Skip to main content
. Author manuscript; available in PMC: 2016 Feb 5.
Published in final edited form as: Psychol Aging. 2015 Sep 21;30(4):911–929. doi: 10.1037/pag0000046

Table 3.

Effect Size Measures and Variable Importance by Sample Size and Selection Model, Simulation A

Mean effect size measures
Mean variable importance
t test |Cohen’s d|
Logistic regression
CART
CART + Prune
RF
v z w McFadden’s pseudo-R2 v z w v z w v z w
N = 100
 Linear .563 .167 .170 .086   8.199   3.656   3.703   6.871   2.706   2.722   7.391  −.106  −.112
 One split .940 .175 .173 .177 15.224   3.431   3.257 13.903   1.729   1.687 23.271    .024  −.054
 Two splits .732 .470 .169 .155 11.125   8.117   2.065 10.667   7.485   1.423 20.075 11.71  −.147
 Three splits .166 .366 .508 .093   5.502   5.662   7.591   4.335   4.601   6.613   6.067    6.533 11.192
N = 250
 Linear .548 .105 .108 .070 18.810   8.242   7.85 14.412   5.141   5.007 12.175  −.055  −.037
 One split .927 .107 .105 .155 35.932   6.077   5.835 32.604   1.965   1.969 40.284    .157  −.141
 Two splits .731 .473 .105 .141 26.257 19.352   3.301 24.228 17.860   1.609 36.120 22.149  −.073
 Three splits .106 .354 .496 .077 15.179 13.58  17.005 11.488 10.093 14.539 13.759 12.736 20.681
N = 500
 Linear .546 .075 .074 .065 28.434   8.512   8.618 23.614   5.960   5.998 17.546  −.010    .052
 One split .920 .075 .078 .147 65.234   4.773   4.850 63.561   2.485   2.499 58.864  .011  −.010
 Two splits .737 .467 .074 .137 48.704 35.515   3.732 46.384 33.936   1.609 53.898 33.001  −.045
 Three splits .084 .355 .503 .074 26.227 22.838 29.152 21.728 17.958 26.093 22.843 20.421 31.863

Note. Cohen’s d indicates the mean of the absolute d values across simulated iterations. Random forest variable importance calculated using classification accuracy. CART = classification and regression trees; Prune = pruned CART analysis; RF = random forests.