Table 3.
Mean effect size measures
|
Mean variable importance
|
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t test |Cohen’s d|
|
Logistic regression
|
CART
|
CART + Prune
|
RF
|
|||||||||
v | z | w | McFadden’s pseudo-R2 | v | z | w | v | z | w | v | z | w | |
N = 100 | |||||||||||||
Linear | .563 | .167 | .170 | .086 | 8.199 | 3.656 | 3.703 | 6.871 | 2.706 | 2.722 | 7.391 | −.106 | −.112 |
One split | .940 | .175 | .173 | .177 | 15.224 | 3.431 | 3.257 | 13.903 | 1.729 | 1.687 | 23.271 | .024 | −.054 |
Two splits | .732 | .470 | .169 | .155 | 11.125 | 8.117 | 2.065 | 10.667 | 7.485 | 1.423 | 20.075 | 11.71 | −.147 |
Three splits | .166 | .366 | .508 | .093 | 5.502 | 5.662 | 7.591 | 4.335 | 4.601 | 6.613 | 6.067 | 6.533 | 11.192 |
N = 250 | |||||||||||||
Linear | .548 | .105 | .108 | .070 | 18.810 | 8.242 | 7.85 | 14.412 | 5.141 | 5.007 | 12.175 | −.055 | −.037 |
One split | .927 | .107 | .105 | .155 | 35.932 | 6.077 | 5.835 | 32.604 | 1.965 | 1.969 | 40.284 | .157 | −.141 |
Two splits | .731 | .473 | .105 | .141 | 26.257 | 19.352 | 3.301 | 24.228 | 17.860 | 1.609 | 36.120 | 22.149 | −.073 |
Three splits | .106 | .354 | .496 | .077 | 15.179 | 13.58 | 17.005 | 11.488 | 10.093 | 14.539 | 13.759 | 12.736 | 20.681 |
N = 500 | |||||||||||||
Linear | .546 | .075 | .074 | .065 | 28.434 | 8.512 | 8.618 | 23.614 | 5.960 | 5.998 | 17.546 | −.010 | .052 |
One split | .920 | .075 | .078 | .147 | 65.234 | 4.773 | 4.850 | 63.561 | 2.485 | 2.499 | 58.864 | .011 | −.010 |
Two splits | .737 | .467 | .074 | .137 | 48.704 | 35.515 | 3.732 | 46.384 | 33.936 | 1.609 | 53.898 | 33.001 | −.045 |
Three splits | .084 | .355 | .503 | .074 | 26.227 | 22.838 | 29.152 | 21.728 | 17.958 | 26.093 | 22.843 | 20.421 | 31.863 |
Note. Cohen’s d indicates the mean of the absolute d values across simulated iterations. Random forest variable importance calculated using classification accuracy. CART = classification and regression trees; Prune = pruned CART analysis; RF = random forests.