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Abstract

Recent developments have made model-based imputation of network data feasible in principle, but 

the extant literature provides few practical examples of its use. In this paper we consider 14 

schools from the widely used In-School Survey of Add Health (Harris et al., 2009), applying an 

ERGM-based estimation and simulation approach to impute the network missing data for each 

school. Add Health's complex study design leads to multiple types of missingness, and we 

introduce practical techniques for handing each. We also develop a cross-validation based method 

– Held-Out Predictive Evaluation (HOPE) – for assessing this approach. Our results suggest that 

ERGM-based imputation of edge variables is a viable approach to the analysis of complex studies 

such as Add Health, provided that care is used in understanding and accounting for the study 

design.

1. Introduction

Missing edge variable data – i.e. edge variables in an observed network whose states are 

unknown – has long been recognized to be a serious problem for social network analysis 

(Burt 1987). Network analytic concepts and measures are generally defined with respect to a 

completely observed graph (Wasserman and Faust, 1994) and the non-extensive nature of 

many network properties makes them difficult or impossible to estimate by e.g. simply 

averaging observed local network information. While ad-hoc methods such as treating 
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missing edges as absent, dropping vertices with missing edge information, etc. have been 

employed, these can produce misleading or incorrect estimates (see Ghani et al., 1998; 

Huisman and Snijders, 2003; Kossinets, 2006; Huisman and Steglich, 2008; Huisman, 2009; 

Almquist, 2012); methods for handling missingness from one source by integrating 

measurements from other sources (e.g. Butts, 2003) can work well, but require data 

unavailable to most network researchers. Unfortunately, missingness is sometimes 

impossible to avoid, or arises from flaws in study design that are unrecognized until after 

data collection. Given the importance and scope of this problem, finding practical and 

principled ways to deal with it has been an important priority in network research.

A significant development in this regard has been the emergence of techniques for fitting 

exponential family random graph models (ERGMs) in the presence of missing data. The 

core insight (introduced by Handcock in 2002) is that the latent missing data framework 

developed by Rubin (1976) in a non-network context can also be applied to edge variables: 

given a parametric model, and appropriate assumptions regarding the nature of missingness, 

one can derive the likelihood of the observed data as a marginalization of the complete-data 

likelihood over the possible states of the missing variables (in some cases weighted by a 

factor related to the probability of the observed pattern of missingness). Techniques for 

performing maximum likelihood estimation (MLE) under these conditions (and theory 

regarding the nature of the assumptions required) have been developed by Robins et al. 

(2004) and Handcock and Gile (2010), with recent Bayesian extensions by Koskinen et al. 

(2010, 2013).

The current state of the art may be briefly summarized as follows. First, it is usually 

assumed that the pattern of missingness is ignorable (i.e., that any unknown parameters 

governing the observation process are distinct from those being estimated, and the 

probability of the pattern of missingness depends only on the values of the observed data 

and/or covariates). Ignorability can in some cases be relaxed (albeit not without altering the 

likelihood calculation), but is satisfied exactly or approximately for many real-world designs 

[see, e.g., Handcock and Gile (2010) for a discussion]. Second, a model is posited for the 

graph as a whole (here, a parametric model in ERGM form). Finally, the likelihood for a 

given parameter vector is then calculated by marginalizing the ERGM likelihood for the full 

network over all possible complete networks that are compatible with the observed data. 

This observed data likelihood is then employed for purposes of inference.

Although the emphasis of these techniques is on ERGM inference, it is clear that they also 

provide an approach to the more general problem of network imputation: given an adjacency 

matrix Y with realization y of which portion yobs is observed and ymis is missing, ymis can be 

modeled via conditional prediction from an ERGM fit to yobs. Specifically, let θ′ be an 

estimate (e.g., an MLE) for the parameter vector of an ERGM with sufficient statistic t given 

data yobs. Then we generate draws Ymis ∼ ERGM(θ′|yobs), where ERGM(θ′|z) denotes the 

ERGM distribution with statistic t and parameter θ conditional on z (i.e., with the elements 

of Y contained in z held fixed). Such draws may be taken using standard Markov chain 

Monte Carlo (MCMC) methods (see Snijders, 2002; Snijders et al., 2006; Wasserman and 

Robins, 2005), and indeed simulations of this sort are used as part of the latent missing data 
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estimation process described above. Draws from Ymis can then be used to estimate various 

features of ymis (the true missing data) or y=yobs∪ymis (the true state of the graph).

While the basic logic of ERGM-based network imputation is straightforward, there are to 

date few published use cases (to our knowledge, e.g., Handcock and Gile, 2010; Koskinen et 

al., 2010, 2013). Likewise, the existing literature gives little guidance on assessing the 

quality of network imputation (an important practical consideration in everyday use). In this 

paper, we attempt to rectify this latter deficit by introducing a simple cross-validation based 

method – what we term Held-Out Predictive Evaluation (HOPE) – to assess the accuracy of 

imputed draws from an observed-data ERGM.

We apply the ERGM-based network imputation method to model the missingness and error 

inherent in the Add Health data set (Harris et al., 2009). This provides for a useful 

demonstration given that this is a widely used study in the literature, and that it has a high 

level of missingness making it a very complex and challenging case. The Add Health case is 

also useful for demonstrating the use of multiple sources of information (particularly, 

marginal constraints on degree and group-specific mixing) in aiding estimation (something 

not explored in most published work to date). For our study, we use the friendship networks 

from 14 schools in the saturated sample of Add Health. As we are using a real-world data set 

(rather than simulated data), our focus is on technique illustration rather than method 

evaluation per se; however, as we will demonstrate, one feature of our approach is that it 

provides some basis for evaluation on available data. As we show, ERGM-based imputation 

can produce reasonable results in a real-world setting (although careful attention must be 

paid to the complexities of one's study design).

As a complement to the above-mentioned methods of imputation, we introduce a simple 

strategy we call Held-Out Predictive Evaluation (HOPE) for evaluating the quality of 

imputation in real-world settings. As discussed below, HOPE involves holding out a 

stratified sample of edge variables from the graph prior to model estimation and imputation, 

and using the predictive accuracy of the model on the imputed data as an indicator of 

imputation quality. It is worth emphasizing that the HOPE method sets a relatively high bar 

for accuracy, compared to common methods of assessing the latent missing data imputation 

framework developed by Rubin (1976) outside of the network context. In that context, the 

typical approach for assessing the quality of imputation is to assess how well the estimated 

parameters for the imputed data compare to the true parameters. Thus, the question posed is 

whether the imputed data are able to accurately capture the proper coefficients for a specific 

model. By contrast, HOPE directly assesses the ability of an imputation model to correctly 

identify present and absent edges in the (unknown) true network. This tough but general 

standard is useful when imputation is being performed without knowledge of what analyses 

will need to be subsequently conducted on the resulting graph (e.g., when the imputed draws 

will be shared with other researchers, or at the early stages of a multi-stage investigation), 

and/or when the same imputed draws will be used for several different purposes (rendering 

any single model-based evaluation problematic). HOPE may also be useful as an easily 

interpretable adjunct to other quality measures, and can serve as the basis for a wider range 

of predictive evaluation measures employing specific graph properties.1
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2. Data source, multiple types of network data missingness, and treatments

2.1 Data source

Our data comes from the first wave of the National Longitudinal Study of Adolescent to 

Adult Health (Add Health), a longitudinal study of a stratified sample of US schools from 

7th to 12th grades (see Harris et al., 2009). (A “school” in this case consists of a high school, 

in some cases united with a “feeder” school whose students ultimately attend it. We use the 

singular “school” to refer to such high school/feeder school pairs.) All participants were 

invited to take the In-School Survey (n = 90,118) during 1994 and 1995. A random sample 

of 20,745 students selected from the In-School Survey respondents completed a wave 1 In-

Home Survey, which was administered between April and December, 1995. Approximately 

one year later, participants who had not yet graduated from high school were asked to take a 

Wave 2 In-Home Survey (n = 14,738) between April and December, 1996. Information on 

social and demographic characteristics (i.e., gender and grade) of the respondents, attending 

classes and grades, extracurricular activities (i.e., club and sport-team participation), 

education and occupation of parents, household structure, risk behaviors including tobacco 

and alcohol use, expectations for the future, self-esteem, and health status were collected. 

Each student was also asked to nominate up to five best female friends and five best male 

friends.2 In this paper we focus on the saturated sample of 4,431 students collected from 14 

out of 132 participating schools.3 As shown in table 1, the roster size of our 14 schools 

range from 30 to 2,104.

2.2 Multiple types of network data missingness

As described above, missingness in a study like Add Health can arise for many reasons. 

Setting aside the by-design censoring of responses by gender, and focusing entirely on 

relations within each school, we may summarize the overall level of missingness in the Add 

Health wave 1 network data by the frequency of three basic patterns (summarized in Table 

1):

1. No outgoing edge missingness: The respondent completed the In-School Survey, 

and we know how many female and male friend(s) he or she nominated and who 

they were. Essentially, this respondent has provided complete network information. 

As shown in Table 1, the lowest proportion of respondents having no outgoing 

edge missingness is 63%, from school 088.

1For example, a variant of the HOPE technique could be used to assess the ability to reproduce structurally selected subsets of edge 
variables (e.g., those known to be embedded in two-paths), rather than randomly selected edge variables.
2The friendship network dataset from Add Health has considerable complexity. Respondents (egos) were asked to nominate friends 
(alters) by entering numbers from a roster listing students at the school (and, in some cases, a feeder school with which it was paired). 
Because of enrollment changes, some students were not listed on the roster; these “off-roster” students could participate (and hence 
their outgoing ties are observed) but could not be uniquely identified as alters by other participants. “Off-roster” alters are identified in 
the data by a generic code, and hence only the total number of ties to such persons (by gender) is observable. Further, the nominees 
were not limited to participants in the sample: respondents could also nominate persons outside the school. Ties to those outside the 
school are likewise identified by a generic code, and only the number of such alters (by gender) for each observed ego is known. 
(Since the survey was administered only to students within the sampled schools, incoming nominations from those outside the school 
are unobserved.)
3Add Health contains a saturated sample of 16 schools (Harris et al., 2009). Among the 16 schools, there is a special education school 
with constant student turnover, and another school suffering from an administrative error in which the students' IDs at the earlier wave 
could not be matched with those at later waves. Thus these two schools are not included in this paper.
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2. Partial outgoing edge missingness4: In some cases, respondents completed the 

survey but had alters who could not be validly and uniquely identified. One way 

this could arise was by a respondent entering an invalid code; this was either 

recognized to refer to no student (and marked invalid), or referred to a student 

whose gender did not match (i.e. a female or male ID in the male or female friend 

list). This is properly an example of informant inaccuracy, but one that leaves us 

uncertain as to the identity of the alter in question (and hence manifests as missing 

data). Examination of the rank placement (friend list ordering, from 1 to 5) of 

misplaced nominees suggests that these are non-systematic (random) errors, thus 

we consider them as missing edges (i.e., we assume that the gender is correct but 

the nominee ID is wrong). As shown in Table 1, this situation is found in 10 out of 

14 schools. The number of misplaced ID(s) ranges from 1 to 56. None of our 

respondents is found to have two or more nominees in the wrong-gender friend list. 

A second way in which partial edge missingness could arise was by a respondent 

reporting that a particular edge was in fact a romantic partner. In these 

circumstances, the Add Health administrators coded these edges anonymously for 

privacy reasons. We code these as missing (i.e., we know that an edge exists to 

someone of the appropriate gender, but not the identity of the alter).

3. Complete outgoing edge missingness (missing actors)5: Some respondents of the 

14 schools are found to take the wave 1 In-Home Survey and/or the wave 2 In-

Home Survey but never took the In-School Survey. Those respondents were 

included in the Add Health survey roster from the very beginning – despite missing 

(e.g. due to a sick day) the actual In-School Survey assessment. Using constant 

covariate data from later waves, we are able to recover personal information on 

respondents' gender and grade. As shown in Table 1, the proportion of missing 

actors ranges from 3% to 31%.

Overall, Table 1 shows that the degree of missingness in the Add Health data is quite high. 

Even leaving aside censoring, a large fraction of respondents in many schools either did not 

provide nominations (e.g., were absent) or provided nominations that could not be uniquely 

matched to individual alters. This raises significant difficulties for analyses requiring 

detailed network structure (or even simple properties such as in-degree). Nevertheless, there 

are principled means of accounting for missingness, to which we now turn.

2.3 Treatment of network data missingness

For each saturated school, friendship networks are generated according to directed binary 

relational choices. This choice structure can be represented by an adjacency matrix Y of 

dimension n by n, where n is the number of respondents in the school. If a respondent i 

nominated another respondent j as a friend, we code the edge variable as “1” (edge 

presence) otherwise it is coded as “0” (edge absence). Our matrix represents a directed 

network in which nomination choices are not necessarily reciprocated. For example, i can 

nominate j as a friend but j can choose to not nominate i as a friend (i.e., Yi,j ≠ Yj,i). 

4This is similar to item non-response defined by Huisman (2009), where data on particular ties are missing.
5This is similar to unit non-response defined by Huisman (2009), where actors are completely missing.
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Therefore the elements above and below the main diagonal of the sociomatrix may not be 

symmetric. The relationships of respondents to themselves, i.e., the main diagonal elements 

of the sociomatrix, are undefined.

Because this network was measured in such a way as to make degree constraints inherent to 

the elicitation process, we further treat our graph as degree constrained; specifically, the 

out-degree of each vertex with respect to the set of vertices within each gender is 

constrained to be not greater than five. This can be understood as defining missingness 

relative to the fully observed data – i.e., the data set that would have been observed if all 

respondents had completed the questionnaire as asked, in a way that validly identified all 

alters – rather than to the underlying social network. Although it is tempting to attempt 

inference to the latter, this requires additional assumptions regarding the effect of the 

censoring point on respondent behavior, as well as informant accuracy more generally 

(Butts, 2003). Lacking a firm basis for such assumptions, we here restrict ourselves to the 

problem of imputing the answers that would potentially have been obtained had there been 

no limitations due to off-roster nomination, non-response, and the like.

Given the above, we proceed by considering different sources of information available 

regarding nominated alters, and accounting for as much of this as possible within a 

combination of observed data and conditioning constraints on the unobserved edge 

variables. As a first step, we note that for respondents with no missing outgoing edges, their 

rows in the adjacency matrix are fully specified; both their outgoing nominations (edges, or 

1s) and potential alters not nominated (nulls, or 0s) are uniquely defined, and can be treated 

as fixed.

Second, for respondents with invalid or censored nominations (e.g., due to gender mismatch, 

off-roster nomination, or romantic tie) in a given gender category, we regard their row 

entries for potential alters of the specified gender (and, if applicable, off-roster status) other 

than those validly named to be uncertain (i.e., missing, or NAs). E.g., if respondent i has an 

invalid alter named in his or her female list, all elements in row i associated with females 

who were not validly named as alters are treated as NAs. Validly named alters are treated as 

1s (since we are certain that the ego in question named them). In the event that respondent i 

instead named an off-roster (but otherwise valid) alter in a his or her female list, only entries 

pertaining to off-roster females would be treated as NAs (since only this group is in 

question). In all cases, we record the number of incompletely identified alters named, by 

gender and roster status (where known). This information is used by our model when 

inferring where to place missing edges (as discussed below).

Finally, for respondents who did not respond to the survey, we treat their entire row of the 

adjacency matrix as missing (NAs). Note that such respondents may or may not be uniquely 

identified as alters by other egos (depending on roster status), and hence may have non-NA 

elements in their respective adjacency matrix columns.

The result of this process is an incomplete adjacency matrix whose i,j entries are: 0 if it is 

known that student i did not nominate student j; 1 if it is known that student i did nominate 

student j; and NA if it is not known whether student i “did nominate” (or, in some cases, 
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“would have nominated”) student j as a friend. We have also, for each student, the minimum 

and maximum number of nominations from him or her to: the set of all male students; the 

set of all female students; the set of all male off-roster students; and the set of all female off-

roster students. [These counts are inferred from the invalid and/or off-roster entries in each 

respondent's male and female nominee lists, and (for non-respondents) from the global male/

female out-degree constraint.] The edge variables that are coded as NAs are the portion of 

the adjacency matrix that the ERGM model will impute during the simulation portion of the 

process, subject to the group-specific out-degree constraints described above.

3. ERGM estimation and simulation process

By a combination of inference and simulation, we may employ model-based procedures to 

estimate uncertain edge states associated with missing data. Here, we pursue this within an 

ERGM-based framework.

A random graph model in ERGM form can be expressed as

(1)

where Y is the (random) adjacency matrix with state y, t is a vector of real-valued sufficient 

statistics, θ is a real-valued vector of parameters, X is a covariate set, and I  is an indicator 

for membership in the support ( ). In the case of missing data, we follow Handcock and 

Gile (2010) in constructing the observed data likelihood for the above model as

(2)

where yobs is the non-missing portion of y, and mis(yobs) is the set of all “completions” of 

the observed data (i.e., assignments of 1s and 0s to the NA portions of y) that satisfy the 

known minimum and maximum group-specific out-degree constraints. This is a valid 

likelihood (i.e., it correctly describes the probability of the observed data marginalizing 

across the unobserved data) under relatively general conditions, as described in detail by 

Handcock and Gile (2010). We employ this approach in the analyses that follow.

Maximum likelihood inference for θ within the above framework requires a complex 

MCMC-based algorithm; we employ the implementation of this method in the ergm 
(version 3.2.4) package (Hunter et al., 2008) of the statnet (Handcock et al., 2008; Goodreau 

et al., 2008) software suite. Support constraints were enforced via the attribute-specific 

degree bounding functionality also implemented within the package; as indicated above, this 

implies that we are modeling our observed data with respect to the set of all networks that 

could have been obtained by the Add Health design, given the numbers of students, 

covariates, and inherent features of the design (e.g., censoring). This approach is appropriate 

for imputing unobserved values given the administered questionnaire, our primary goal.

To impute the unobserved elements in our respective nomination networks, we must first 

model each network. Using the above approach, we estimate a series of five progressively 
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inclusive specifications of ERG models for each of the 14 schools. Model 1 contains only 

the edge count statistic (i.e., a homogeneous Bernoulli digraph with support constraints). 

Model 2 adds a mutuality/reciprocity effect. Model 3 further adds effects for the absolute 

difference in school grades (de facto age) and node mixing by gender. Model 4 further adds 

homophily effects for those in the same class(es), the same club(s), and the same sport-

team(s). Finally, model 5 includes a geometrically weighted edgewise shared partner term 

(gwesp)6 fixed at its optimal value (δopt)7 The models constrain maximum out-degree for 

each gender at five female and five male friends, with additional constraints as noted above 

for off-roster students as needed.

Assessing when an ERGM model has reached satisfactory convergence is an ongoing area 

of study, and we employ several different criteria that represent the current state of the art. 

First, the ergm package (Hunter et al., 2008) incorporates several internal convergence 

checks based on the adequacy of the importance sampling approximation used to obtain 

final estimates. Second, we assess whether convergence had occurred by using a heuristic 

proposed by Snijders (2002), calculated as , where źθ is the sample average of 

parameter values from m simulating graphs, zobs is the observed parameter values, and SDθ 

is the sample standard deviation of parameter values from m simulating graphs. Third, we 

employ a stricter overall maximum convergence ratio criterion that is suggested in the 

RSiena (R-based Simulation Investigation for Empirical Network Analysis) literature (see 

Ripley et al., 2015, page 57), calculated as . 

Values less than 0.25 are preferred.

For the twelve small schools, the models employed here converge within 2,000 iterations 

with the criteria of |tk| ≤ 0.1 and tconvmax≤ 0.25 satisfied. In the two large schools, 058 and 

077, many more iterations are needed (e.g., between 20,000 and 200,000), and the t-ratios 

for parameters rarely meet the threshold of 0.3 that Snijders (2002) describes as “fair” model 

fit.8 The other convergence criteria, however, are satisfied, and the models show no other 

signs of poor behavior; as we are unable to obtain further improvement through longer 

model runs, we retain these as the best available models for purposes of the present study.

After estimating the model parameters, we employ conditional ERGM simulation to impute 

missing edge states. In this case, missing edge variables (NAs) are imputed based on the 

model estimated with the observed data, with observed edges (1s) and nulls (0s) unaltered 

and all degree constraints based on the observed data enforced. Thus, rows corresponding to 

individuals with no missing out-edge information are retained precisely as they are in the 

observed data. For those with partially observed out-edge information, observed cells of yobs 

6We also estimated variants of model 5. One replaced the gwesp term with a measure of geometrically weighted in-degree 
(gwidegree). A second replaced the gwesp term with a measure of in-degree popularity. Our model with the gwesp term had lower 
AIC and BIC and larger log likelihood values than these alternative models. Models that included more than one of these three 
measures had convergence problems.
7The optimal value was determined by estimating a series of models with gwesp fixed from 0 to 1 with 0.1 increment at a step and 
locating the one with the smallest AIC and BIC and largest log-likelihood values.
8We note that the standard recommendations for these diagnostics are heuristics based on experience with fully observed models, and 
may not be applicable to models with substantial missing data; we are not aware of any formal results or simulation studies that 
examine this issue.
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are retained, while NA cells are simulated (based on the model) subject to the constraint that 

the known minimum/maximum numbers of ties from each individual to males and/or 

females on and/or off-roster are preserved. For those with no outgoing edge information, the 

simulation exploits information contained in the observed ties, the model parameters, and 

the base degree constraints (no more than five male and female nominations, respectively).

4. Held-Out Predictive Evaluation (HOPE) and its application to Add Health

How do we assess how well our imputation scheme is working? Although we cannot know 

the true values of ymis, we can potentially assess the quality of our imputation procedure by 

designating some of our observed edge variables as missing (thus holding them out), re-

estimating the model, and comparing the imputed edge states under the new model with the 

held out data. We refer to this approach as Held-Out Predictive Evaluation (HOPE).

The HOPE procedure is performed as follows. 1) We select some specified number, k, of 

observed edges (1s) and nulls (0s) from yobs and replace them with NAs to produce a 

modified yobsH. 2) Using the selected ERGM family, we estimate θH|yobsH. 3) We simulate 

D multiple draws from YmisH|θH,yobsH. The number of draws (D) can be determined by the 

researcher.9 4) Using the simulated draws, we estimate the predictive accuracy of the 

imputation procedure via the mean fraction of held-out 1s and 0s (jointly or respectively) 

that are correctly imputed. The estimates produced by HOPE provide evidence of the extent 

to which the imputation procedure is able (or unable) to reconstruct missing edge states 

within the graph. They can in this respect be viewed as a form of model adequacy check 

(albeit a fairly stringent one, since accuracy is assessed on a per-edge basis).

Given that missingness in Add Health arises through both incomplete information from a 

given respondent and complete non-response, we explore both cases directly. We begin with 

the case of partial missingness, and then proceed to non-response.

4.1 Situation 1: Partial edge missingness only

Situation 1 is the case in which there are partial missing edges. We generate this form of 

missing data, perform our imputation approach, and assess the results. First, 25 present 

edges (1s) and 25 absent edges (0s) observed during the In-School Survey are randomly 

selected and replaced as missing edges (NAs). Then we use five progressively inclusive 

specifications of ERG models to simulate those missing edges 10 times. We then compute 

the percentage of accurately reproduced present edges and absent edges for each individual 

school.

We first examine the accuracy of reproducing present edges (1s). As illustrated in Figure 1, 

there is considerable variance in the quality of the predictions across these models: the edge 

effect in model 1 provides a baseline for the ERGM simulation. The mutuality/reciprocity 

effect added in model 2 greatly increases the accuracy for most schools over the baseline 

model. Although model 3 (adding grade and gender effects) and model 4 (adding a 

9We simulated a total of 250 imputed networks for each model for each school. An R script for ERGM estimation and simulation is 
provided in the Appendix.
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homophily effect for classes, clubs, and sport-teams) do not provide noticeable 

improvement, the introduction of the gwesp term in model 5 improves the accuracy 

considerably. Thus, model 5 does the best job, with accuracy ranging from 10% in school 

077 (the largest school) to 70% in school 115 (the smallest school).

Turning to the accuracy of reproducing absent edges (0s), we see in Figure 2 that the model 

does quite well across all schools, with match rates typically greater than 90 percent. Even 

the baseline model's accuracy in reproducing absent edges is much higher than that of 

reproducing present edges (1s), which is unsurprising given the sparseness of the networks. 

Adding additional parameters sequentially from model 1 to model 5 does not substantially 

improve the predictions. Only School 115 seems to be exceptionally poor; given the very 

small size of the associated network (30 respondents), this may be because we are removing 

a relatively high proportion of the observed ties. Nonetheless, even in this school, model 5 is 

accurately reproducing 87% of the absent edges.

We next calculate the overall accuracy of the prediction as the percentage of ties accurately 

predicted (both present and absent edges). As shown in Table 2, the overall HOPE accuracy 

based on model 5 ranges from 55% in school 077 to 79% in school 088. The average 

accuracy across these schools is 73%. Note that these percentages are considerably higher 

than randomly assigning edges (i.e., 50 percent), even for the largest school 077.

In ancillary analyses, we modify the above analyses in two ways. First, instead of simulating 

the missing edges 10 times, we increase the replication count to 50 times. Second, we 

increased the number of present or absent edges set to missing from 25 to 100 each. In these 

subsidiary analyses, the accuracy of reproducing the edges remained approximately the 

same.

As a side note, given the differences in predictive accuracy across the 14 schools we briefly 

explore the question of whether we could explain these differences. This is accomplished by 

taking the results from model 5 – our best model for edge imputation – and estimating linear 

regression models in which the outcome variables are 1) the percentage correct observed 

edges (1s), and 2) the percentage correct absent edges (0s). As shown in Table 3, roster size 

alone explains 68% of variation in the predictive accuracy of present edges (1s), while 

network density alone explains 80% of variation in the predictive accuracy of nulls (0s).

4.2 Situation 2: Complete as well as partial edge missingness

In situation 2 we generate both partial and complete missing edges, and then perform 

imputations and assess the results. In this situation we again randomly set 25 present edges 

(1s) and 25 absent edges (0s) to missing as we did in situation 1. However, we also 

gradually add missing actors (from 0% to 30%) by randomly selecting respondents with no 

edge missingness and replacing all their out-going ties as missing edges (NAs). We then use 

model 5 – our best model for edge imputation in situation 1 – to reproduce the missing 

edges.

The accuracy of reproducing present edges (1s) across these various levels of complete 

missingness is displayed in Figure 3. As expected, increasing numbers of missing actors 
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decrease the accuracy of reproducing present edges. The top line in this figure matches the 

top line in Figure 2, and displays the case with no complete missingness (only partial edge 

missingness). For example, school 002 has 62% accuracy when there is no complete 

missingness, but this slides to 54% with 5% complete missingness, 54% with 10% complete 

missingness, and then to 53% and 50% when complete missingness rises to 20 or 30 percent, 

respectively. Notably, for the smallest school 115, even in this most stringent scenario in 

which 30% of the observations have complete missingness the accuracy for reproducing 

present edges is still as high as 62%. For the two largest schools 058 and 077, as the 

proportion of missing actors increases the accuracy for reproducing present edges falls even 

further. Thus, in general the ERGM-based estimation and simulation approach works better 

in reproducing present edges for small schools (with their relatively denser networks, i.e., 

with a network density of about 66 out of 1,000 on average) than for large schools (with 

sparse networks, i.e., with a network density of about 5 out of 1,000 for school 058 and 

about 1 out of 1,000 for school 077).

We next assess the impact of higher levels of complete missingness on the accuracy of 

reproducing absent edges, and as demonstrated in Figure 4 there are quite small 

degradations in accuracy. For most schools, the accuracy of reproducing absent edges 

remains above 90% even with as much as 30% complete missingness. The one minor 

exception is school 115 with the smallest roster size, but even here accuracy of reproducing 

absent ties only decreases from 87% to 84% when moving from 0% to 30% complete 

missingness.

Finally, we computed the overall accuracy for reproducing both present and absent edges for 

each of these complete missingness scenarios. As shown in Table 4, increasing the 

proportion of missing actors decreases the overall accuracy, as expected. In the most 

stringent scenario with 30% respondents having complete missingness, the overall accuracy 

ranges from 51 percent (the largest school 077) to 73 percent (the smallest school 115). 

Across all 14 schools the overall accuracy decreases from 73 percent to 64 percent on 

average between no complete missingness to 30 percent complete missingness.

Before concluding, we note that the predictive accuracy of existing edges (1s) was typically 

lowest for the larger schools, especially the largest school 077. There are several possible 

explanations for this. The most obvious is the fact that the difficulty of edge imputation 

necessarily increases with decreasing density. Specifically, for a network of density d, it 

follows immediately from Bayes's Theorem10 that the conditional likelihood ratio for the 

presence of an arbitrary edge (versus its absence) must be greater than (1-d)/d in order to 

obtain a predicted tie probability greater than 0.5. Thus, if a randomly chosen ego is tied to 

e.g. 1 in 1000 potential alters, then a 1000 to 1 conditional likelihood ratio is needed in order 

to reach even odds of a given ego/alter tie being present. This is a substantial amount of 

information, which in practice must come from a combination of covariate and edge 

dependence effects in the ERGM employed for imputation. While accurate edge imputation 

in large, sparse graphs is possible, increasingly informative models are required as density 

declines; otherwise, accuracy for the imputation of edges will fall with density. This base 

10For a binary hypothesis, the posterior odds are equal to the prior odds multiplied by the likelihood ratio.
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rate effect is a fundamental property of any classification task, and is not specific to ERGMs 

(or, indeed, to network data per se).

An alternative reason for poorer performance with large graphs could in principle be lower-

quality parameter estimates. Given that current software implementations of ERGMs require 

MCMC simulations to perform parameter estimation, fitting to large networks poses the 

challenge of running the underlying Markov chain algorithm sufficiently long to reach 

effective convergence. As noted above, we employ a variety of checks to assess 

convergence in the present case; while we do not regard it as likely, it is in principle possible 

that the models used here for the large schools suffered from lower-quality estimation, and 

that improved fitting techniques applied to the same data could yield better results. 

However, it is worth highlighting that when we employ more stringent criteria than those 

conventionally used by the (statnet) ERGM imputation in the smaller schools studied here, 

our predictive ability as assessed by the HOPE approach typically only improve 1 or 2%. In 

experimenting with alternative diagnostics and estimation parameters, we do not find 

predictive performance to be very sensitive to the approach taken; nevertheless, we note that 

the robustness of tasks such as imputation to choice of convergence criteria is a potentially 

fruitful target for further study. We also observe that predictive techniques such as HOPE 

provide a more direct approach to the evaluation of model performance than is readily 

available for assessing e.g. parameter estimates or standard errors.

5. Conclusion

The existence of missing data is a challenge for network researchers. We have addressed this 

issue here by using an ERGM estimation and simulation approach to impute network 

missing data. We distinguished between partial missingness (individual missing edges) and 

complete missingness (missing actors, and all their out-going edge information), and 

introduced practical treatments in each situation. We demonstrated the approach using data 

from 14 schools in the In-School Survey of Add Health. We also developed a validation 

method to assess this approach – the Held-Out Predictive Evaluation (HOPE) strategy. Our 

results using HOPE indicated that the ERGM approach does a satisfactory job of imputing 

data in the presence of network missingness for this commonly used dataset. Compared to 

the traditional approach of treating missing edges as null or simply truncating all the missing 

actors from network data, the ERGM estimation and simulation approach can serve as a 

better alternative.

We emphasize that this was a demonstration of ERGM-based network imputation using a 

specific dataset. Our goal was not to assess the imputation technique in a situation in which 

the true network is known (i.e., a Monte Carlo simulation) but rather to demonstrate how it 

works on a specific network dataset with considerable missing data challenges. Although the 

results were quite promising for the approach, there were nonetheless differences in the 

predictive ability across the 14 networks in the study. For this set of networks, we found that 

network size and density explained most of the difference in the ability of the ERGM 

framework to reproduce present or absent edges across networks. Although we are cautious 

in extrapolating this insight more generally, we do feel it is an important point to consider as 

the technique is further developed.
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In closing, we point out that the ERGM estimation and simulation approach could also be a 

useful supplement for longitudinal network analysis. For example, the RSiena model 

(Snijders et al., 2010b; Snijders, 2011) utilizes advanced methods in the MLE option which 

make it possible to deal with missing network data in later waves (see Huisman and 

Snijders, 2003; Huisman and Steglich, 2008; Snijders et al., 2010a), but for missing edges in 

the first wave it simply drops them or treats them as absent (see Ripley et al., 2015, page 

32). As Hipp et al. (2015) found, either of these approaches can yield biased estimates in 

RSiena models. Our cross-sectional imputation method can be used as a more principled 

way to bridge this gap.
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Appendix: R script for ERGM estimation and simulation (tested on ergm 

3.2.4)

R script for ERGM estimation

model1 <- ergm(net∼edges,constraints=∼bd(attribs=sexattr,maxout=maxout))

model2 <- ergm(net∼edges+mutual,constraints=∼bd(attribs=sexattr,maxout=maxout))

model3 <- ergm(net∼edges+mutual +absdiffcat(‘grade’)+nodemix(‘female’,base=1), 

constraints=∼bd(attribs=sexattr,maxout=maxout))

model4 <- ergm(net∼edges+mutual +absdiffcat(‘grade’)+nodemix(‘female’,base=1) 

+nodematch(class)+nodematch(clubs)+nodematch(sports), 

constraints=∼bd(attribs=sexattr,maxout=maxout))

model5 <- ergm(net∼edges+mutual+absdiffcat(‘grade’)+nodemix(‘female’,base=1) 

+nodematch(class)+nodematch(clubs)+nodematch(sports) +gwesp(δopt,fixed=T), 

constraints=∼bd(attribs=sexattr,maxout=maxout))

Application of convergence criterions (Model 5 as an example)

sf <- model5$sample-model5$sample.obs

t.k <- abs(apply(sf,2,mean))/apply(model5$sample,2,sd)

tconv.max <- sqrt(t(apply(sf,2,mean) %*% solve(as.matrix(cov(sf))) %*% 

apply(sf,2,mean)))

while (max(t.k)>0.1 | tconv.max>0.25) {

  par <- coef(model5)
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  model5 <- ergm(net∼edges+mutual+absdiffcat(‘grade’)

+nodemix(‘female’,base=1)

              +nodematch(class)+nodematch(clubs)+nodematch(sports)

              +gwesp(δopt,fixed=T),

              constraints=∼bd(attribs=sexattr,maxout=maxout),

              control=control.ergm(init=par,MCMLE.maxit=20000))

  sf <- model5$sample-model5$sample.obs

  t.k <- abs(apply(sf,2,mean)/apply(model5$sample,2,sd))

  tconv.max <- sqrt(t(apply(sf,2,mean) %*% solve(as.matrix(cov(sf))) %*% 

apply(sf,2,mean)))

}

R script for ERGM simulation (Model 5 as an example)

net.fit<-model5

net.sim5<-simulate(net.fit,

              constraints=∼observed

+bd(attribs=sexattr,minout=minout,maxout=maxout),

              nsim=250)

For more details about ERGM estimation and simulation terms and options, please see the 

online tutorial for ERGM version 3.2.4 by Handcock et al. (2015) at http://cran.r-

project.org/web/packages/ergm/ergm.pdf.
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Highlights

• We use an ERGM-based imputation approach to handle complex network data 

missingness

• We employ multiple criteria to check the ERG model convergence

• We develop a Held-Out Predictive Evaluation (HOPE) strategy to assess this 

approach

• We provide possible explanations for differences in recovery rates across 

schools

• Results suggest this approach has advantages in dealing with missing data 

challenge
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Figure 1. Accuracy of reproducing present edges (1s) through ERGM for each school
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Figure 2. Accuracy of reproducing absent edges (0s) through ERGM for each school
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Figure 3. Accuracy of reproducing present edges (1s) with additional missing actors
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Figure 4. Accuracy of reproducing absent edges (0s) with additional missing actors
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Table 3
Linear regression analysis of predictive accuracy on network size and density

Accuracy (%) of present edges (1s) Accuracy (%) of nulls (0s)

Model 1 beta(s.e.) Model 2 beta(s.e.) Model 3 beta(s.e.) Model 4 beta(s.e.)

Roster size -0.02*** (0.00) -0.02** (0.00) 0.00 (0.00)

Network density 48.97 (38.07) -45.41*** (6.62) -40.81*** (6.65)

Constant 56.81*** (2.57) 53.34*** (3.68) 97.96*** (0.56) 97.28*** (0.64)

R2 0.68 0.72 0.80 0.84

N 14 14 14 14

Notes:

*
two-sided p < 0.05;

**
two-sided p < 0.01;

***
two-sided p < 0.001.

The correlation coefficient between roster size and network density is -0.39.
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