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The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized
by a series of founder events as modern humans expanded into
multiple continents. Population genetics theory predicts an in-
crease of mutational load in populations undergoing serial founder
effects during range expansions. To test this hypothesis, we have
sequenced full genomes and high-coverage exomes from seven
geographically divergent human populations from Namibia, Congo,
Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that in-
dividual genomes vary modestly in the overall number of predicted
deleterious alleles. We show via spatially explicit simulations that
the observed distribution of deleterious allele frequencies is consis-
tent with the OOA dispersal, particularly under a model where del-
eterious mutations are recessive. We conclude that there is a strong
signal of purifying selection at conserved genomic positions within
Africa, but that many predicted deleterious mutations have evolved
as if they were neutral during the expansion out of Africa. Under a
model where selection is inversely related to dominance, we show
that OOA populations are likely to have a higher mutation load due
to increased allele frequencies of nearly neutral variants that are
recessive or partially recessive.

mutation | founder effect | range expansion | expansion load |
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It has long been recognized that a human genome may carry
many strongly deleterious mutations; Morton et al. (1) esti-

mated that each human carries on average four or five mutations
that would have a “conspicuous effect on fitness” if expressed in
a homozygous state. Empirically estimating the deleterious mu-
tation burden is now feasible through next-generation sequencing
(NGS) technology, which can assay the complete breadth of var-
iants in a human genome. For example, recent sequencing of over
6,000 exomes revealed that nearly half of all surveyed individuals
carried a likely pathogenic allele in a known Mendelian disease
gene (i.e., from a disease panel used for newborn screening) (2).
Although there is some variation across individuals in the number
of deleterious alleles per genome, we still do not know whether
there are significant differences in deleterious variation among
populations. Human populations vary dramatically in their levels
of neutral genetic diversity, which suggests variation in the effec-
tive population size, Ne. Theory suggests that the efficacy of nat-
ural selection is reduced in populations with lowerNe because they
experience greater genetic drift (3, 4). In an idealized population
of constant size, the efficacy of purifying selection depends on the
relationship between Ne and the selection coefficient s against
deleterious mutations. If 4Nes << 1, deleterious alleles evolve as if
they were neutral and can, thus, reach appreciable frequencies.
This theory raises the question of whether human populations
carry differential burdens of deleterious alleles due to differences
in demographic history.
Several recent papers have tested for differences in the burden

of deleterious alleles among populations; these papers have

focused on primarily comparing populations of western Euro-
pean and western African ancestry. Despite similar genomic
datasets, these papers have reached a variety of contradictory
conclusions (4–9). Initially, Lohmueller et al. (10) found that a
panel of European Americans carried proportionally more derived,
deleterious alleles than a panel of African Americans, potentially as
the result of the Out-of-Africa (OOA) bottleneck. More recently,
analyses using NGS exome datasets from samples of analogous
continental ancestry found small or no differences in the average
number of deleterious alleles per genome between African Amer-
icans and European Americans—depending on which prediction
algorithm was used (11–13). Simulations by Fu et al. (11) found
strong bottlenecks with recovery could recapitulate patterns of dif-
ferences in the number of deleterious alleles between African and
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non-African populations, supporting Lohmueller et al. (10), but in
contrast to work by Simons et al. (12).
It is important to note two facts about these contradictory ob-

servations. First, these papers tend to use different statistics, which
differ in power to detect changes across populations, as well as the
impact of recent demographic history (6, 11). Lohmueller et al.
(10) compared the relative number of nonsynonymous to synon-
ymous (or “probably damaging” to “benign”) SNPs per population
in a sample of n chromosomes, whereas Simons et al. (12) ex-
amined the special case of n = 2 chromosomes, namely, the av-
erage number of predicted deleterious alleles per genome (i.e.,
heterozygous + 2 * homozygous derived variants per genome).
One way to think about these statistics is that the total number of
variants, S, gives equal weight, w = 1, to an SNP regardless of its
frequency, p. The average number of deleterious variants statistic
gives weights proportional to the expected heterozygous and ho-
mozygous frequencies or w = 2p(1 − p) + p2 = 2p − p2. The
average number of deleterious alleles per genome is fairly in-
sensitive to differences in demographic history because heterozy-
gosity is biased toward common variants. In contrast, the proportion
of deleterious alleles has greater power to detect the impact of
recent demographic history for large n across the populations be-
cause it is sensitive to rare variants that tend to be more numerous,
younger, and enriched for functionally important mutations (14–
16). Second, empirical comparisons between two populations have
focused primarily on an additive model for deleterious mutations,
even though there is evidence for pathogenic mutations exhibiting a
recessive or dominant effect (17, 18), and possibly an inverse re-
lationship between the strength of selection s and the dominance
parameter h (19).
There remains substantial conceptual and empirical uncer-

tainty surrounding the processes that shape the distribution of

deleterious variation across human populations. We aim here to
clarify three aspects underlying this controversy: (i) Are there
empirical differences in the total number of deleterious alleles
among multiple human populations? (ii) Which model of dom-
inance is appropriate for deleterious alleles (i.e., should zygosity
be considered in load calculations)? (iii) Are the observed pat-
terns consistent with predictions from models of range expan-
sions accompanied by founder effects? We address these questions
with a new genomic dataset of seven globally distributed human
populations.

Results
Population History and Global Patterns of Genetic Diversity. We
obtained moderate coverage whole-genome sequence (median
depth 7×) and high coverage exome sequence data (median
depth 78×) from individuals from seven populations from the
Human Genome Diversity Panel (HGDP) (20). Unrelated in-
dividuals (no relationship closer than first cousin) were selected
from seven populations chosen to represent the spectrum of
human genetic variation from throughout Africa and the OOA
expansion, including individuals from the Namibian San, Mbuti
Pygmy (Democratic Republic of Congo), Algerian Mozabite, Pak-
istani Pathan, Cambodian, Siberian Yakut, and Mexican Mayan
populations (Fig. 1A). The 2.48-Gb full genome callset consisted of
14,776,723 single nucleotide autosomal variants, for which we could
orient 97% to ancestral/derived allele status (SI Appendix).
Heterozygosity among the seven populations decreases with

distance from southern Africa, consistent with an expansion of
humans from that region (21). The Namibian San population
carried the highest number of derived heterozygotes, ∼2.39
million per sample, followed closely by the Mbuti Pygmies (SI
Appendix, Table S1 and Fig. S5). The North African Mozabites

A

B

C

Fig. 1. Decrease in heterozygosity and estimated Ne with distance from southern Africa. (A) Locations of HGDP populations sampled for genome and exome
sequencing are indicated on the map. Putative migration paths after the origin of modern humans are indicated with arrows (adapted from ref. 46). (B) PSMC
curves for individual genomes, corrected for differences in coverage. Whereas populations experiencing an OOA bottleneck have substantially reduced Ne,
African populations also display a reduction in Ne between ∼100 kya and 30 kya (see SI Appendix for simulations of population history with resulting PSMC
curves). (C) For each individual’s exome, the number of putatively deleterious variants (equivalent to number of heterozygotes + twice the number of derived
homozygotes) is shown by population.
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carry more heterozygotes than the OOA populations in our dataset
(2 million) but substantially fewer than the sub-Saharan samples,
likely reflecting a complex history of an OOA migration, fol-
lowed by reentry into North Africa and subsequent recent gene
flow with neighboring African populations (22). The Maya have
the lowest median number of heterozygotes in our sample, ∼1.5
million, which may be inflated due to recent European admixture
(23). Two Mayan individuals displayed substantial recent European
admixture (>20%) as assessed with local ancestry assignment (24)
(SI Appendix, Fig. S6); these individuals were removed from anal-
yses of deleterious variants. When we recalculated heterozygos-
ity in the Maya, it was reduced by 3.5%. The decline in
heterozygosity in OOA populations with distance from Africa
strongly supports earlier results based on SNP array and micro-
satellite data for a serial founder effect model for the OOA
dispersal (25, 26). We analyzed population history for individuals
having sufficient coverage from five of the studied populations
using the pairwise sequential Markovian coalescent software
(PSMC) to estimate changes in Ne (11, 12, 27). Because dating
demographic events with PSMC is dependent on both the as-
sumed mutation rate and the precision with which a given event
can be inferred, we compare relative bottleneck magnitudes and
timing among the seven HGDP populations. Consistent with
previous analyses (27), the OOA populations show a sharp re-
duction in Ne, with virtually identical population histories (Fig. 1B

and SI Appendix). Simulations indicate that the magnitude of the
12-fold bottleneck is accurately estimated (SI Appendix, Fig. S7),
even if the time of the presumed bottleneck is difficult to estimate
precisely using PSMC. Interestingly, both the Mbuti and the
Namibian San show a moderate reduction in Ne relative to the
ancestral maximum, with the San experiencing an almost twofold
reduction in Ne and the Mbuti displaying a reduction intermediate
between the San and OOA populations (see also refs. 20, 28, and
29). These patterns are consistent with multiple population his-
tories (e.g., both short and long bottlenecks) and multiple de-
mographic events, including a reduction in substructure from the
ancestral human population rather than a bottleneck per se (27).

Differences in Deleterious Alleles per Individual Genomes. Owing to
differences in coverage among the whole genome sequences, our
subsequent analyses focus on the high-coverage exome dataset
(78× median coverage) to minimize any bias in comparing
populations (Materials and Methods). We classified all mutations
discovered in the exome dataset into categories based on Genomic
Evolutionary Rate Profiling (GERP) Rejected Substitution (RS)
scores. These conservation scores reflect various levels of constraint
within a mammalian phylogeny (Materials and Methods) and are
used to categorize mutations by their predicted deleterious effect
(30, 31). Importantly, the allele present in the human reference
genome was not used in the GERP RS calculation, avoiding the

A B C

D E F

Fig. 2. Individual counts of deleterious variants. (A–C) For each individual’s exome, the number of derived homozygotes is plotted by population for
moderate-, large-, and extreme-effect GERP categories. (D–F) For each individual’s exome, the number of derived variants (equivalent to number of het-
erozygotes + twice the number of homozygotes) is plotted by population for moderate-, large-, and extreme-effect GERP categories.
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reference-bias effect previously observed in other algorithms (11,
12) (SI Appendix, Fig. S8A). Variants were sorted into four
groups reflecting the likely severity of mutational effects: “neutral”
(−2 < GERP < 2), “moderate” (2 ≤ GERP < 4), “large” (4 ≤
GERP < 6), and “extreme” (GERP ≥ 6) (SI Appendix, Fig. S9).
GERP categories were concordant with ANNOVAR functional
annotations (SI Appendix, Table S2 and Fig. S8B).
When considering the total number of derived alleles per in-

dividual, defined here as AI = (1 × HET) + (2 × HOMder), we
observe an increase of predicted deleterious alleles with distance
from Africa (Fig. 1C). The number of predicted deleterious al-
leles per individual increases along the range expansion axis
(from San to Maya), consistent with theoretical predictions for
expansion load (32). The maximal difference in the number of
deleterious alleles between African and OOA individuals is ∼150
alleles. This result is consistent with theoretical predictions; the
rate at which deleterious mutations accumulate in wave-front
populations is limited by the total number of mutations occurring
during the expansion (32). Assuming an exomic mutation rate of
u = 0.5 per haploid exome and an expansion that lasted for t =
1,000 generations, a very conservative upper limit for the excess
of deleterious alleles in OOA individuals would be 2*u*t = 1,000.
The cline in AI is most pronounced for large-effect alleles (4 ≤
GERP < 6, Fig. 2E), whereby the San individuals carry AI =
4,450 large-effect alleles on average, increasing gradually to
4,550 in Yakut. The Mayans carry slightly fewer large-effect
mutations per individual than the Yakut, which may be influ-
enced by the residual European ancestry (between 5–20%) in
our sample. For extreme alleles (GERP ≥ 6), each individual in
the dataset carries on average 110–120 predicted highly delete-
rious alleles with no significant differences among populations
(Fig. 2F). The average additive GERP score—obtained by counting
the GERP scores at homozygous sites twice—for all predicted
deleterious variants per individual is lowest in the San (∼3.3) and
highest in the Maya (∼3.8).
Similar patterns are found when we consider the number of

derived homozygous sites per individual. We find that individuals
from OOA populations exhibit significantly more homozygotes
for moderate, large, and extreme variants than African populations
(Fig. 2 A–C). In addition, we observe a clear increase in the number
of derived homozygotes with distance from Africa for moderate
(2 ≤ GERP < 4) and large (4 ≤ GERP < 6) mutation effects
categories, whereas the number of derived “extreme” homozy-
gotes (GERP ≥ 6) is similar among OOA populations: All OOA
genomes possess 30–40 extremely deleterious alleles in homo-
zygous state (Fig. 2C). These patterns are in excellent agreement
with theoretical predictions for the evolution of genetic variation
during range expansions (7). The average GERP score per in-
dividual for derived homozygous variants is less differentiated
than the additive model (above), varying between 2.43–2.49.
It is important to note that AI is strongly influenced by com-

mon variants. Goode et al. (33) observed that as much as 90% of
deleterious alleles in a single genome have a derived allele fre-
quency greater than 5%, suggesting that the bulk of mutational
burden using this metric will come from common variants. To
explore this idea, we randomly chose an individual in each
population and calculated the proportion of deleterious variants
that are rare (<10%, i.e., a singleton within our population
samples) and common (>10%), for each GERP category (Fig.
3A). Common deleterious alleles contribute to more than 90%
of an individual’s AI, and the proportion of common deleterious
variants increases with distance from Africa, as can be seen by
the decrease of rare deleterious variants. This includes common
large-effect variants, which make up proportionally more of AI
for an OOA individual than for an African individual. For ex-
ample, in a Mayan individual, 93% of large-effect variants are
common compared with a San individual, where only 85% of
large-effect variants are common (SI Appendix, Fig. S12). Given

the small number of chromosomes in each population (n = 14–16),
estimates of allele frequencies are subject to sampling effects. We
recently performed the same analysis on exome data from the 1000
Genome Phase 1 Project (34). We find a similar pattern as in our
HGDP data: On a per-genome basis, common variants represent a
majority of the alleles predicted to be deleterious (5).

Differences in Deleterious Alleles at the Population Level. To further
elucidate the relationship between predicted mutation effect and
allele frequencies, we compared the site frequency spectrum
(SFS) for neutral and large- (4 ≤ GERP < 6) effect variants (Fig.
3B; see SI Appendix, Fig. S14 for a comparison between neutral
and extreme variants). For all populations, singletons are enriched
for deleterious variants (compared with neutral variants), consistent
with the effect of purifying selection against deleterious variants (15,
35). However, the SFSs of OOA and African populations show
marked differences. The neutral and deleterious SFSs of OOA
populations show a global shift toward higher frequencies, con-
sistent with the effects of serial bottlenecks/founder effects. It
follows that OOA populations have fewer rare deleterious vari-
ants than Africans, as well as a larger proportion of fixed dele-
terious alleles; almost 7.9% of large-effect variants are fixed in
the Maya, whereas the San have only 1.8% of deleterious vari-
ants fixed (Fig. 3B).

Simulations of Purifying Selection Under a Range Expansion. We
sought to interpret the population-specific patterns of genetic
diversity for each GERP category under a model including serial
founder effects across geographic space and purifying selection.
We simulated the evolution of both neutral and deleterious
mutations under a simple model of range expansion in a 2D
habitat (SI Appendix, Fig. S21). At selected loci, the ancestral
allele was assumed selectively neutral and mutants reduced an
individual’s fitness by a factor 1 − s only if it was present in
homozygous state, that is, deleterious mutations were assumed
to be completely recessive. Three thousand generations (corre-
sponding to about 75 kya) after the onset of the range expansion,
we computed the average expected heterozygosity for all pop-
ulations. Computational limitations of individual-based simulations
prohibit a complete exploration of the parameter space for this
model, but, by varying migration rates and selection coefficients, we
identified parameter values that fit the observed clines in het-
erozygosity reasonably well (Fig. 4B). Specifically, we first identified
selection coefficients that yield the same relative differences between
observed neutral and selected heterozygosities (Fig. 4A). Then,
the migration rate was adjusted to fit the observed clines in
heterozygosities, assuming that the distance between two demes
is 250 km (Fig. 4B). The fit selection coefficients were 0, 1.25 × 10−4,
1 × 10−3, and 2 × 10−3 for neutral, moderate, large, and extreme
GERP scores categories, respectively; the GERP ≥ 6 category
showed the worst fit and observed counts indicate that even
stronger selection coefficients should be considered for these
extreme mutations (16). We performed the same analysis using
a model in which mutations are codominant and, as expected,
we found that the fit selection coefficients are smaller than
those obtained a recessive model. These coefficients are esti-
mated as s = 0, 0.5 × 10−4, 1.2 × 10−4, and 2 × 10−4, respectively
(SI Appendix, Fig. S16) (16).

Evolutionary Forces Acting on Heterozygosity. To better understand
which evolutionary forces have acted in different populations to
shape their levels of genetic diversity, we define a new statistic,
RH. RH measures the reduction in heterozygosity at conserved
sites relative to neutral heterozygosity, RH = (Hneu − Hdel)/Hneu,
where Hneu indicates heterozygosity at neutral sites and Hdel at
GERP score categories >2. RH can be seen as a way to quantify
changes of functional diversity across populations relative to
neutral expectations. For instance, a constant RH value across
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populations would suggests that average functional diversity is
determined by the same evolutionary force(s) as neutral di-
versity, that is, genetic drift and migration. In contrast, if RH
changes across populations, it suggests that different evolution-
ary forces have shaped neutral and functional diversity, that is,
selection has changed functional allele frequencies.
In our dataset, RH is significantly larger in sub-Saharan Afri-

cans than in OOA populations across all functional GERP cat-
egories (Fig. 4C), indicating that selection has acted differently
relative to drift between the two groups. The correlation between
RH value and predicted mutation effect observed in Africa (Fig.
4A) confirms that purifying selection has kept strongly deleteri-
ous alleles at lower frequencies than in OOA populations. We
then asked whether there were significant differences across
OOA population, as oriented by their distance from eastern
Africa. Interestingly, we see that the OOA RH values do not
depend on their distance from Africa for predicted moderate-
effect alleles (P = 0.82; SI Appendix, Fig. S15), suggesting that the
frequencies of moderate mutations have evolved mainly according
to neutral demographic processes during the range expansion out
of Africa. In contrast, for strongly deleterious variants (large
and extreme GERP categories) we see a significant cline in RH
(P = 0.01 and P = 1.12 × 10–6, respectively; SI Appendix, Fig. S15),
which implies that purifying selection has also contributed to their
evolution relative to demographic processes.

Models of Dominance. We next considered whether there is em-
pirical evidence for nonadditive effects for deleterious variants.
Prior studies generally calculated “mutation load” by assuming
an additive model, summing the number of deleterious alleles
per individual, without factoring in whether an SNP occurs in a
homozygous or heterozygous state. Determining an individual’s
mutation load is, however, highly dependent on the underlying
model of dominance (36) (a formal definition of mutation load is
given below). For humans, Mendelian diseases tend to be over-
represented in endogamous populations or consanguineous
pairings, indicating that many of these mutations are recessive

(37); Gao et al. (38) estimate 0.58 lethal recessive mutations per
diploid genome in the Hutterite population. Gene conversion
can also lead to differential burden of derived, recessive diseases
alleles among populations (39). Even height, a largely quantita-
tive trait, seems to be affected by the architecture of recessive
homozygous alleles in different populations (40).
To further clarify the impact of dominance, we compared the

distribution of deleterious variants across genes associated with
dominant or recessive disease as reported in Online Mendelian
Inheritance in Man (OMIM) (41). We expect to see a lower
proportion of large- and extreme-effect variants in genes with
dominant OMIM mutation annotations, compared with genes
with recessive OMIM mutation annotations. We tested this hy-
pothesis with the HGDP as well as the much larger 1000 Ge-
nomes Phase 1 dataset (SI Appendix, Fig. S18B). We averaged
the proportion of variants within each effect category and per-
formed a Wilcoxon test to determine whether the distribution of
the proportion of large-effect variants was different between
dominant and recessive genes. In the HGDP dataset, we ob-
served P = 0.06, and for the larger 1000 Genomes dataset, P =
0.03. Our results indeed show a significantly higher proportion of
large-effect variants in genes with recessive annotations, com-
pared with genes with dominant annotations, suggesting that
deleterious variants in the genome may tend to be recessive.
However, we caution that OMIM genes are here annotated as
dominant or recessive, whereas dominance is a property of
specific mutations, and therefore all deleterious variants in a
gene will not necessarily have the same dominance coefficient.
Nonetheless, our results are consistent with an interpretation
that genes may have certain properties, for example negative
selection against dominant mutations in crucial housekeeping or
developmental genes, that influence the tolerable distribution of
dominance among variants. We consider the effect of dominance
(summarized by h, which measures the effect of selected muta-
tions in heterozygotes relative to homozygotes) on mutation load
in the HGDP population samples given the observed differences
in heterozygosity.

A B

Fig. 3. Differences in the proportion of deleterious alleles by frequency class. (A) The proportion of rare versus common deleterious variants per individual.
For a given individual, deleterious variants were divided into common (>10%, solid colors) and rare (<10%, white space). The contribution of common
deleterious variants to an individual’s burden is much greater than rare variants. (B) For each population, we calculated the proportional site frequency
spectrum by plotting the proportion of deleterious large-effect alleles in each frequency class (translucent coloring) along with the proportion of neutral
alleles for each frequency class (opaque coloring). African populations have proportionally fewer rare deleterious alleles than expected from neutrality.
Populations with OOA ancestry have proportionally more fixed deleterious mutations.
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Modeling the Burden of Deleterious Alleles. We modeled three
different scenarios to estimate the burden of deleterious alleles
across populations. The relationship between fitness W and load
for a given locus v is classically defined (36) as

Lv = 1−W = 1− ð1−Whet −WhomÞ.

Whet = gAa × (1 − hs) and Whom = gaa × (1 − s), where gAa and
gaa are the observed genotype frequencies of the heterozygotes
and derived homozygotes, respectively. The estimated popula-
tion load (ignoring epistasis) is the sum of the load for all vari-
ants: LT =

P
vLv. For each variant we assigned the selection

coefficient inferred by the range expansion simulations according
to its GERP score [see also Henn et al. (5)]. Given that we do
not know the distribution of dominance effects in human varia-
tion, we started by estimating the bounds for the mutation load
for each population by considering two extreme scenarios: com-
pletely recessive and complete additive models for deleterious
variants. We calculated LT for each HGDP population (Fig. 5).
When all mutations are considered strictly additive (h = 0.5),
values for mutation load are very similar across populations, with
sub-Saharan African populations having the lowest mutational

load (LT =2.83), followed by the Pathan and Mozabites, and
finally the Asian and Native American populations showing the
highest load (LT = 2.89) (Fig. 5B). We consider this model, as
adopted in earlier studies, to demonstrate that even under an
additive assumption there is a statistically significant 1.7% dif-
ference in the spectrum of load between populations (SI Appen-
dix, Fig. S24). When all mutations are considered recessive (h =
0), this model yields a much larger 45% difference in load (LT
ranges between 1.27 and 1.85) between the San and the Maya
(Fig. 5A). Although this is surely an overestimate, it illustrates
the broad range of potential values and consistent signal in the
data for differences among populations in estimated load. The
mutation load under a recessive model is not explained by inbreed-
ing, as measured by the cumulative amount of the genome in runs
of homozygosity (cROH) greater than 1 Mb (r = 0.27, P = 0.55) (SI
Appendix, Fig. S25); this is because the African hunter–gatherers
have relatively high cROH compared with other global populations,
as is commonly observed in small endogamous populations (21, 42).
For the third scenario we used a model based on studies of

dominance in yeast and Drosophila (19, 43, 44), in which there is
an inverse relationship between selection and dominance (highly
deleterious mutations tend to be recessive), and where h is

A C

B

Fig. 4. Heterozygosity under range expansion simulations with different selection coefficients. (A) Observed and simulated patterns of the reduction of
heterozygosity (RH). Selection coefficients used in the simulations are s = 0 (black), s = −0.000125 (lavender), s = −0.001 (red), and s = −0.002 (orange).
(B) Colored circles show average expected heterozygosity for populations with ancestry from the OOA bottleneck. Solid lines show the regression lines obtained
from simulations and dashed lines indicate 95% confidence intervals for the regression. The boxplots and colored circles on the left show the simulated het-
erozygosities in ancestral (i.e., African) populations, and the observed heterozygosity in our African dataset (San/Mbuti), respectively. (C) Comparison of the
distribution of RH between African and non-African individuals for different GERP categories, tested with a two-tailed Student t test (SI Appendix, Fig. S15).
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sampled from a distribution following Agrawal and Whitlock
(19). The maximal difference in load under this model was
30.8% (Fig. 5C), again between the San and Maya, and the
minimum difference in load was 1%, between the Cambodians
and Yakut. We note that the difference in relative fitness [e−L(T)]
is much less than the difference in mutation load (i.e., a relative
reduction of 79% in the San versus 87% in the Maya translates
to a 8% difference between the two populations under the h(s)
model; see also Discussion). As in the other modeled dominance
scenarios, the majority of calculated mutational load is contrib-
uted by the large-effect mutational category, because this cate-
gory has a relatively strong selection coefficient and thousands of
mutations (>4,000 on average per individual). Thus, this category
contributes proportionally more to the total load, even though the
extreme-effect mutations have a higher selection coefficient. We
note, however, that our assumed selection coefficients, particularly
for the extreme effect, are somewhat lower than those obtained
by other distribution of fitness effect studies (16, 45) and simulations
under an additive model results in even smaller selection coeffi-
cients (discussed above). Because selection coefficients are the same
across populations in our calculations, s will affect the absolute
value of load but not relative differences across populations.

Discussion
Two primary demographic signals are reflected in human genetic
data from non-African populations. First, a major 5- to 10-fold
population bottleneck is associated with the OOA dispersal(s)
(46–48). Second, the distribution of genetic diversity among non-
African populations is characterized by a decrease in heterozy-
gosity proportional to geographic distance from northeastern
Africa. A model of serial founder effects in the ancestral pop-
ulations of Eurasia, Oceania, and the Americas has been posited
as the most likely model for explaining the systematic variation in
genetic diversity across this geographic range for humans (25,
26), as well as commensal human species (49, 50). By directly
ascertaining genomic variation in over 50 individuals from seven
populations, we observe a clear cline of genetic diversity as a
function of distance from Africa, supporting evidence for a serial
founder effect model. We also observe differences in the amount

of predicted deleterious variation across populations. These
differences seem to result from the genetic drift of existing del-
eterious variants to higher frequencies during the sequential
range expansion after the OOA exit (Fig. 3B). Clines in het-
erozygosity for the different mutational effect categories can be
reproduced by spatially explicit simulations with negative selec-
tion and recessive mutations (Fig. 4; see also codominant sim-
ulations in SI Appendix, Fig. S16). Although both moderate- and
large-effect deleterious mutations have evolved under negative
selection in Africa (Fig. 4C and SI Appendix, Fig. S15), many
predicted moderate variants have evolved as if they were neutral
in non-African populations. However, selection has remained a
major force during the OOA expansion for strongly deleterious
variants.

Impact of the OOA Bottleneck. There is an ongoing debate on
whether selection has been equally or more efficient in African
versus non-African populations due to the major bottleneck that
occurred in the ancestors of OOA populations (10, 12, 13, 35).
Two studies found no significant differences in mutation load
between European Americans and African Americans under an
additive model with two classes of alleles: deleterious and neu-
tral (12, 13, 33). Fu et al. (11) identified small but significant
differences in the average number of alleles and the SFS, po-
tentially due to a different algorithm for predicting mutation
effect than earlier studies. We argue that estimates of the effi-
cacy of selection should take into account not only the number of
mutations per individual but also the predicted severity of mu-
tational effect. Here, we classify mutations into four categories
and find differences across populations in some, but not all,
mutational categories. For variants that have putatively moder-
ate (2 ≤ GERP < 4) or extreme deleterious effect (GERP ≥ 6),
we do not see a significant difference between African and non-
African populations in the number of mutations per individual.
Significant per-individual differences are only observed for the
intermediate large-effect category. We used PhyloP scores (51)
as an alternative measure of conservation to verify our main
results (SI Appendix, Fig. S26). We found qualitatively very
similar patterns for both the spatial distribution of the number of

A B C

Fig. 5. Estimates of mutational load in seven populations as a function of dominance assumptions. Total mutation load was summed over all annotated
mutations in the exome dataset for the observed heterozygote and derived homozygote genotype frequencies in each population. The cumulative muta-
tional load is shown in increased order from neutral to extremely deleterious mutations. Strongly deleterious mutations contribute the most to mutational
load. Mutations were assigned an s, selection coefficient, based on their GERP score. (A) h = 0, recessive model; (B) h = 0.05, additive model; (C) h(s), in-
termediate dominance model. For each selection coefficient, an h dominance coefficient was assigned based on the inverse relationship between s and h.
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derived homozygous sites per individual (SI Appendix, Fig. S26A)
as well as the number of derived alleles per individual, suggesting
that our results are robust to the choice of prediction algorithm
that is used to estimate deleteriousness of mutations.
We note that the observed differences between populations

are relatively small compared with the within-population variance
(Fig. 2). Nonetheless, a novel measure of the efficacy of selection,
RH, is significantly different across all three mutational cate-
gories (Fig. 4C and SI Appendix, Fig. S15) between sub-Saharan
Africans and non-Africans in our dataset. That is, the observed
heterozygosity at deleterious loci is greater in non-Africans than
in Africans—after correcting for neutral genetic diversity in each
group. This is particularly significant for moderate- and large-
effect mutations, in agreement with theory that would suggest
that differences in purifying selection will primarily emerge for
variants at the Nes boundary.

Serial Founder Effects/Range Expansion. Several simulation studies
have attempted to characterize the distribution of deleterious
alleles under OOA demographic scenarios. Some simulations
focused on differences in the cumulative number of deleterious
alleles per individual; others focused on differences in the pro-
portion of segregating alleles within a population that are dele-
terious. Lohmueller et al. (10) found that a long bottleneck
lasting more than 7,500 generations (>150,000 y) could produce
the excess proportion of deleterious mutations observed in Eu-
ropean Americans. A bottleneck model with subsequent explo-
sive growth has also been proposed to explain the proportionally
greater number of nonsynonymous or deleterious mutations in
Eurasian populations (52, 53). As a consequence, deleterious
mutations accumulate in populations during the expansion pro-
cess. Simons et al. (12) tested a long bottleneck and subsequent
population expansion model contrasting African and non-Afri-
can populations and found no evidence that human demography
played a role in the differential accumulation of deleterious al-
leles per individual.
A recent theoretical study of spatial range expansions (i.e., a

model similar to geographic serial founder effects) showed that
strong genetic drift at the wave front of expanding populations
decreases the efficiency of selection (32). Under a spatial range
expansion model, deleterious variants, unless they have a large
selection coefficient, should evolve as if they are neutral on the
wave front (32), and their overall frequency should therefore not
change much during the range expansion (7). The loss of dele-
terious variants at some loci should be compensated by an in-
crease of their frequencies at other loci. The frequency of
deleterious homozygotes should therefore increase with distance
from Africa, which is observed here in the rightward shift of the
SFS in OOA populations (Fig. 3), except for the most evolu-
tionarily constrained sites. We can address the question of whether
this increased frequency is driven entirely by drift and gene surfing
or by differential selection in non-African populations by consid-
ering the spatial distribution of the RH statistic (Fig. 4C). The fact
that RH does not change among OOA populations for moderately
deleterious alleles suggests that they have evolved as if they were
neutral alleles during the expansion and that selection has not yet
purged the deleterious mutations that increased in frequency. In
contrast, extremely deleterious alleles (GERP ≥ 6) exhibit similar
heterozygosity in all OOA populations, suggesting that they are
subject to similar levels of purifying selection in these pop-
ulations. The remaining deleterious alleles (4 ≤ GERP < 6)
present an intermediate pattern, implying that both drift and
selection have acted on this category of sites.
A recent controversy concerns whether there are differences

in the efficacy of purifying selection between African and non-
African populations (6, 12, 13). It is difficult to discuss our re-
sults in the context of this controversy because there is no gen-
erally accepted definition of “efficacy of selection,” and different

definitions will lead to different interpretations (4). We therefore
prefer to interpret our results in the context of our spatially ex-
plicit model of range expansions, and the relative roles of drift
and selection in this model. Recurrent founder events should
contribute to a decrease in the effective population sizes with
distance from Africa, and it is commonly assumed that selection
will become weaker with smaller effective population sizes.
However, reducing the impact of a range expansion to a simple
gradient in effective size, and thus to a decrease of the efficacy of
selection, can be misleading. Diversity-based estimates of Ne are
not necessarily informative about the strength of selection in
nonequilibrium scenarios because estimates of Ne may lag be-
hind recent demographic changes (e.g., ref. 54). Rather, if one
considers that deleterious alleles were kept at low frequencies by
purifying selection in ancestral African populations, those that
increased in frequency by gene surfing during the OOA expan-
sion also became more accessible to subsequent selection, es-
pecially for those alleles that were recessive. The observed cline
in RH for large-effect mutations is more compatible with an
unequal purging of deleterious variants by selection. Indeed,
selection will have had less time to act on newly formed pop-
ulations that are further away from Africa, and it will also
operate more slowly on populations that have less diversity and
therefore lower interindividual differences in fitness. Further-
more, the fact that our simulations can reproduce the observed
pattern with spatially uniform population sizes and strength of
selection against deleterious mutations implies that the simu-
lated gradients in RH in Fig. 4A, as well as the increased number
of deleterious homozygous sites, is not the consequence of re-
duced strength of selection away from Africa. Rather, it is caused
by increased drift during the expansion, as well as by differential
purging of deleterious mutations after the expansion.

The Importance of Dominance. Multiple modeling assumptions are
crucial when considering the burden of deleterious alleles across
populations. In addition to the selection coefficients, the assumed
dominance terms are critical. An estimated 16% of Mendelian
diseases are known to be autosomal recessive (estimated from the
OMIM) and many contribute significantly to infant mortality. Ow-
ing to the difficulty of detecting recessive diseases, unless they are
extremely damaging, there are potentially many more disease mu-
tations that have an h coefficient less than 0.5. Autosomal recessive
diseases seem to be more frequent than autosomal dominant dis-
eases (55), and even mildly deleterious mutations are predicted to
have a mean h of 0.25 (56). Although formal calculations of genetic
load require multiple assumptions, we demonstrate that differences
in calculated load across human populations are primarily sensitive
to assumptions about dominance, as expected given the increased
extent of homozygosity in OOA populations.
We have modeled deleterious mutations as having variable h

coefficients. Whereas strongly deleterious mutations are likely
recessive, dominance for weakly deleterious mutations is par-
ticularly problematic to estimate because there is less power to
measure weak effects and h may be upwardly biased in model
organism competition experiments (19). When sampling h co-
efficients under our model, we allowed weakly deleterious mu-
tations to be assigned a coefficient h > 0.5, but this had little
effect on mutational load because the bulk of the load was
contributed by large-effect variants. However, a fraction of strongly
deleterious mutations are clearly dominant, as ascertained from
disease studies, and future work may need to model different
mixtures distributions on h. We also note that the absolute
mutational load is twofold higher under an additive model than
under a recessive model (Fig. 5), as expected from theory (36).

Estimates of Mutational Load. We estimate that there are differ-
ences in mutational burden calculated using a formal load
model, among extant human populations, particularly if we
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depart from a simple additive assumption. We found that the change
in mutation load between sub-Saharan African populations
versus Native American populations (the two ends of the range)
were significantly different at P < 0.05 under recessive, partially
recessive, and additive models (SI Appendix, Fig. S24). Muta-
tional load under a fully or partially recessive model is 10 to 30%
greater in non-African populations (Fig. 5A), as the result of
higher homozygosity from the legacy of the OOA bottleneck
across all (deleterious) mutation categories [e.g., LT(Mbuti) = 1.59
and LT(Yakut) = 1.95 under the h(s) model]. All populations carry
significant load, relative to a population with the alternate, an-
cestral allele genotype. Under a model where fitness differences
are determined only by genotype and environments are equal
across individuals, the relative fitness [e−L(T)] of 0.204 for the
Mbuti indicates a reduction in fitness of 79.6%, whereas a rel-
ative fitness of 0.142 for the Yakut indicates an 85.7% reduction.
These fitness differences are relatively small, even under a par-
tially recessive model.
Although illustrative, such models of load have important

limitations. The mutations identified in this dataset have not
been functionally characterized and are predicted to be delete-
rious based on degree of sequence conservation. The assumed
selective coefficients across GERP categories are fit based on a
recessive model, which is not applicable to all sites. However,
although different selection coefficients will change the values of
load in our calculation, it will not change the relative difference
among populations because the same set of coefficients were
applied to all populations (5). If mutations have different fitness
effects across heterogeneous global environments, then the val-
ues of mutation load will change. Indeed, a proportion of the
alleles may be locally adaptive, or neutral, and hence the sign of
the selection coefficient for the mutation would be misestimated
in our analysis. For example, the Duffy null allele is classified as
a large-effect mutation using GERP (RS = 4.27) and is found at
high frequency in western Africa; however, it has likely increased
in frequency due to positive selection as a response to malaria
(57). Recent genome-wide studies have stressed the paucity of
selective sweeps in the human genome (35, 58, 59); only 0.5% of
nonsynonymous mutations in 1000 Genomes Pilot Project were
identified has having undergone positive selection. Others have
emphasized evidence for pervasive adaptive selection (60, 61)
and a variety of studies have identified specific beneficial alleles
locally adapted to high altitude, immune response, and pigmenta-
tion (62–64). We considered local adaptive evolution by examining
highly differentiated alleles in our dataset, that is, alleles that differ
by 80% in frequency between a pair of populations, indicative of a
strong local adaptation. We find that highly differentiated alleles
have the same GERP score distribution as nondifferentiated alleles,
indicating there is little reason to believe that most large- and ex-
treme-effect mutations have been subjected to strong local adap-
tation (SI Appendix, Fig. S20; also see ref. 65). We conclude that the
raw, calculated mutational burden may differ across human pop-
ulations, although the effects of positive selection, varying envi-
ronments, and epistasis have yet to be explored and remain a
significant challenge to fully understanding mutational burden.

Conclusions. A major difference between our work and previous
results is the interpretative framework we present, which un-
derlines the role of range expansions out of Africa to explain
patterns of neutral and functional diversity. Whereas previous
comparisons between African and non-African diversity attrib-
uted the observed increased proportion of deleterious variants in
non-Africans to the OOA bottleneck (10), our study shows that a
single bottleneck is not sufficient to reproduce the gradient we
observe in the number of deleterious alleles per individual with
distance from Africa (Fig. 2). Taking into account the range
expansion of modern humans (66) sheds new light on this
apparent controversy. Finally, we note that recent simulation work

(4) suggests that the impact of a bottleneck on the efficacy of
natural selection depends critically on the distribution of fitness
and dominance effects as well as postbottleneck demographic
history. Although these models and parameter choices clearly
affect the interpretation of the pattern of deleterious alleles across
populations, we find empirical evidence for significant differences
in deleterious alleles as tabulated by a variety of statistics across
the spectrum of human genetic diversity.

Materials and Methods
Samples and Data.Aliquots of DNA isolated from cultured lymphoblastoid cell
lines were obtained from Centre d’Étude du Polymorphisme and prepared
for both full genome sequencing on Illumina HiSeq technology and exome
capture with an Agilent SureSelect 44Mb array. One hundred one base pair
read-pairs were mapped onto the human genome reference (GRCh37) using
a mapping and variant calling pipeline designed to effectively manage
massive amounts of short-read data. This pipeline followed many of the best
practices developed by the 1000 Genomes Project Consortium (34).

Variant Annotation. Ancestral state was inferred based on orthologous re-
gions in a great ape and rhesus macaque phylogeny as reported by Ensembl
Compara and used by the 1000 Genomes Project. To determine the biological
impact of a variant we used GERP score (30) as a measure of conservation
across a phylogeny. Positive scores reflect a site showing a high degree of
conservation, based on the inferred number of “rejected substitutions”
across the phylogeny. GERP scores were obtained from the University of
California, Santa Cruz genome browser (hgdownload.cse.ucsc.edu/gbdb/
hg19/bbi/All_hg19_RS.bw) based on an alignment of 35 mammals to human.
The allele represented in the human hg19 sequence was not included in the
calculation of GERP RS scores. The human reference sequence was excluded
from the alignment for the calculation of both the neutral rate and site-
specific “observed” rate for the RS score to prevent any bias in the estimates.
In addition to GERP, we also used PhyloP scores (51) as measures of genomic
constraint during the evolution of mammals. We used the PhyloPNH scores
computed in Fu et al. (11) from the 36 eutherian-mammal EPO alignments
[available in Ensembl release 70 (67)], which is also computed without using
the human reference sequence.

Classification of Mutation Effects by GERP Scores. Variants were classified as
being neutral, moderate, large, or extreme for GERP scores with ranges [−2,2],
[2,4], [4,6], and [6,max], respectively. The use of four “bins” of GERP scores
simplifies the range expansion simulations performed for distinct selection co-
efficients. For every individual the total number of derived deleterious counts
found in homozygosity (i.e., 2 × HOM), and the total number of deleterious
counts [i.e., HET + (2 × HOM)] within each category was recorded.

Individual-Based Simulations. To simulate changes in heterozygosity, we
modeled human range expansion across an array of 10 × 100 demes (32).
After reaching migration-selection-drift equilibrium, populations expand
into the empty territory, which is separated from the ancestral population
by a geographical barrier, through a spatial bottleneck (SI Appendix, Fig.
S21). After 3,000 generations, we computed the average expected hetero-
zygosity for all populations. The migration rate and selection coefficients
were adjusted to generate heterozygosity consistent with the observed
data, without formally maximizing the fit. The code used for simulations can
be downloaded from https://github.com/CMPG/ADMRE.

Calculating Load.Mutational load was calculated following Kimura et al. (36),
but using observed genotype frequencies instead of inferring them from
Hardy–Weinberg based on the allele frequencies. In this way, the fitness of
the heterozygotes and the homozygotes will be Whet = Aa × (1 − hs) and
Whom = aa × (1 − s), where Aa and aa are the genotype frequencies of the
heterozygotes and derived homozygotes, respectively. The fitness for a
given variant will be relative to that of the ancestral variant, which for
numerical convenience is set to 1. The relationship between fitness and load
is Lv = 1 –W = 1 – (1 –Whet –Whom), and the total population load is the sum
of the load for all variants, LT =

P
vLv.
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