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While transposable elements (TE)
have long been suspected of

involvement in species diversification,
identifying specific roles has been diffi-
cult. We recently found evidence of TE-
derived regulatory RNAs in a species-rich
family of bats. The TE-derived small
RNAs are temporally associated with the
burst of species diversification, suggest-
ing that they may have been involved in
the processes that led to the diversifica-
tion. In this commentary, we expand on
the ideas that were briefly touched upon
in that manuscript. Specifically, we sug-
gest avenues of research that may help to
identify the roles that TEs may play in
perturbing regulatory pathways. Such
research endeavors may serve to inform
evolutionary biologists of the ways that
TEs have influenced the genomic and
taxonomic diversity around us.

Introduction

For an organism to expand to a new
ecological niche, the tools to cope with the
stresses inherent to such a change must first
be present as heritable variation in the
genome. Thus, on the most basic level, our
understanding of evolutionary process
must be informed by an understanding of
the mechanisms that introduce genomic
variation. A long standing goal of this
research is to assess the relative impact of
mutations in genes related to structure and
function vs. those associated with changes
to regulatory regions,1,2 as either are capa-
ble of inducing phenotypic changes and
promoting biological diversity.3

Transposable Elements (TEs), geno-
mic parasites with the ability to make
copies of themselves in the host genome,
have been shown to contribute to func-
tion and regulatory variation via their
ability to insert in coding and regulatory
regions. TEs are powerful mutagens that
can influence gene expression via the
introduction of alternative regulatory
elements, exons, and splice juncti-
ons.4-11 However, TEs need not be
actively mobilizing to have an effect on
genome structure. TEs mediate genome
rearrangements through non-homolo-
gous recombination12-14 and have been
implicated in chromosomal rearrange-
ments in plants and animals. In fact,
deletions, duplications, inversions, trans-
locations and chromosome breaks have
all been linked to the presence of TEs in
a variety of genomes.15-20

With all of these realized and potential
impacts, TEs have long been seen as sour-
ces of genome instability, and more spe-
cifically, TEs have been seen as potential
players in the speciation process. Indeed,
multiple hypotheses have been proposed
over the past 5 years that directly impli-
cate TEs in one way or another. These
hypotheses range from 1) the suggestion
that differences among taxa with regard
to intragenomic populations of TEs are
established primarily by chance as a con-
sequence of founder effects and drift as
populations subdivide21 to 2) Zeh’s22

ideas that environmental stressors trigger
TE expansions within genomes, leading
to punctuated equilibrium-like patterns,
to 3) the TE-Thrust Hypothesis of Oliver
and Green,23,24 which implicates TE’s
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more broadly in the process of
diversification.

These ideas are not completely novel,
as Furano,25 Kazazian,7,26 and Feschotte27

all postulated that TEs might be inti-
mately involved in mechanisms of diversi-
fication. Rather, these more recent works
formalized particular hypotheses that can
now be tested rigorously, taking advantage
of the ever-expanding genome data
available.

In particular, the potential impact of
TE insertions to modify gene regulatory
pathways is an area of research that is gain-
ing substantial interest.27 This is where the
impact of our recent manuscript lies.28

While Feschotte and others have men-
tioned several potential impacts of TEs on
regulatory pathways, one of these was the
ability of TEs to serve as sources of novel
miRNAs that may act as post-transcrip-
tional regulators.27,29-31 Unfortunately,
we still know very little of how TE-derived
miRNAs can affect global gene expression
patterns. Thus, the relationship between
TE-derived miRNAs and species diversifi-
cation needs to be examined in a wide
range of organisms, to better understand
the roles of TEs and miRNAs in specia-
tion and identify examples where the
functional consequences of TE-derived
miRNA diversity can be examined in
detail.

Part of the challenge has been the lack
of tractable systems to examine the inter-
relationships among post-transcriptional
regulation, species diversification and
TEs. Fortunately, bats in the family Ves-
pertilionidae provide such a model. These
bats are exceptional among mammals in
that they have experienced multiple waves
of Class II TE (aka DNA transposon)
activity over the past 30–40 my which are
coincident with their evolutionary radia-
tion.32-35 In this regard, one genus in par-
ticular, Myotis, has been more fecund than
all others in the family, generating approx-
imately one third of the »400 species in
the family within the last »30 my.

We asked whether there was any link
between the diversification of these taxa,
the observed burst of TE activity, and
changes in the numbers of TE-derived
miRNAs. We found large numbers of
miRNAs expressed in the testes of one ves-
per bat, Eptesicus fuscus, were derived from

the TE family most active during the early
evolutionary history of the family. Indeed
when compared to 2 other mammals, the
differences were striking. Over 85% of the
miRNAs that originated in the common
ancestor of Myotis and Eptesicus are
derived from transposable elements com-
pared to only 25% and 17% in dog and
horse, respectively. Furthermore, DNA
transposons made up the majority of the
TE-derived miRNAs. Strikingly, the
deposition of these miRNAs was contem-
poraneous with the diversification of ves-
per bats into the plethora of clades
currently observed, suggesting a causal or,
at least, explanatory relationship. To con-
firm the causal nature of this relationship,
the next step will be to determine whether
the functional consequences of
TE-derived miRNA diversity can be
linked directly to a mechanistic under-
standing of their role in species diversifica-
tion. Thomas et al.36 recently made some
advances in that direction, demonstrating
the impact of TEs on potentially func-
tional aspects of genome structure, but
much work remains to be done.

In systems such as the vesper bats, we
suggest testing specific hypotheses of how
TE-derived miRNAs may drive divergence
in gene expression. This will necessarily
require RNA-Seq data and the identifica-
tion of particular gene targets related to
species-specific differences. One potential
avenue to pursue would be dietary prefer-
ence. Although many, and perhaps most,
vespertilionid bats are considered general-
ist insectivores37,38 there are species that
may provide examples of dietary variation
sufficient for detecting differences in gene
expression. Several species of Myotis
including M. vivesi,39 M. capaccinii,40

M. ricketti,41 and M. adversus42 include
fish in their diet, although the relative die-
tary importance is unclear (i.e. the species
may be primarily insectivorous, and only
occasionally piscivorous). A better option
may be species that prey on migratory
birds, such as Nyctalus lasiopterus,43 Nycta-
lus aviator,44 or Ia io,45 where up to 70%
of individuals prey on birds during peak
migration seasons.43 Even more dramati-
cally, as a facultative nectarivore Antrozous
pallidus is the only known Vespertilionid
to include plant material in the diet.46

Compared to insectivorous diets, the

inclusion of vertebrate prey (fish or birds)
or nectar may present altered gene expres-
sion patterns. Due to differences in lipid
and protein composition of vertebrate
prey, enzymes related to lipid or protein
metabolism would likely shift to allow for
the dietary switch.

On a more subtle level, there is the
potential to identify differences more
broadly. For example, many species (e.g.,
Euderma maculatum, Barbastella barbastel-
lus) are considered moth specialists with
echolocation strategies adapted to avoid
detection by eared moths.47,48 Other spe-
cies specialize on hard bodied arthropods,
as is the case for beetle specialists such as
Eptesicus fuscus49 or Myotis myotis.50 Com-
parison of these 2 broad groups of Vesper-
tilionid bats suggests a potential gene
target with species-specific expression pat-
terns. Chitin is an important structural
polymer in insects51 that was previously
thought to be indigestible.52 More
recently, chitinolytic activity has been
demonstrated for insectivorous bats from
both bacteria in the digestive tract53 and
chitinase produced by the bats them-
selves.54 All vespertilionids tested (7 spe-
cies) produced acidic mammalian
chitinase (AMCase), which may provide a
target gene for comparing expression
between moth and beetle specialists. Insect
chitin content varies among species and
developmental stages (1.1–16.2% of
whole dry body weight).55,56 Thus upre-
gulation of AMCase may be required in
species with a high chitin diet.

We need not limit ourselves to mam-
mals, however. There are several other
taxa that may also serve as laboratories for
this kind of study. One of the most obvi-
ous examples to us is the lizard genus Ano-
lis, which, like Myotis, is species rich.
Indeed, even more so, with ~400 species
occupying a vast array of habitats in the
Caribbean and southeastern North Amer-
ica. Also like Myotis, Anolis has experi-
enced a huge diversity of TE activity in
the recent past.57-60 There are multiple
examples of these lizards being introduced
by humans to novel habitats,61 which sug-
gests numerous opportunities for adaptive
change that could be investigated. In one
example, a native anole, Anolis carolinensis,
in response to invasive Anolis sagrei, adap-
tively evolved larger toepads, presumably
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to cope with the pressure of moving to
higher perches.62 While the molecular
mechanism of this adaptive change has
not been determined, it could conceivably
be due to regulatory changes, which in
turn could be the result of TE activity.

Insects also provide a plethora of
potential study systems. One prime exam-
ple exists in the butterflies of genus Helico-
nius. The TE landscape of these mimetic
insects was recently characterized and the
same family of elements that contributed
a majority of the novel miRNAs to the
vesper bats (Helitrons) has also been
exceptionally active in these butter-
flies.63,64 It is conceivable that the intro-
duction of large numbers of novel
miRNAs via Helitrons or other TEs may
have played a role in the remarkable adap-
tive radiation of wing colors and the abil-
ity of these butterflies to rapidly evolve to
match their co-mimetic species.65

While these studies may represent a
good start, there are numerous other
aspects of TE-small RNA interactions that
also deserve attention. An important
observation is that TE-derived miRNAs
often show sex and tissue specific expres-
sion patterns. For instance, in mice there
are piRNAs that are expressed only in the
male testes.66 EsiRNAs, the female equiva-
lent, are expressed only in the female ova-
ries and also appear to be TE-derived.
These piRNA and esiRNAs repertoires are
distinct and probably derive from differ-
ent sets of TEs. Therefore, these small
RNAs are essentially “shutting down” sex-
specific TE activity. The key is that these
TEs are only being shut down in the sex
expressing the suppressing small RNA,
but in the other sex, those same TEs are
presumably still actively mobilizing. This
suggests there might be sex-specific TE
activity and small RNA expression shap-
ing genomic change during species
diversification.

Sex and tissue specific TE activity may
be an important mechanism of lineage
diversification. Perhaps the most striking
example of sex-specific activity is the silk
moth (Bombyx mori), where the key sex
determination switch is a TE-derived
piRNA.67 However, these patterns of sex-
specific TE activity are likely biologically
widespread and probably have major
impacts on the evolution of sex

chromosomes and sex-specific gene
expression. For example, in the female
germline of XY organisms, the X chromo-
some has 1/2 the copy numbers of any
autosome, and therefore TEs with female
limited activity should receive only 1/2 the
number of TE insertions as an autosome.
Similarly, the Y and W chromosome
would only accumulate TE insertions that
occurred in the male germline, similar to
that observed during the evolution of the
silk moth W chromosome and sex-deter-
mining miRNA.67 These differences in
the accumulation of TEs between the
sexes could contribute to the rapid accu-
mulation of genetic incompatibilities on
the sex chromosomes and the large effect
of the X chromosome on speciation.68

Incorporating sex-specific miRNA expres-
sion and TE activity into models of TE
and species diversification provides a pre-
viously lacking connection to mechanisms
of speciation.

Clearly, variation in TEs and small
RNAs can be potential sources for lineage
specific divergence in gene expression.
Collectively, these studies suggest that in
vertebrates and invertebrates the interplay
between TE activity and small RNA evo-
lution can be an important source of the
regulatory variation underlying adaptive
divergence and speciation. We encourage
researchers to investigate these connec-
tions to increase our understanding of the
TE-diversity link.
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