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Abstract

Revealing biological networks is one key objective in systems biology. With microarrays,
researchers now routinely measure expression profiles at the genome level under various
conditions, and, such data may be utilized to statistically infer gene regulation networks. Gaussian
graphical models (GGMs) have proven useful for this purpose by modeling the Markovian
dependence among genes. However, a single GGM may not be adequate to describe the
potentially differing networks across various conditions, and hence it is more natural to infer
multiple GGMs from such data. In the present study, we propose a class of nonconvex penalty
functions aiming at the estimation of multiple GGMs with a flexible joint sparsity constraint. We
illustrate the property of our proposed nonconvex penalty functions by simulation study. We then
apply the method to a gene expression data set from the GenCord Project, and show that our
method can identify prominent pathways across different conditions.
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1 Introduction

Recent advances in high-throughput technology make it possible to simultaneously measure
tens of thousands of molecular components. Researchers now routinely collect expression
profiles at the genome level under various conditions and infer gene regulation networks by
analyzing these datasets with various statistical methods such as Bayesian networks,
relevance networks, and Gaussian graphical models (GGMs). Among these methods, we
focus on the GGMs, because they have proven among the best in inferring conditional
dependence (Markov dependence) networks (Werhli et al., 2006; Soranzo et al., 2007).

When the datasets from multiple conditions are available, it is important to improve the
power of the study by modeling all the data so as to effectively accommodate characteristics
of the datasets. One characteristic that we incorporate in our approach is joint sparsity,
which describes the fact that the number of regulations in a biological network is far less
than that of a fully connected network, and this sparsity is preserved across multiple
conditions. For example, the regulations curated in the KEGG pathway database have tree
structures and the established connections among genes only represent a very small fraction
of all possible connections.
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The joint sparsity principle has been utilized in other multiple GGM approaches with
various penalty functions. Chiquet et al. (2009) proposed to use a group lasso penalty, but
their approach does not allow the network structure change across conditions. Later, Guo et
al. (2011) proposed a group bridge penalization, and it indeed produces network structures
that vary across conditions. Hence, the group bridge penalization is preferred in case of
estimating multiple gene regulation networks with datasets from multiple tissues/conditions.
More recently, Danaher et al. (2012) proposed a joint graphical lasso approach, where they
used various 4 regularization methods for promoting graph similarities. The formulation is
convex and can be useful for very high-dimensional problems.

Among these previous approaches, we find that Guo et al. (2011)’s approach can be
extended to a wider class of penalty functions, which consists of nonconvex functions. In
fact, our proposed class of noncovex penalty functions gives a flexibility in controlling the
level of joint sparsity by the choice of the penalty function. Since the level of joint sparsity
among multiple biological networks might be much higher (or lower) than what is specified
in Guo et al. (2011)’s approach, the broader class of penalty functions in our approach can
gain power by putting more (or less) weights on the common network structures.

The rest of this article is organized as follows: In Section 2, we provide a detailed
description of our joint estimation procedure with nonconvex penalty functions and show
how the level of joint sparsity can be controlled through these penalty functions. We also
present the consistency and sparsistency results of the estimate in this section. In Section 3,
we show the performance of the methods under various scenarios via simulation, and then in
Section 4, we apply our approach to the microarray dataset from the GenCord project
(Dimas et al., 2009), which reveals prominent pathways across different cell types in
umbilical cords. A brief conclusion follows in Section 5.

2 Estimation of multiple Gaussian graphical models with joint sparsity

In this section, we first review GGMs briefly and then formulate multiple GGMs with joint
sparsity that is achieved by using a nonconvex penalty function.

2.1 Brief review of GGMs

A graphical model encodes conditional independence relationships among multiple random
variables, Xy, ..., Xp, by using a graph ¢ = (T', E), where T" is an index set for vertices and E
is a subset of " x I" for edges. Under the graphical model, a pair of random variables X; and
X j are conditionally independent given all the rest if and only if there is no edge between
vertices i and j on the graph. Inferring conditional relationships among random variables is
not a simple task, because it involves investigation of the joint density factorization.
However, if X = (Xy, ..., Xp)’ is assumed to follow a multivariate normal distribution N(O,
1), where Q is the inverse covariance matrix and u’ denote the transpose of a vector u,
such conditional independence relationships can be directly read from the zero elements of
€ (Lauritzen, 1996). Thus, «;j = 0 if and only if X; and X; are conditionally independent
given all the other variables, where jj is the (i, j)th element of 2. Because of this property,
the network inference problem is considered as a sparse precision matrix estimation problem
under GGMs. The sparse GGM estimation has been extensively studied recently including
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Meinshausen and Buhlmann (2006); Yuan and Lin (2007); Peng et al. (2009); Lam and Fan
(2009); and Guo et al. (2011).

There are non-likelihood-based approaches including graphical Dantzig selector (Yuan,
2010) and CLIME (Cai et al., 2011). The graphical Dantzig selector improves the pseudo
likelihood approach of Meinshausen and Buhlmann (2006). CLIME tries to minimize |71 -
S, instead of the negative log likelihood, where Sis the sample covariance matrix and |A|
is a matrix max norm for a matrix A. It has been shown that both approaches perform well
computationally as well as asymptotically. It is possible that one can apply a joint sparsity
constraint under various loss functions. However, we do not pursue these approaches in this
manuscript, since we are interested in improving the regularization in order to achieve
flexible joint sparsity.

2.2 Nonconvex penalty functions for joint sparsity

We consider multiple GGMs across T conditions. Specifically, we assume that a p
dimensional random vector Xti ~ Np(O,(Qt)‘l) independently, fori=1, ..., nfandt=1, ...,
T. The negative log likelihood can be written as

T
LR} 21) =) 5 (tr(S'Q") ~logdet("),

t=1

where S'and Qt are sample covariance and precision matrices for the tth condition and tr(A)
and det(A) denote trace and determinant of a matrix A, respectively.

Motivated by the property that the number of edges in a biological network is far less than
that of a fully connected network (e.g. a pathway from KEGG database is often represented
as a tree which has p — 1 edges for p nodes) and that the sparse structure tends to be
preserved across multiple conditions, we attempt to improve the accuracy of GGM
estimation by employing joint sparsity regularization. Such regularization is achieved by
introducing sparsity into the precision matrix through nonconvex penalty functions. The
penalized negative log likelihood (PL) is defined as follows:

T
PL{Q})=L{Q Y)Y f; (le;,ﬂ) _—

Y —
grit o NEL

where w;jf is the (j, j")th element of Q and f; is a nonconvex penalty function. We consider
the following three nonconvex penalty functions:

1. f(x)=xvforo<v<1
fa(z)=(log(|z|)—loge+1)I(|z| >e)+ 12 I(jz| <e)
3. f300) = (X V+ vel ™) I > &) = (1 = VIX|e V(x| < &) for v> 1.

Here, ¢is a small positive constant. The f; penalty function has been used in group bridge
estimation in a regression context (Huang et al., 2009). The f, penalty function is a truncated
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log function, and f3 is a truncated inverse polynomial in which truncation occurs when |x| < ¢
to avoid infinity. We remark that the log penalty function has been used by others including
Sweetkind-Singer (2004) and Mazumder et al. (2011) in different contexts.

The joint estimation of multiple GGMs by using a nonconvex penalty function is not new, as
Guo et al. (2011) used the penalty function of Vz for the purpose. They showed that the use
of V= function is equivalent to the hierarchical penalization of common and condition-
specific regularization. In their work, the common structure was introduced to represent an
edge set that is the union of all individual edge sets, and it was denoted as a p x p matrix ©.

T
They specifically set ¢ j to be proportional to \/ Zt:ﬂw;j’ |, where g,y is the (j, j)th

element of ©. We found that the joint sparsity regularization can be achieved similarly with
functions other than the square root function, which is shown in the following Proposition 1.

st T L . “
Proposition 1—If {Qt}t:1 is a local minimizer of PLi({Qt};‘FII), there exists © such that

T o
({Qt}tzl, ©) is a local minimizer of
ini({ﬂt}til, ©) subjecttod; » >0, for1 < j, i <p ©
where PL;({Q'},_,, ©) is defined as follows:

PL,({Q%)_,0)=L({Q},_)) (Zgz i ZIwHHZ”)a

J#)

L g1 (m):gg%, and A= 'EV_V(]_— V) -1
& epl-n)  pu
()= : 0<z<lLiandi=7

3' V.
g (@—{ S el a) T 2> (1)
()

G 0<z< (v-1)et—; and A=z

Here, 7> 0 is a tuning parameter for 7.

Conversely, if ( {Qt}thl,@fis a local minimizer of (2), {Qt}thl is a local minimizer of
T
PLi({Qt}t:1)'

The proof is given in Appendix. In the proposition, (91}/(> 0) is interpreted as a common
structure, and defined by the minimizer of the objective function (2). Hence, each
nonconvex function yields a different form of 9“/ In fact, 6}1 is proportional to

Tost oy T s e vE :
Qo 1ot ) Slog(d o 1@ ) and\ T Tt 07 ), for functions fy, f, and f,
t=1""J.Jj t=1""J,J t=11", 3
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. T .t . . . .
respectively, when Z t:1|wj,j/| >€, These are increasing functions with respect to
T .t . .
> _,_,|% +Iwith varying curvatures.

From the proposition, one can find that our proposed approach regularizes the common and
condition-specific structures hierarchically with two characteristics. First, the common edge
selection is guided by the choice of nonconvex function. As discussed in the previous
paragraph, 91.}’ is differently defined depending on the type of the nonconvex function,
where f3 enforces the joint sparsity most strongly, followed by f, and f;. Second, condition-
specific edge selection is guided by the weight function gi(q,}/). Since gj is a monotone
decreasing function with respect to 91} an edge with a small common structure is penalized
more heavily than an edge with a large common structure. Thus, the proposition shows that
our approach achieves the joint regularization via the use of a nonconvex penalty function
and has flexibility of controlling the balance between common and condition-specific edge
selection via the choice of the nonconvex function.

2.3 Algorithm

In this subsection, we describe an algorithm that uses the local linear approximation to find a
solution of (1). It has been shown that the minimizer of (1) with the NG penalty function can
be found by the local linear approximation (Zou and Li, 2008), which was also used in Guo
etal. (2011). The penalty function can be approximated as

¢ » ~t ' ~t t ~t .
fi(zj;tj/‘wjdl‘) ~ fi(zj;aj"“"m/'”zﬁj’fi(Zﬁj/'”j,j’W'“’ja"_‘“’ja")- By extracting

terms related to the <, we get the computational algorithm as follows:

0,7

1. Initialize Q‘Afor all1<t<T.

2. Update offorall1<t<T by solving

- (.dt ,/|
argmi 2 (tr(StQt —log{det(Q")})+\ o
0y

T |~t N7’
j#j/ (zt:l ‘w;"j/ |)

using a glasso, where @;7]-/, is the estimate from the previous iteration and v> 0, A =

Aforfyand A= |1 - 4 for f; and fs.
3. Repeat step 2 until convergence is achieved.

In the algorithm, vis the same as the one used in (1) for penalty functions f; and f3, and vis
set to be 1 for penalty function f,. Specifically, the penalty function f{, also known as a
bridge penalty, considers 0 < v< 1; the penalty function f, corresponds to v=1; and the
penalty function f3 corresponds v> 1. Thus, these three penalty functions comprise the
continuum of the iteratively reweighted graphical lasso with v> 0.

Our algorithm only guarantees to yield a local solution, and thus the choice of the initial
value is important to get an appropriate estimate. When n = p, one can use (St + 81)~1 as an
initial estimate, where §= 0 is chosen to be a small constant to avoid singularity. However,
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when n < p, this form of the initial estimate does not perform well. In this case, one can use
the solution of separate GGM approaches with an 4 regularization, because in high-
dimensional estimation, a reasonable estimate can be obtained by using a sparsity
regularization.

The tuning parameter, A, can be selected by minimizing the approximation of Bayesian
information criterion (aBIC) as in Yuan and Lin (2007). The aBIC is defined by

aBIC(A)=) _ {—logdet(ﬂt(A))-l—tr(StQt()\))Jerft} ,

Tt

where {Qt()\)}thl are the minimizer of (1) with a tuning parameter A, and

card{(j, j ):j < jlac?{?—,j/ (A) # 0} with card representing the cardinality of a finite set. We
remark that d f; is a heuristic degrees of freedom and hence the proposed aBIC is an
approximation of the original BIC criterion.

2.4 Consistency and Sparsistency

In this subsection, we show that the estimate from the formulation (1) above achieves
consistency and sparsistency. The sparsistency, however, is limited in that it only finds a
group structure, rather than individual structures.

Denote E:={(j,j )/ # j Q2 ; » # 0} to be the set of indices of all nonzero off-diagonal
elements inQf, E=Eq U ... UEr, g = |E{ and q; = |Ey|, where Q is a true precision matrix.

We assume the following regularity conditions as in Guo et al. (2011):

1. There exist constants & and & such that forallp=>land1<t<T,

0<& <¢’min(96) < ¢maz(96)<§2<ooa

where gmin(A) and gmax(A) represent the minimal and maximal eigenvalues of a
matrix A.

2. There exists a constant &; > 0 such that

min min \Qé“
s

1<t=<T(j,5")eB,

Theorem 1—Under regularity conditions 1 and 2, when +a)doe) =o(1) and

Aq (/g2 < X < Ay \/(14p/q) ez, there exists a local minimizer of the objective function

iHQt_QtH -0 (p+q)10gp
(1), such that = Ols—2 n .
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Here ||A||r represents the Frobenius norm of a matrix A.

Theorem 2—Under all of the assumptions in Theorem 1, and the assumptions of

T  at 2
>, 1 =% =0, (1), where 73, — 0 and | /kesz - /-=0( ), the local minimizer of the
objective function (1) satisfies that (a) @;]»/20 forall 1<t<T forany (j, /) € ECand (b)

QEJ # 0 for some 1 <t< T for any (j, j’) € E with probability tending to 1. Here ||A||
represents the operator norm of a matrix A.

From Theorem 2, we find that the sparsistency holds only at the group level, meaning that it
is able to declare edges that do not appear in any condition, but that the sparsistency is not
guaranteed to hold at the condition-specific level. In order to achieve sparsistency at the
condition-specific level, a separate GGM estimation with a nonconvex penalty function for
each condition should be used. We further find that consistency and sparsistency can be
achieved simultaneously in very limited scenarios, which was discussed in Guo et al. (2011).
It is because 1 needs to be bounded both below and above for the consistency, but A needs to
be bounded below only for the sparsistency. These bounds can be matched, when

Y BEL A /=0 < vV m) Due to the norm relationship of a p x p matrix

A (All./vp < [|[A]| < [|A]],), we have that 73, = O((p+q) log p/n) in the worst case
scenario and 7, = O((1+qg/p) log p/n) in the best case scenario. Hence, g should be O(1) in
the worst case and g can be O(p) in the best case. If Theorem 1 is improved to show the
operator norm consistency, the inconvenient consistency condition of Theorem 2 can be
removed.

3 Simulation Study

3.1 Performance as function of tuning parameter

An incidence matrix with a scale-free network structure is generated using the Barabasi-
Albert algorithm (Barabasi and Albert, 1999). We start from six edges, and add one edge at
each step. We first generate shared edges and then, for each condition, we add randomly
selected 0.1M edges as condition-specific edges, where M is the total number of edges in the
shared structure. The total number of nodes in a graph, p, is set to be 500, and we consider 5
conditions (T = 5). Further, we set the sample size for each condition (n) to be 150.

We generate precision matrices by setting the nonzero elements to values that are sampled
from Unif([-1, -0.5] U [0.5, 1]). We then set the diagonal elements to (1.5 Sjzj |aj jl). In this
way, the resulting Q! may not be positive definite, and thus we repeat this precision matrix
generation process until Q! becomes a positive definite matrix. Due to the scale-free
structure, some diagonal elements are much larger than the others. We thus adjust the
precision matrices as in Danaher et al. (2012) by replacing the nonzero elements of Qt with
those of Qf, where Qf = (Dt_llzszt_llz)‘l; 5 =0.60 " +0.4D"; and Dt is the diagonal
matrix whose (i, i)th elements is the (i, i)th element of Qt_l. Finally, the p dimensional
random vectors are simulated from N(O, Qt_l). All of the simulation results are based on 100
replicates.
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We use v=0.5 for f1; v=1for fy; and v= 2 for f3 penalty function. We compare the
performance of our proposed nonconvex penalty approaches to that of a single global GGM
and that of multiple GGMs separately, as well as that of Danaher et al. (2012)’s GGL
approach. For the GGL approach, we reparametrize the tuning parameters as in the

simulation study of Danaher et al. (2012), where w, =\, +-1-A; and wy=LA9/(A1+LA9)
Throughout the simulation study, we set £= 1.0 x 1078, and thr = 0.1 for glasso algorithm in
our approach. The initial estimate of Qt was obtained by applying glasso algorithm with

=m0, 20|80 separately.

When we estimate a single global GGM and multiple separate GGMs, we consider the
following objective functions PLg and PLg, respectively:

PL (@)=L, (3tr(S'Q)—logdet(R)) +A 51 f (| ;)
PL(Q)=3(tx(S'Q")—logdet(Q)+A T, fo (! [}

fort=1, ..., T. The nonconvex penalty function is used for promoting model selection
consistency.

A part of criteria to compare the methods are as follows:

Cl  #of falsely declared edges at 1

T
> “card{(i, j):i>j, wf j=0and &'(X), ; # 0},
t=1

where, card(A) for a set A represents the cardinality of the set A.

C2  #of correctly declared edges at A

T
> card{(i, j):i>j,w!; # 0and &'(N), ; # 0}.
t=1

C3  # of falsely declared edges in a combined graph at A:

card{(i,j):i>j;wf)j:0 forallt=1,... ,T;andézt()\)w # 0forsomet,1 <¢ < T}

C4  # of correctly declared edges in a combined graph at A

card{(i,j):i>j;wij # Oforsomet,1 <t < T;and@t()\)iﬁj # Oforsomel <t < T}

C5  Relative squared distance (RSD) at A:
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2

1 t At 2 t
fZIIQ =N ,./197
t=1

The simulation study shows that our proposed method performs similarly to the GGL in
terms of edge selection accuracy (Figure 1 (a)). Our approach and GGL perform better than
the approach of finding a single global GGM or separate multiple GGMs. This trend stays
the same, when all methods are compared in terms of finding non-edges across all
conditions (common zeros) (Figure 1 (b)). When the methods are compared in terms of
timing (Figure 1(c)), our approach starts to show benefit when the estimated graphs become
dense. In this simulation, the total number of possible edges was 623,750, and the true
number of edges was 8090. When the estimated graph size is greater than 5590, which is a
reasonable range of the estimated graph size, our approach is faster than GGL. Finally, when
the relative squared distances are compared (Figure 1 (d)), our approach shows the best
performance. As shown in subsection 2.4, our approach has consistency in both estimation
and model selection, which is reflected in this result. The simulation study suggests that our
proposed approach performs very well in terms of model selection, timing, and estimation.

Additionally, the simulation study shows that the use of the extended class of nonconvex
function gives the flexibility of controlling the balance of common and condition specific
edges. In current scenario, the f3, v= 2 penalty function performs the best by enforcing
common structures.

3.2 Performance as a function of n,pand T

In this subsection, we compare three different nonconvex functions (f;, v=0.5; f, v=1; f3,
v=2) under various settings of n, p and T. The datasets are simulated as in the previous
subsection 3.1, and the results are based on 100 replicates.

The tuning parameter 1 is chosen by using the aBIC criterion. Table 3 shows that when the
number of condition is large (T = 5), the f3, v= 2 penalty function performs the best. When
T =2, the fy, v=1 penalty performs the best in any combination of n and p. Across all
simulations, the f,, v=1 penalty function performs better than the f;, v= 0.5 penalty
function.

3.3 Discussion on penalty function selection

One can select an appropriate type of penalty function by adopting a tuning criterion. This
requires two-way tuning for the regularization parameter A and the type of nonconvex
function (equivalently, the choice of v), which has been adopted in the adaptive lasso (Zou,
2006). However, it is quite challenging to find an optimal tuning parameter in high-
dimensional problems with low sample sizes, which often occur in many genomic data
analyses. Based on our simulation studies, we find that imposing a stronger level of sparsity
generally improves the performance under this setting with more benefit of using f, over f;
than that of using f3 over f,. We thus recommend to use the f, penalty function, when it is
challenging to use the two-way tuning in case of high-dimensional and low sample size
problems.
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4 Real data analysis

We apply the proposed joint estimation of multiple GGMs with a nonconvex penalty
function to a gene expression dataset. It has been suggested that gene regulations differ
among conditions due to differential use of the regulatory elements of genes, and
understanding this differential regulation is an interesting scientific problem. One such study
was done by Dimas et al. (2009), in which gene expressions were measured from three cell
types, primary fibroblasts, Epstein-Barr virus (EBV)-immortalized B-cells, and T-cells of 85
individuals participating in the GenCord project. We remark that these three cell types were
extracted from umbilical cords, where the fibroblasts were obtained by culturing finely cut
cord tissue, and B-cells from cord blood with EBV-immortalization; and T-cells from cord
blood with PHA stimulation (Dimas et al., 2009).

Since each individual contributed the three cell types, and thus the three sets of datasets are
not independent to each other. This aspect is not properly addressed in the current analysis,
which is our future work. However, the possible similarity of graphs due to the dependence
can be reflected with the joint sparsity regularization. The dataset contains mMRNA levels
that are quantified with 48,804 probes with the Illumina WG-6 v3 expression array. We
convert the probe level data to the gene level data by taking the average of the probes
mapped to a gene. We then take the log transformation to make the data more normally
distributed, and then use a total of 17,945 autosomal RefSeq genes’ expression for inferring
network of genes.

Due to the limitation of the sample size (n{ = n, = n3 = 85), we partition genes into smaller
groups by using pathway information. We extract the information of 528 pathways from the
KEGG database. Among these, we separately analyze 277 pathways that contain at least 3
and at most 29 genes in our dataset. We apply our approach with the f,, v= 1 penalty
function and select Zﬂ/ﬁt from a total of 300 possible values equally spaced in logyq scale
between 107° and 1. When the ratio of the largest to the smallest eigen value of St is smaller
than or equal to 1000, we use (S)~1 as the initial estimate. Otherwise, we use (S' + élp)‘l as

2
1%

the initial estimate, where 6= max (2 |S*[|, 2 Zm.|sf,j|)- This choice was made in

order to reflect the differing size and signal strength of the networks.

In our analysis, we extracted edge information from the database, and treated this as a true
network structure. We considered this true structure as a collection of condition-specific
edges without the condition information, because the database is curated by collecting the
parts of gene regulations over various conditions. If an approach can preserve the tissue-
specificity, it would capture the true edges more accurately than the approaches that capture
only the common ones.

Rather than handpicking one of the 277 pathways for the presentation, we summarize our
results using the true network structure. We compute the area under the curve (AUC) of
each receiver operating curve (ROC) for each pathway. The AUC is used in order to avoid
tuning parameter selection. Therefore, we evaluate three AUC values for each pathway
corresponding to the three cell types. We then sort the pathways based on their AUC values,
and list the pathways that have AUC values larger than 0.8 in Table 1. We compared our
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approach to the global and the separate approaches. The detailed comparison of the JGGM
and the separate approaches is in Supplementary Materials. The pathways that have AUC
values of 1 tend to have small graphs. However, even for these small graphs, the other
methods do not always have the AUC values of 1, suggesting that the AUCs of 1 are not just
automatic results from the nature of tiny graphs.

Our results show that the identified pathways from these three distinct cell types are very
similar to each other. Notably, the identified pathways are mostly relevant to immune
responses, where the role of PPARgamma in immune response regulation via dendritic cell
control and lipid metabolism was demonstrated in the literature (Szatmari et al., 2007;
Wieser et al., 2008). Considering that the fibroblast cells are quite different from the other
cells, this result might need some more validation. The possible explanation could be the
fact that these cells were all taken from the umbilical cords. Also, a similar conclusion was
reached by Flutre et al. (2013), when they analyzed the same dataset for finding expression
quantitative loci (eQTL). They found that most of genetical genomic controls are not cell-
type specific, suggesting that these three cell types might function similarly in the umbilical
cords.

There are few pathways that were selected in a specific cell type; retinol metabolism
pathway appears in the top list only in EBV-transformed B-cells, where it is known that
retinol is essential for growth of activated human B-cells (Buck et al., 1990); Alzheimer’s
disease pathway appears only in the fibroblasts cells; and Cycling of Ran in
nucleocytoplasmic pathway appears only in the activated T-cells, where Ras gene is an
oncogene that is related to abnormal cell proliferation (Xia et al., 2008).

Figure 2 shows the estimated GGMs with genes consisting of an embryonic stem cell
pathway. We set Zﬂjﬁt to be 2.4477x10™4 for the separate approach and 1.8738x10~° for our
joint analysis by using the aBIC criterion. We can confirm that a joint approach is able to
produce different graphs for the three different cells. The graphs of the EBV-transformed B-
cells and the T-cells are the same, but the graph of fibroblasts contains few more edges,
which is consistent with the fact that the B-cells and T-cells are more close to each other
than to the fibroblasts cells.

5 Conclusion

With the advancement of biological network annotations and network theory developments,
researchers now attempt to use network information to decipher biological processes.
Although useful, the network annotation itself is not complete, and much can be learned
through inferring a network structure from multiple sources of data. In this paper, we
propose to infer GGMs from gene expression data with a nonconvex penalty function for
joint sparsity in order to effectively estimate multiple network structures.

We have shown the consistency and sparsistency of the proposed approach and have found
that the sparsistency holds only for group-level selection. Nonetheless, this limitation is not
critical because the sample size is often not large enough to invoke such theoretical results in
a real application. Our simulation study showed that the proposed nonconvex function
performs well by capitalizing the shared sparsity across different conditions.
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We have applied the proposed approach to analyze a gene expression dataset from the
GenCord project. We utilized the KEGG pathway information to facilitate our analysis and
interpretation. We found that the pathways related to immune responses were pronounced in
our study of umbilical cord tissues. We remark that the conclusion is based only on AUC
values that do not account for associated random errors, and finding a measure that leads to
a proper graph enrichment study will be our future work.

Although we suggested that the proposed nonconvex objective function can be optimized
via an iteratively reweighted adaptive lasso algorithm, we did not prove that this solution is
a global one. This is a general problem in most regularization approaches that use
nonconvex penalty functions, and we leave it as an important problem for future research.
Our future work further includes characterizing uncertainties in inferred network structures.
We could use the bootstrap approach, but we would like to find the approximate variance of
our proposed estimator for computational efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Proof of Proposition 1

Proof 1

The proof for the f; penalty function is provided in Huang et al. (2009).

We start to prove the proposition for the case of the f, penalty function. When
T

thl\w;ﬂ >¢€, one can find that the solution of the derivative equation,

= T T T
898 PL({Qt}t:p 9):0, is Qj’j/:1—10g(€)+10g(zt:1‘W;j/ D Hence, Zt:1|w§,j/| >€1is

.
753

equivalent to 9],} >1. Pluggin this into ﬁ({ﬂt};, ©) yields a profiled penalized likelihood
— T T T
of PPLUQ} ) =L{Q} )47 (log(Y, | »[)—loge+1) By taking A = 7, one

can find that pPL({Q'}1_ )=PL{Q'}L,).

T t T T t ..
When Dol < ¢, the penalty form of PL({Qt}tzl) becomes D o} This is
equivalent to not assuming a common structure, which can be achieved by setting g(4 ) to

be a constant function 1 when 0 < (915/ <1.
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We then prove the proposition for the case of the f3 penalty function by using the same

W T 1—v T
principle. We find that the solution ¢; y=ve' ™" —(}_._ v, ) . Hence,»_,_ |«} /| >¢
is equivalent to ¢ y > (1)L, This yields a profiled likelihood of

= T T v T —v T .
pPL{Q'},_,, ):L({Qt}tzl)"‘fzj#j/ (ve! _Zt:1|wj,j' ') =PL{Q"},_,) by taking
A=T

SR

Lemma 1

If either x or y is greater than (> 0), then [x@ - y9 A=< |x - y|, for 0 < @ < 1.

Proof 2

Without loss of generality, we can assume that x > y.

When x> 7>,

(ma_ya)q_lfa S x_yaTlfoc
< z—y.
Whenx >y > 1,
1 1
TS yl—,a(ﬂf,y) < al(@y).

Proof of Theorem 1
Proof 3

Theorem 1 can be proved with a slight extension to the proof of Guo et al. (2011), which is
similar to the proof of Theorem 1 of Rothman et al. (2008).

Denote the objective function 1 as Q(£2), where Q:{Qt}thl and we write the true precision
matrices as Q,={Q{}. We would like to show Q(£2) has the local minimum near Qp.

Specifically, we would like to show that P(Q(A) =Q(Qg + A) — Q(Qp) > 0) converges to 1,
T
when A € 0 A, where 0/ ={A:y . [|A"]|, =M.}, and At=Q' —Qf, and M is a positive

constant and r,, = , / (palosr,

We will use the following notation: for a matrix M = [m; yloxp, IM|1 = X yImj yl, M™ is a
diagonal matrix with the same diagonal as M, M~ =M - M™, and Mg is M with all elements
outside an index set Sreplaced by zeros. Also, vec(M) for the vectorized form of M, and ®
for the Kronecker product of two matrices.

Asin Guo et al. (2011), Q is the sum of the following components:
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L= ET: trace((St—3"4)AF)

'@ (Qh+vAl) tdvA

)

B3 A [1-0) @+ont)

T
I=A > fi(X (8

(G, )eme t=1

T T
(Ghee =17 =17
The bound for the likelihood part can be found in Guo et al. (2011), where

T R
MHSGW%ZMH+@¢@@gmwu
t=1 t=

I > 72\\AtIIF,

for some constants C4 and C, with probability tending to 1.

When (p + g)(log p)/n is small,

I3 > /\Z|AEP .
t=1

due to the concavity of the penalty functions.

Also,

T

I4§)\ Z f12|wjj/ zz ]])

J#j(Gg)er! =1

For the f; function, by using Lemma 1,

T T
< A to_ t
I4 =~ 5; ) Z ‘t;|wJ’Jl| tg‘woj’j/H

325’ (5,5 )ER

A I t t
< = w —W
=& 2 2. | 3d’ j,j/‘

t=1jzj":(j5,5' )GE

<% vaxla,

T
A +q)!
< g VA
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For the functions f, and f3,

T " T .
Ll <2 B () D= fil S ol D)

3#i":(,i")EE
’ T T
<A Y L&A S el i —wol
j#5":(j.5' )ER t=1 =1 & ;
' T
<A XY f(&/2)X |wt< 4/—w0t. ./|f0r sufficiently small r,,,
t=1

J#5 (.5 )ER

S A Z (55/2)’/ Z ‘w ,/_ /|

i#5' (5.5 )ER

1/ A
< =5 fznAtH

v—1)A (p+9)lo
< epr VI ngHNHFa

05,4

’
where v>1and f; (a) denotes 230 | p—g

The second inequality comes from the application of the mean value theorem and the fact

. . - t
that ' is decreasing function as well as [<o; /| >&s.

Combining all the results,

Q(A) = —|I|+ 1+ I—|14]

S T _ _ 5 T 9 o T _ o T
> —Cy /B S (AL | HAL|)—Co B AT | 4 gz AT 7480 22 57 A | — St / relloe 25 a0,
T T T
o) _ o, 2 o,
> (A —C1) \/i‘ PZIN |, —(C1+C2) ”*‘“ngIINH&éZIINH,——g(&,) |/ dose ZIINII
_M(zmtu —(C1+Cy \/<p+q>1°gp2|| I, — oAy / Erelloer) 1°gp>2||At|| for Ay>C

A/g(€3)
(ZII AN, ) T Ccet ;
@ ST A,/ eratem)

where g(&) = & for f; penalty function, and g(&) = (v~1)(&2)~" for f, and f3 penalty
functions.

Thus, for sufficiently large M, we have Q(~A) >0forany A€o A.
Proof of Theorem 2
Proof 4
Define En = En1 U ... U En1, where Eni={(j, 5 ):j # j/,@;jf # 0},
We first show that P(E C E,)) converges to 1.

PE C En):P(@;j/\ >0 for somet € 1,...,T for all (j,j/) € E). Since
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T At :
> 1975 — 9 Il =Op(y/ =22=22) by Theorem 1, one can see that

P(|®§,j/| >0 for somet € 1,...,T forall (,j ) € E) — P(|wéjjl| >0 for somet € 1,...,T for all (.7 ) € E)

which should be 1 due to the fact that|w . /| >£3>0 for some t for all (j, j’) € E.

t
05,3
In order to show that P(E,, € E) converges to 1, we will show P(E® C E) converges to 1.

el
For this, we need to show that for any (j, j) € ES, the derivative aw;Q

, has the same sign as
J

@EJ for all 1 <t < T with probability tending to 1.

We first discuss the f; penalty function. The derivative of the objective function can be
written as

0Q N
Bt =Wi(t, 4,7 )+W zszgn(w§7j,),
3

. ¢ t T —v
where W1(%, 7, j ):Sj,j/_zj,j’ and Wo=A(1-1)(}_,_ &} #]) ~, where 0 < v1.

Arguing as in Theorem 2 of Lam and Fan (2009), one can show that

max,  Wi(t,j,j )=0p(('22)"/*4n}/?)

T
For (i, 1) € E% 2y 17 [=Op(n) and - goes 10 0o, and (1se) 12 /20 ), W
dominates maxtj ) Wa(t,j.j"). |

- 7 A(v—1)

_ Wom——=pp——— Wh= T v
For the functions f, and f3, max((3,_ |« ,,e) and max((Y,_ |t /1) e,
753 J:J

respectively, and v> 1.

. T .t
For (j, /) € ES, D _,_,|&% /[=0p(nn). Then, Wo=0,(Amin(n;”, ™)), v= L and W,
dominates maxjy W1(t, j, J'), by taking sufficiently small &.
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Figure 1.

Performance comparison on simulated data of n; =150, p =500 and T = 5. The
performances of joint sparsity GGMs (JGGM) with f{, v=10.5; f5, v=1; and f3, v=2 are
compared to the performances of the single global GGM approach and the separate GGM
approaches, as well as group graphical lasso (GGL) (Danaher et al., 2012) with «» = 0.5 and
ap = 1. (2): The number of correctly declared edges is plotted against the number of falsely
declared edges. (b): The number of correctly declared edges in a combined graph is plotted
against the number of falsely declared edges in a combined graph. (c): Running time (in
seconds) is plotted against the number of total declared edges. (d): The relative squared
distance (RSD) of the estimated models from the true models is plotted.
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(b) EBV-trans. B cells and T-cells: Joint approach

CCNB1IP1

CGNB1
AURKA

CDCc)zo//O

NOLSA

CSE1L

(d) Fibroblasts: Joint approach
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The estimated GGMs for Embryonic Stem Cell pathway

Edges from the separate approach and joint approach (f5, v= 1) are depicted with gray lines,
and the edges that match with the KEGG database are colored with black. The graphs of the
EBV-transformed B-cells and T-cells are the same in both separate and joint approaches, but
that of the fibroblasts has few more edges, which is consistent with the fact that the B-cells

and T-cells are more similar to each other.
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AUC values: EVB-trans. B-cells

JGGM

JGGM

JGGM

The histograms of the differences in AUC values (JGGM - Separate) and the scatter plots of
the AUC values are presented. 150, 134 and 149 pathways (out of 277) show higher AUC
values with the JGGM approach for B-cells, fibroblasts and T-cells, respectively. The
pathways with the AUC difference greater than 0.4 are marked and the names are given in

Table 2.

J Comput Graph Stat. Author manuscript; available in PMC 2016 October 01.



Page 21

Chun et al.

9 8 6.0 850 G680 (aseasip s,J8WIdYZ|Y) 0TOS0ESY
14 14 00T €90 880 SISAUIUAS auljoyd]A18oy
4 14 7A] 00T 880 Aemyied 3JomBN BUINOIAD
S 14 00T 090 00T (wsijogelaw 9g uIWeNA) 052008y
Z € 000 000 00T sIsayuAsolg ploials
4 € 00T 00T 00T asuodsay Alojewiwelju] pue sauiyolAD
T € 0S'0 00T 00T Aemuyyed Aemured Buijeubis 8t 11
14 14 €90 G0 00'T Aemyted juswdojanag zHL pue THL Buireinbal ui S92 onLpusq
14 € 00T 00T 00'T Aemyzed uoissaldxa aush uo s198448 pue B dd pue (P)gdVvdd ‘BdVdd JO UONIE JO Wsiueydsw diseg
S 14 080 00T 00T Aemured uoire]AQINNS 40 SWSIUBYIBIA d1seq
S1Se1q04qi4 Arewid
9 9 o .0 180 Aemuyyed sisoidody paonpuj [eaipey 9814
€ 9 680 6.0 280 118D Was dluoAiquig
4 14 S.°0 00T 880 Aemyied 3JomBN BUINOIAD
€ 14 00T 950 680 (wsijogeisw jounay) 0£800ESY
4 € 00T 000 00T sIsayuAsolg ploials
4 € 050 00T 00T asuodsay Alojewiwelju] pue sauryolAD
4 € 00T 000 00T SpIoy A11e4 pajeinyesun JO UoIepIXQ elag
14 14 00T €90 00T SISAUIUAS auljoyd]A1eoy
T € 00T 00T 00T ARemyred Aemuyred Buifeubis gt I
14 ¥ 00T G0 00T Aemuyred uswdojanag gH.L pue THL Bunenbas ui s)182 anpusag
b4 € 050 00T 00T Remuyyed uoissaidxa ausb uo s10a4s pue By dd pue (P)gyVdd edVdd 4O UONJE JO WsIueydsw Jiseq
S 14 080 00T 00T Aemyred uonelAQINNS JO SWSIURYIBN diseg
sobpoy#  soushb # SRS FIOID OO awreu femyred
onvy
S|Pd g pauwllojsue l1-Ag3

"pajuasald ale aseqeiep HOIH

ay1 woJ) sabpa Jo Jaquunu ayy pue sauab Jo Jaquinu sy "uostiedwlod oy umoys ale sayoeoldde sreledss pue [eqolb wol) sanfea DN Buipuodsaliod
a1 pue palsl| aJe 8'0 Ueyl Jaybiy INOOC Woly sanfen DNy aAey Teyl skemyied ayl ‘adAy 1189 yoes 1o “Aemyied yaes 1o) paren|eAs aiam sadAy

1192 93.1y1 01 Bulpuodsali09 sanfeA DNV 984y} ‘seyoroidde NO aretedss ayl pue INOOC 8y 104 ‘ydeoldde N syl Buisn Ag sAemyred palos|as ay L

T alqel

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

J Comput Graph Stat. Author manuscript; available in PMC 2016 October 01.



Page 22

Chun et al.

14 14 050 €90 180 SISBYIUAS au1joyd]A1e0y
€ 9 280 6.0 280 118D Was dluoAiquig
9 S 6.0 1.0 €80 Aemyzed o1wse|doifaos|onu ui uey Jo Buljohkd
4 14 T 00T 880 Aemuyred »I0MIBN au0lAD
4 € 00T 00T 00T asuodsay Alorewiwe]yul pue sauiyolAd
4 € 00T 000 00T SpIoY Alje pajeinyesun 40 UOIEPIXQ eleg
T € 00T 00T 00T Aemuyyed Aemured Buijeubis 8t 11
14 14 €90 G0 00'T Aemyzed juswdojanag zHL pue THL Buireinbal ui sjja2 onpusq
14 € 00T 00T 00'T Aemyzed uoissaldxa aush uo s198448 pue B dd pue (P)gdVvdd ‘edVdd JO UONIE JO Wsiueydsw diseg
S 14 00T 00T 00T Aemured uoire]AQINNS 40 SWSIUBYIBIA d1seq
S||99- 1 Adewlid
€ 9 8¢°0 6.0 280 118D Was dluokiqug
1 8T 780 €50 €8°0 Aemuyred uonenualayid gyl TUL

sobpo# Souab #

arledss [egO|D  NDOC

ony

awru Aemyred

S|P g pswiojsuell-Ad3

Author Manuscript

Author Manuscript

Author Manuscript Author Manuscript

J Comput Graph Stat. Author manuscript; available in PMC 2016 October 01.



1duosnue Joyiny 1duosnuen Joyiny 1duasnuen Joyiny

1duasnuen Joyiny

Chun et al.

Table 2

The names of pathways that show the differences of AUC values greater than 0.4.

© 00 N oo g A~ W N -

=
N kO

Basic mechanism of action of PPARa, PPARb(d) and PPARg and effects on gene expression pathway
Cytokines and Inflammatory Response

hsa04940 (Type | diabetes mellitus)

Degradation of the RAR and RXR by the proteasome pathway

IL 18 Signaling Pathway pathway

Embryonic Stem Cell

Steroid Biosynthesis

Oxidative reactions of the pentose phosphate pathway pathway

hsa00471(D-Glutamine and D-glutamate metabolism)

Cytokine Network pathway

Inhibition of Huntington’s disease neurodegeneration by histone deacetylase inhibitors pathway

Rho-Selective Guanine Exchange Factor AKAP13 Mediates Stress Fiber Formation pathway
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