinguish MDD from BD with positive weight.

On the other hand, for VBM-GM, the right fusiform and the right cuneus areas showed 

negative weights when differentiating BD from MDD and HC. Moreover, the left anterior 

cingulate cortex appeared with positive weights in both BD vs. MDD and BD vs. HC 

conditions.

Together, we discovered a series of significant features (brain areas) that may help 

distinguish BD from MDD with either structural or functional information, which will be 

discussed in detail in Section IV.

C. Classification with the Selected Features

With the significant features in hand, it is natural to ask how “significant” these features 

really were. In other words, we would like to evaluate the classification performance using 

the significant features solely. Thus, we extracted 6 new sample sets with only significant 

features from the previous data according to TABLE III. To further investigate the 

multimodal performance, we also created three union sets of fALFF and VBM-GM for each 
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of the classification conditions. Accordingly, a total of 9 sets of samples were generated, 

with three modality combinations (fALFF, VBM-GM, and fALFF and VBM-GM) × three 

conditions (BD vs. MDD, BD vs. HC, and MDD vs. HC). In order to yield more generalized 

results, these new data were entered into a linear SVM classifier using bootstrap aggregating 

[42]. That is, after a full randomization of sample order for each iteration, approximately 

63.2% of the samples were used as the training set, while the rest of the samples served as 

the test set. In this study, we conducted 1,000 bootstrap resamples for each of the 9 data sets; 

classification accuracy, sensitivity and specificity rates were calculated with these 1,000 

results summarized. An illustration comparing these results is provided in Fig. 3.

Results showed that the performance utilizing multimodal features was always better than 

results using a single modality. Using two modalities, classification accuracies were 92.07% 

for BD vs. MDD, 80.78% for BD vs. HC, and 79.51% for MDD vs. HC. The sensitivity and 

specificity rates also showed similar tendencies. This makes sense as distinct modalities may 

offer complementary anatomical or functional information relevant to the classification of 

two clinical disorders.

Additionally, it can be seen that the significant features of fALFF outperform those of 

VBM-GM by a large margin, to the extent that only very small performance gap could be 

observed between fALFF and the fusion of two modalities Specifically, for the BD vs. MDD 

condition, the classification accuracy of fALFF is 90.89%, against the one of VBM-GM at 

77.83%. We thus conclude that, while still being important, structural features might supply 

limited information in the context of distinguishing between BD and MDD. To confirm this, 

we averaged the weight vectors learned by 1,000 linear SVM classifiers and created a 

weight map for each condition, as is shown in Fig. 4. Dimensions belonging to the fALFF 

yielded greater weight values than VBM-GM. In general, the most significant features in 

separate modality analyses also contributed the greatest to the final classification for 

combined modalities.

IV. Discussion

To the best of our knowledge, this is the first study to combine both anatomical and 

functional information to distinguish BD-I, MDD and HC during late adolescents/young 

adulthood (mean age = 20–21), in the early course of affective illness, using an advanced 

multivariate technique.

A known challenge in brain imaging data classification is the reduction of feature 

dimensionality, without which overfitting can occur, so that the generalization performance 

of a classifier may be compromised. One possible solution is the incorporation of feature 

reconstruction, whereby existing features will be transformed into a new space, revealing the 

discriminative information that is not evident in the original space, such as clustering, basic 

linear transforms (e.g., principal component analysis and linear discriminant analysis), and 

nonlinear transforms [43]. However, as none of the original input features will be discarded, 

model understanding can be rendered impractical, especially for neuroimaging data. In this 

study, we proposed a novel feature selection method by incorporating a forward-backward 

search strategy integrated with the linear SVM, aiming to capture significant features and to 
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identify the potential imaging biomarkers of two mood disorders that are, in clinical 

practice, often challenging to differentiate early in their course. It is worth mentioning that, 

before applying SVM-FoBa to neuroimaging data, we conducted a series of experiments to 

verify whether this algorithm was advantageous to other typical feature selection methods 

on public data sets. Results demonstrated that not only did SVM-FoBa yield superior 

classification accuracy in most cases, but more feature combinations may also be 

comprehensively investigated, achieving higher sensitivity and specificity rates.

As to feature selection, other algorithms that integrate a sparse prior in the optimization 

objective function of SVM may also be feasible. For example, Bayesian SVM [44, 45] seeks 

to estimate the optimal hyperparameters with probabilistic framework employed, which 

mostly incorporates Gaussian kernel; The genetic algorithm [29, 30] has been widely used 

as an approximation of global optima, but has an extra layer of pseudo-biology with a series 

of hyperparameters that may complicate the result interpretation, let alone the slow 

convergence on nontrivial problems [46]. In this study, the ultimate question that we were 

trying to answer was which features — biomarkers — differentiated BD and MDD diseases. 

Known as the methodology of decoding [47], the key to model understanding is inverse 

inference; with the linearity of SVM-FoBa exploited, the contribution of features can be 

quantified, compared and interpreted with their corresponding weights.

Regarding our methods, two caveats should be considered. The first is the feature selection 

criteria. Different classifiers generate different biases; a feature subset optimal for one 

classifier might be less useful for another. Instead of using misclassification rate as the loss 

function, we directly incorporated the value of the objective function of the trained SVM, by 

which the discriminative power of a feature set can be dynamically measured. In other 

words, we considered feature selection as part of the training process. Since the cost to 

collect medical imaging samples is usually high, this approach may promise a better use of 

the available data at hand. Furthermore, the intrinsic SVM regularization of the objective 

function can prevent the classifier from overfitting the training set.

The second caveat is search strategy. Although the conventional greedy method may 

aggressively generate sparse solutions, the selected nested subsets of features would cause 

the errors produced in earlier steps to be uncorrected. To overcome this problem, we 

therefore developed the SVM-FoBa algorithm to adaptively select a significant feature set 

for each of the classification conditions. It is important to note that the proposed algorithm 

involves a parameter ε that determines the threshold of the loss functional value between 

steps. This can be regarded as the issue of model selection in machine learning theory. Since 

a good model selection criteria can be of great importance [20], we used the LOOCV as the 

outer loop to measure the performance, while a 10-fold CV procedure was also implemented 

in the inner loop to decide the optimal value of ε.

On the clinical side, subareas of the inferior frontal cortex established themselves as the 

critical, common significant discriminative features across diagnoses and modalities. As 

mentioned before, a consistent result was that BD was negatively correlated with the 

features concerning IFG subareas, no matter which modality was considered. It has been 

reported that shrinkage of the gray matter volume in inferior frontal gyrus can be observed 
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in BD patients [48, 49]. Clearly, our BD vs. HC result with respect to the VBM-GM 

modality offers confirmation of this view. Previous studies also suggest that MDD patients 

will show tissue loss in IFG [50]. Again, this was corroborated by the VBM-GM result 

pertaining to condition MDD vs. HC, where a positive weight was assigned to the consensus 

feature of pars triangularis of IFG. Considering that with the same data modality two 

consensus features of IFG were trained with positive weights in the BD vs. MDD condition, 

we speculate that, although both types of clinical disorders could cause gray matter loss in 

IFG, BD patients might suffer from a greater shrinkage in volume. For the fALFF data, a 

similar trend also appeared such that the BD group obtained positive feature weights in IFG 

in the BD vs. MDD and BD vs. HC conditions, suggesting more severe functional deficits in 

IFG for BD patients when compared to depressive or healthy individuals. In sum, BD 

appeared to elicit abnormalities in IFG for both structural and functional modalities that 

MDD patients did not. Further analysis should be conducted to verify if the IFG area is a 

robust predictor for distinguishing BD and MDD.

In addition, sub-regions of the cerebellum, especially the vermis, were identified as an 

important factor to classify BD, MDD and HC in most conditions. The cerebellum has 

shown to be both anatomically and functionally connected with the prefrontal cortex and 

subcortical limbic structures. One meta-analysis study proposed that the cerebellum might 

play a functional role in normal and abnormal mood regulation, such that the abnormality 

could be the underlying cause of psychosis, depression and mania [38]. In particular, vermal 

deficits have been reported for both individuals with BD [40, 51–54] and MDD [55–57] in 

many reports. Our results further confirmed these findings for both anatomy and function. 

While often overlooked by researchers, it is advised that dedicated multivariate studies 

concerning mental disorders should scrutinize the substructures and functions of the 

cerebellum in the future.

Furthermore, a group of brain regions belonging to the DMN were selected as the significant 

features to discriminate BD from other subject groups. The right inferior occipital area and 

the right fusiform area were selected with significant weights to classify samples into BD, 

based on either fALFF or VBM-GM data (see Section III.B). Previous imaging studies have 

suggested several unusual DMN features for BD patients: incorporation of atypical regions 

such as the occipital cortex, lateral parietal, striatum and pontine areas, and also reduced 

correlation between typical DMN nodes such as the fusiform and hippocampal regions [14, 

58]. In contrast to more general abnormalities of the medial prefrontal cortex that are also 

seen in other mental disorders (e.g., depression and schizophrenia), these disturbances might 

be unique for BD. Hence, our findings provide evidence to support this view.

In this study, we conducted classification experiments using both single modalities and their 

combination. The two data modalities have yielded separate discoveries, with one enhancing 

or complementing the other; more importantly, the combination of fALFF and VBM-GM 

features improved the classification accuracy between two mood disorders that may be 

easily confused in their first episode. Also, during our dedicated classification test of the 

significant features, the fALFF modality outperformed VBM-GM with considerable margin 

(see Fig. 3 and Fig. 4 for detail), while also being very closed to the accuracy of two 

modalities merged together. Despite the fact that the VBM-GM data alone has provided a 
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large amount of useful information regarding early stage of the illness of the patients 

studied, functional features appear to be more informative when separating BD and MDD. 

Although abnormalities in anatomical structures can ultimately be the cause of dysfunctions 

[59], it does not necessarily mean that all crucial structural deficits can be efficiently 

detected by means of current brain imaging technologies and techniques. Moreover, even 

while the mechanisms underpinning mental disorders are of great interest, a key difficulty 

lies in the clinical diagnosis of BD patients. In that sense, reliable biomarkers, or rather 

effective neuroimaging predictors are of primary importance. Our results suggest that more 

attention should be drawn to examine various functional indices (e.g., functional 

connectivity) to discriminate BD from MDD.

Finally, several general limitations have to be acknowledged. First, as SVM-FoBa 

effectively addresses some intrinsic issues related to typical greedy methods, it is essentially 

an algorithm seeking the local optima. Furthermore, our sample size was relatively small 

and similar analyses should be performed with a larger number of subjects. In addition, due 

to the lack of additional data, we conducted the final classification test of significant features 

on the original samples, which might introduce a bias. Future studies with independent 

subject data are preferable. Moreover, the fALFF and VBM-GM features were obtained by 

directly averaging each subarea of AAL template. This operation eliminated the fine voxel-

wise details within each area, which might contain potentially useful information for group 

discrimination. Another concern is reflected by the medication status of the subjects. 

Although previous studies suggest that medication effect might be negligible for fMRI data 

[60], it is important to study medication naïve patients to ensure medication effects are not 

playing a role.

V. Conclusion

To the best of our knowledge, this is the first study to utilize a multivariate feature selection 

approach to classify BD and MDD with multiple modalities. The present work demonstrated 

that, with the help of a novel feature selection approach involving forward-backward 

strategy, highly discriminative features could be extracted from the data of both functional 

and structural modalities for bipolar and major depressive disorders, whereby high 

classification accuracy could be achieved. A large portion of the most informative features 

belonged to the IFG, DMN and the cerebellar vermis. Specifically, when compared to HC 

and MDD, BD patients elicited the lowest fALFF and VBM-GM value in IFG. Moreover, a 

trend was found that default mode network, with the adoption of atypical nodes, was helpful 

exclusively for identifying bipolar patients. These findings, which were predominantly 

driven by the functional information, suggest possible biomarkers for differential diagnosis 

of BD versus MDD. This should be confirmed in future studies.
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Fig. 1. 
Pseudo-code for SVM-FoBa algorithm.
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Fig. 2. 
Visualization of the significant features. Weight values were assigned to their corresponding 

AAL brain areas as mapped in color bar. The fALFF modality data are in the left column, 

whilst the VBM-GM modality is on the right. From top to bottom, classification conditions 

are arranged in this order: BP vs. UP, BP vs. HC, UP vs. HC. Consensus features are 

displayed with vertical green stripes overlapped on original color mapping of the significant 

features (see terms with black dot shown in TABLE IV).
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Fig. 3. 
Performance of the linear SVM classifier using the significant features (1,000 bootstrap 

resamples). Paired T-tests were conducted to show the significance of differences between 

performance indices with two level of p-value provided. For all three classification 

conditions, the combined feature set outperform each separate modality alone, with the 

classification accuracy for BP vs. MDD being 92.07%, BP vs. HC 80.78%, and MDD vs. 

HC 79.51%. Sensitivity and specificity rates share the same propensity. Moreover, 

functional features yielded better results than structural ones.
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Fig. 4. 
Visualization of the weight vector learned by linear SVM, wherein the values were averaged 

across 1,000 bootstrap resamples (not the weighs shown in TABLE IV). Darker color 

represents a larger absolute value of feature weight. The fALFF modality elicits greater 

weights when compared to the VBM-GM.
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TABLE I

Demographic and Clinical Data of Participants

Group BD MDD HC

Number 21 25 23

Age (years, mean±SD) 21.6±2.9 20.1±2.8 20.5±1.9

Gender (M:F) 12:9 9:16 7:16

YMRS (mean±SD) 1.7±2.2 1.6±1.8 0.2±0.5

BPI (mean±SD) 77.2±15.2 27.1±6.4 N/A

SD, Standard Deviation; YMRS, Young Mania Rating Scale; BPI, Bipolarity Index, a scale measuring traits of bipolar disorder on a continuum.
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TABLE II

Performance of Different Feature Selection Methods on Three Public Data Sets

LSVT
Voice

Colon
Cancer

Leukemia
Cancer

Instances 126 62 72

Features 309 2,000 7,129

SVM-FoBa

No. features 47 29–30 30–38

Accuracy 90.48% 87.10% 98.61%

Sensitivity 85.71% 92.50% 96.00%

Specificity 92.86% 86.36% 100%

Forward selection

No. features 83 37–39 39–43

Accuracy 87.30% 85.48% 97.22%

Sensitivity 85.71% 90.00% 96.00%

Specificity 90.48% 77.27% 100%

SVM-RFE

No. features 67–68 31 82–84

Accuracy 84.92% 87.10% 98.61%

Sensitivity 85.71% 90.00% 96.00%

Specificity 86.90% 86.36% 100%

T-test ranking*

No. features 47 29–30 30–38

Accuracy 88.89% 87.10% 95.83%

Sensitivity 83.33% 87.50% 96.00%

Specificity 91.67% 86.36% 95.74%

Fisher score ranking*

No. features 47 29–30 30–38

Accuracy 88.89% 87.10% 95.83%

Sensitivity 80.95% 87.50% 96.00%

Specificity 92.86% 86.36% 95.74%

*
T-Test and Fisher score method used the same number of features with that of SVM-FoBa for equivalent comparisons.

“LSVT Voice Rehabilitation” data set was obtained from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.html).

Descriptions of “Colon Cancer” and “Leukemia Cancer” data can be found at http://www.inf.ed.ac.uk/teaching/courses/dme/html/
datasets0405.html.
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