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SUMMARY

Ephs are transmembrane receptors that mediate
cell-cell signaling. The N-terminal ectodomain binds
ligands and enables receptor clustering, which acti-
vates the intracellular kinase. Relatively little is
known about the function of the membrane-proximal
fibronectin domain 2 (FN2) of the ectodomain. Multi-
scale molecular dynamics simulations reveal that
FN2 interacts with lipid bilayers via a site comprising
K441, R443, R465, Q462, S464, S491, W467, F490,
and P459–461. FN2 preferentially binds anionic
lipids, a preference that is reduced in the mutant
K441E + R443E. We confirm these results by
measuring the binding of wild-type and mutant FN2
domains to lipid vesicles. In simulations of the com-
plete EphA2 ectodomain plus the transmembrane
region, we show that FN2 anchors the otherwise
flexible ectodomain at the surface of the bilayer.
Altogether, our data suggest that FN2 serves a dual
function of interacting with anionic lipids and con-
straining the structure of the EphA2 ectodomain to
adopt membrane-proximal configurations.

INTRODUCTION

The ephrin receptors (Ephs) are the largest group within the fam-

ily of receptor tyrosine kinases (RTKs). Ephs play critical roles in

many developmental processes (Herbert and Stainier, 2011; Lai

and Ip, 2009) and are implicated in a number of cancers (Herbert

and Stainier, 2011; Lai and Ip, 2009; Pasquale, 2010). Ephs are

grouped into two classes, A and B. Class A Ephs bind preferen-

tially to ephrin A ligands, which are membrane-tethered through

a glycosylphosphatidylinositol anchor. Class B Ephs preferen-

tially bind ephrin Bs, which are attached to the membrane via a

transmembrane (TM) helix (Kullander and Klein, 2002). Cross-

interactions can occur between Eph A receptors and ephrin B

ligands and vice versa (Bowden et al., 2009; Himanen et al.,

2004; Qin et al., 2010). All Eph receptors share a common

domain architecture (Figure 1A). The ectodomain is made up of

a ligand-binding domain (LBD), which interacts with ephrin li-

gands, a Sushi domain, an epidermal growth factor-like (EGF)

domain, and two fibronectin type III domains (FN1 and FN2).

Thus, FN2 is the most membrane-proximal subdomain of the
ectodomain. The intracellular region contains a tyrosine kinase

domain, a sterile a-motif domain, and, sometimes, a PDZ-bind-

ing motif. A single TM helix, flanked by juxtamembrane linkers,

connects the ectodomain and the intracellular region. Recent

crystal structures of the entire ectodomains of two Eph recep-

tors, EphA2 and EphA4, in complex with and without ephrin

ligands, have revealed that ligand-induced Eph clustering is

driven to a large extent by the N-terminal LBD and Sushi do-

mains (Himanen et al., 2010; Seiradake et al., 2010, 2013; Xu

et al., 2013).

Although detailed structural data are now available for all intra-

and extracellular Eph domains (Davis et al., 2008; Himanen,

2011; Lee et al., 2012; Stapleton et al., 1999; Wiesner et al.,

2006; Wybenga-Groot et al., 2001), and models of the TM helix

dimer have been developed (Bocharov et al., 2008, 2010; Cha-

vent et al., 2014; Sun et al., 2015), it remains poorly understood

how the receptor is oriented relative to the lipid bilayer compo-

nent of the cell membrane. An intriguing feature found in all crys-

tal structures of the EphA2 ectodomain solved to date is that the

membrane-proximal FN2 domain is oriented at an angle to the

remainder of the ectodomain (Himanen et al., 2010; Seiradake

et al., 2010). This suggests that the FN2 domain could lie on

the cell membrane ‘‘sideways on,’’ possibly presenting an

extended interaction surface to the headgroups of the lipid mol-

ecules via one of its b sheets. Significantly, both computational

(Arkhipov et al., 2013, 2014; Franco-Gonzalez et al., 2014; Kas-

zuba et al., 2015; Kästner et al., 2009) and experimental (Roberts

et al., 2012) studies suggest that other RTKs may interact with

lipid bilayers via their ectodomains.

We have explored the interaction of the EphA2 FN2 domain

with model lipid bilayers. Molecular dynamics (MD) simulations

provide a powerful computational tool to explore the interactions

between proteins and membranes (Biggin and Bond, 2015; Li

et al., 2015; Stansfeld and Sansom, 2011b). This approach

was previously used to define the interactions of peripheral

membrane proteins and domains (e.g. PH [Lumb and Sansom,

2012], C2 [Jaud et al., 2007], PTEN [Kalli et al., 2013, 2014],

and Talin [Kalli et al., 2010]) at the surface of model membranes,

yielding results that are in good agreement with biophysical and

mutational data. MD simulations have also been used to model

adsorption of the FNIII9 domain of fibronectin on (non-biological)

surfaces (Kubiak-Ossowska et al., 2014). Here, we used multi-

scale MD simulations to define a potential membrane-binding

motif on the surface of the EphA2 FN2 domain. We show that

this membrane-binding motif includes positively charged resi-

dues that recruit negatively charged lipids to the site of mem-

brane-protein interaction. Charge-swap mutations in the FN2
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Figure 1. EphA Receptor

(A) Schematic diagram of an EphA receptor, showing its constituent domains

and the interaction with an ephrin A ligand. The image on the right shows the

structure of the membrane-proximal FN2 domain of the EphA2 receptor

indicating key residues.

(B) Snapshots at the start and end of a CG simulation. At the end (t = 2000 ns),

the FN2 domain interacts with the lipid bilayer headgroups (PC in tan; PG in

red). The colors of the main residues interacting with the membrane corre-

spond to those used in (A). See also Figure S1 for the setup of the coarse grain

systems and the self-assembly protocol.

(C) Evolution of the distance between the center of mass of the bilayer and of

the FN2 domain as a function of time for four CG simulations probing the

interaction of the FN2 domain with a PC-PG bilayer. The dashed line indicates

the approximate distance (50 Å center of domain to center of bilayer) when the

protein is contacting the surface of the membrane.

See also Figures S2 and S3.

Table 1. Summary of the Simulations

System Granularity Particles Duration (ms)

FN2 WT + PC bilayer CG 17,063 4 3 6.0

FN2 WT + PC bilayer

(self-assembly)

CG 9,575 4 3 2.5

FN2 WT + PC/PG

bilayer

CG 17,407 2 3 1.0, 2 3 2.0

FN2 K441E + R443E +

PC/PG bilayer

CG 17,430 1 3 1.0, 1 3 2.0,

2 3 3.0

FN2 K441 + R443E +

R465E + PC/PG bilayer

CG 17,442 1 3 1.0, 1 3 2.0,

1 3 5.0, 1 3 6.0

FN2 K441 + R443E +

R465E + F490A +

PC/PG bilayer

CG 17,447 1 3 2.0, 1 3 4.0,

1 3 5.0, 2 3 6.0

FN2 K441 + R443E +

R465E + F490A +

W467A + PC/PG bilayer

CG 17,440 2 3 2.0, 2 3 7.0

Ectodomain (‘‘flat’’) +

TM + PC/PG bilayer

CG 196,851 1 3 10.0

Ectodomain (‘‘upright’’) +

TM + PC/PG bilayer

CG 295,445 1 3 10.0

Ectodomain dimer

(‘‘flat’’) + 2 TMs +

PC/PG bilayer

CG 189,251 1 3 10.0

Ectodomain dimer

(‘‘upright’’) + 2 TMs +

PC/PG bilayer

CG 292,430 1 3 10.0

FN2 WT + PC/PG bilayer AT 89,156 1 3 300 ns

FN2+TM WT + PC/PG

bilayer

AT 85,187 1 3 20 ns

Simulations were performed in mixed PC/PG or in PC bilayers. See

also Table S1 for further details of FN2 domain interactions with the

membrane.
membrane-binding site reduce the recruitment of negatively

charged lipids in silico, and abolish preferential binding to nega-

tively charged lipids in a biophysical binding assay. We further

demonstrate that the interactions of FN2 with lipids stabilize

the otherwise flexible EphA2 ectodomain in two main conforma-

tions relative to themembrane. This was extended to simulations

of two different models of the EphA2 dimer: one corresponding
338 Structure 24, 337–347, February 2, 2016 ª2016 The Authors
to a liganded conformation of the ectodomain, and one to an un-

liganded conformation. Taken together, our results reveal a

previously unknown selective lipid-binding motif on the EphA2

ectodomain that defines the receptor’s architecture at the

membrane.

RESULTS

Interaction of the FN2 Domain with Lipids
We performed coarse-grained (CG) dynamics simulations (sum-

marized in Table 1 and Figure S1) with a PC (phosphatidylcho-

line) zwitterionic lipid bilayer, using a protein/bilayer encounter

protocol (Kalli and Sansom, 2014; Kalli et al., 2010) to determine

the preferred orientation and interaction of FN2 with a lipid

bilayer. The initial position of the FN2 domain was such that

the protein was distant (�120 Å) from the center of mass of the

membrane (Figure 1B and Experimental Procedures). We per-

formed multiple CG simulations, each lasting 6 ms, starting with

different protein orientations with respect to the membrane. In

three out of four simulations the protein interacted transiently

with the membrane without adopting a stable orientation (Fig-

ure S2). In one simulation the FN2 domain bound to the mem-

brane after �1.4 ms. We also used a membrane self-assembly

approach (Bond and Sansom, 2006; Bond et al., 2008) (see



Figure 2. Interaction of FN2 Domain with a

Bilayer

(A) The histogram shows the normalized average

number of contacts (see Experimental Procedures for

details) to the bilayer as a function of residue number

for the wild-type (WT) FN2 domain. The blue curve

above the histogram displays the difference between

the number of contact for the anionic (PG) and zwit-

terionic (PC) lipid: positive values depict a preference

of the residue for contacts to the anionic lipid head-

groups.

(B) Occupancy density plots of lipid phosphate parti-

cles projected onto the bilayer plane. The red area

indicates the presence of only anionic lipid head-

groups, while the light-brown area represents the

location of zwitterionic lipids and dark brown indicates

the presence of both zwitterionic and anionic lipids.

The black and white dashed line represents the FN2

domain. Plots are shown for the wild-type (WT) (left)

and K441E + R443E mutant (right) domains.

(C) Normalized average number of contacts as a

function of residue number for the K441E + R443E

mutant.

See also Figure S4.
Experimental Procedures) to evaluate whether the membrane-

bound form observed was the most stable arrangement of the

FN2 domain at a bilayer surface. In four simulations, each lasting

�2.5 ms, we observed the same stable interaction between the

FN2 domain and the lipid bilayer (Figure S1C). The main interact-

ing FN2 residues are positively charged (K441, R443, and R465),

polar (Q462, S464, and S491), or aromatic (W467 and F490).

Three prolines (P459–461) reach deep into the membrane where

they interact predominantly with the aliphatic lipid tails (Figures

1A, S3A, and S3B).

The presence of positively charged residues in the FN2-lipid

interaction surface prompted us to also perform simulations us-

ing an anionic model membrane, thus mimicking anionic sur-

faces found in mammalian cell membranes. Negatively charged

lipids such as the glycosphingolipid GM3 (Posse de Chaves and

Sipione, 2010) are known to modulate RTK activity, for example

that of the epidermal growth factor receptor (EGFR) (Coskun

et al., 2011). However, such glycolipids exhibit rather complex

behavior, including nanoscale clustering, in mixed lipid bilayers
Structure 24, 337–3
(Ingólfsson et al., 2014; Koldsø et al.,

2014). We therefore decided to use, as a first

approximation to the anionic membrane sur-

face, a simpler lipid, namely phosphatidyl-

glycerol (PG). We therefore constructed a

model bilayer of 60% zwitterionic PC and

40% anionic PG (Figure S1B). With this

anionic lipid bilayer, we observed stable

interactions for all four of the simulations

performed (Figures 1B and 1C). The FN2

surface interacting with the anionic bilayer

was essentially the same as previously

observed using neutral PC bilayers (Fig-

ure 2A). The N-terminal region of the FN2

membrane-binding motif contains a posi-

tively charged motif, including K441 and
R443 (Figure 3A), which interacts preferentially with anionic lipids

(Figure 2A). At the end of the simulation, the PG lipids formed a

negatively charged ‘‘halo’’ around the bound FN2 domain (Fig-

ure 2B). This preference for anionic lipids was quantified by

calculating radial distribution functions (RDFs) for the lipids

around the protein (Figure 3B). This analysis yielded a ratio of

the first RDF peak (corresponding to direct protein/lipid interac-

tions) for PG/PC of 2.5:1. Given the composition of the bilayer,

this result correspond to a �4-fold binding preference of FN2

for anionic over neutral (i.e. zwitterionic) phospholipids. To refine

our model, we converted the FN2 domain, as found in the last

frame of the CG simulation, into an atomistic (AT) model (see

Experimental Procedures). We simulated the resultant atomistic

system for 0.3 ms. In this AT model, FN2 remained stably bound

to the membrane without significant changes in orientation (Fig-

ure S5). Compared with the CG models, only minor differences

were found, namely small increases in N-terminal interactions

with charged residues alongside small decreases in interactions

of apolar and aromatic residues (Figure S3C). We did not
47, February 2, 2016 ª2016 The Authors 339



Figure 3. Preference of the FN2 Domain for Anionic Lipids

(A) The FN2 domain oriented to show its observed orientation when interacting

with a membrane (lipid headgroup positions are depicted by a dashed gray

line) for both the wild-type (WT) and the K441E + R443E mutant domain. The

protein surface represents the electrostatic potential around the protein

calculated with APBS (Baker, 2001).

(B) Radial distribution functions showing the distribution of anionic (PG; red)

and zwitterion (PC; brown) lipid headgroup with respect to the protein. Each

curve is the average of four simulations.

(C) Lipid vesicle pull-down experiment, showing the interaction of FN2 do-

mains with PC, PC + PG, or PG lipids. Intensities measured on western blots

were normalized using lane 1 (wild-type [WT] protein pelleted with PC) and

averaged. In each set, we normalised the data using the corresponding value

measured for wild-type protein pelleted with DOPC vesicles. After normali-

zation, we calculated averages and SEM for all experiments.
observe differences in the density of PG lipids around the FN2

domain after 0.3 ms of simulation.

To validate our results experimentally, we performed lipid

vesicle pull-down assays with isolated FN2 domain, expressed

in and purified from HEK293T cells (Figure 3C). We used

lipid vesicles composed of either PC or PG or of a 1:1

mixture of PC and PG. Consistent with the in silico results,

we found that FN2-binding to these vesicles correlates

with the ratio of PG/PC, with a preference for the negatively

charged lipid PG. We note that there is no significant difference

between PC + PG and PG liposomes. The anionic lipid-binding

sites may be already fully saturated in the mixed PC + PG lipo-
340 Structure 24, 337–347, February 2, 2016 ª2016 The Authors
somes, such that no further increase is seen with the pure PG

vesicles.

Effects of Mutations on the FN2 Preference for Anionic
Lipids
Our simulation highlighted a strong spot of anionic lipid attrac-

tion around the residues K441 and R443 (see curve in Fig-

ure 2A). We mutated both residues to glutamic acids

(K441E + R443E) to assess the contribution of charge effects

on FN2-lipid binding specificity (Figure 3A). We performed

four simulations with the mixed PC-PG bilayer. The simulations

showed that mutant FN2 still interacts with the membrane via

the same motif as with the wild-type domain, although the

time taken to reach the membrane-bound orientation was

longer (Table S1). Importantly, the mutations had an impact

on the FN2 domain’s preference for anionic lipids. RDFs re-

vealed less anionic lipid around the mutant FN2 domain

compared with the wild-type: g(r) for the first peak changes

from 7.5 for the wild-type (Figure 3B) to 5.5 for the mutant.

The density of PG lipids at the membrane-protein interface

was lower for the mutant than for the wild-type (Figure 2B). Res-

idues 440–450 also interacted less strongly with the membrane

in the mutant compared with the wild-type (Figure 2C). In

contrast, the K441E + R443E mutations had no significant effect

on FN2 interaction with PC lipids. We extended the charge-

swap mutations to include R465E (Figure S4A). The protein still

interacted with the membrane, although for one repeat it did not

form a stable interaction after 6 ms of simulations. The anionic

lipid preference profile for this triple mutant (i.e. K441E +

R443E + R465E) was very similar to that of the K441E +

R443E mutant. We continued to add further mutants, adding

F490A and W467A to the triple mutant (Figures S4B and

S4C). Again, these mutants did not fully abolish the interaction

with the membrane, but the time elapsed before an interaction

was formed did increase slightly in comparison with the other

mutants (Table S1). Thus, the clearest effect was for the double

K441E + R443E mutant, which seems to almost fully abolish the

preference for anionic lipids.

To validate our simulation results, we produced the double

mutant protein FN2 K441E + R443E in vitro and performed

vesicle pull-down assays. Unlike the wild-type, mutant FN2

protein did not bind better to vesicles of PG or of PC + PG

compared with PC (Figure 3C). We conclude that the preferential

interaction of FN2 with anionic lipids is dependent on the

membrane-binding motif described above, containing K441

and R443.

Modeling EphA2 Signaling Units in a Lipid Bilayer
Environment
The FN2 domain orientation at the membrane surface was then

used to construct more complex assemblies, including mono-

mers and dimers of EphA2 receptors (i.e. the ectodomain + TM

helix) with the membrane, thus integrating structures from both

crystallography (Seiradake et al., 2010) and nuclear magnetic

resonance (NMR) (Bocharov et al., 2010) experiments.

We first constructed an atomistic model of the FN2 domain

attached to the TM helix corresponding to the NMR structure

of the TM dimer (Bocharov et al., 2010) (see Experimental Proce-

dures). We performed a short (20 ns) AT simulation to relax the



Figure 4. Integrative Model of the EphA2 FN2 Domain plus Trans-

membrane Helix Interacting with a Membrane

(A) All-atommodel of the FN2 domain and the transmembrane domain at 20 ns

during an AT MD simulation. The coordinates of the model of the FN2 and TM

domains at the membrane are available in Supplemental Information. See also

Figure S5.

(B) Models of liganded (red) and unliganded (green) state of the EphA2 ecto +

TM domains in a bilayer (gray). The inset focuses on residues of the 367–375

loop of the FN1 domain relative to the membrane (in gray).

(C) Snapshots of two configurations of the ecotodomains at the end of 10-ms

simulations. On the left, the configuration obtained starting from the ligand-

bound state of the ectodomain stayed relatively orthogonal to the membrane,

while starting from the ligand unbound state the simulation resulted in

‘‘collapse’’ of the ectodomain onto the membrane, such that the N-terminal

LBD also interacted with the lipids.
resultant model (Figure 4A). The TM helix remained tilted in the

membrane, as previously described for the dimeric TM domain

structure (Bocharov et al., 2010). The linker remained close to

the FN2 domain during the simulation. Residues L535, A536,

and V537, which adopt a helical conformation in the NMR struc-

ture (Bocharov et al., 2010), had a tendency to unfold at the

bilayer surface during our MD simulation, but the rest of the helix

remained stable.

Based on this model, we then constructed two atomistic

configurations of the monomer comprising the EphA2

ectodomain + TM helix embedded in the lipid bilayer. This cor-

responds to a construct that, in vitro, is functionally capable of

clustering at the cell surface in response to ligand stimulation

(E.S., unpublished data). We generated models based on the li-

ganded conformation (PDB: 2X11; but without the ephrin ligand)

and on the unliganded (PDB: 2X10) conformation (see also

Experimental Procedures). It was previously reported that

the FN1-FN2 linker can undergo substantial conformational

changes, leading to different structures for the FN1-FN2 do-

mains with the FN2 domain rotated by �70� between the two
models (Seiradake et al., 2010). The rest of the ectodomain

(i.e. the LBD to EGF domain) appears to be less flexible. Here,

the positioning of the FN2 domain onto the membrane surface

as directed by our simulations provided a novel insight into

the potential consequences of this structural difference for re-

ceptor orientation at the cell surface. The anchoring of the

FN2 domain to the membrane surface yields two very different

orientations of the receptor as a whole driven by the FN1-FN2

linker difference. The unliganded configuration lies almost flat

on the membrane surface, while the ephrin-bound conformation

adopts a more upright orientation (Figure 4B). Neither orienta-

tion leads to major steric clashes of the ectodomain with the

membrane, although loop residues 367–375 of the FN1 domain,

which were not ordered in the original structure, may point to-

ward and form close contacts with the membrane (Figure 4B,

inset).

We used the monomeric EphA2 ecto + TM models described

above to initiate two CG simulations (each of 10 ms duration; see

Figure 4C and Experimental Procedures). Themodel in which the

ectodomain is lying ‘‘flat’’ on the surface of the membrane

(derived from the unliganded EphA2 ectodomain structure,

PDB: 2X10) resumed a stable position in which both the FN2

domain and the LBD domain interact with the membrane. The

LBD residues involved in this interaction were largely aromatic.

Both the FN2 and LBD domain interactions attract anionic lipids

(Figure 6A). The ephrin ligand-binding site remains accessible in

this conformation, i.e. it faces upward, away from the membrane

(Figure 6B). During the 10-ms simulation of the ‘‘upright’’ model

(derived from the ephrin-bound EphA2 ectodomain structure,

PDB: 2X11, albeit without the ligand present during the simula-

tion), the flexible FN1-FN2 linker allowed for movement of the

EphA2 ectodomain, although the receptor remained in a gener-

ally upright orientation (Figures 4C and 5A). The distance be-

tween the LBD domain and the membrane ranged from 75 to

150 Å (Figure 5B). As previously shown for the FN2 domain alone,

the RDF calculation for the two ectodomain configurations high-

lighted a preference of anionic lipid around the FN2 domain (data

not shown). We then simulated a K441E + R443Emutant, as pre-

viously done for the FN2 domain only, also in the context of the

entire ectodomain in the upright conformation. Interestingly,

this mutant is destabilized in comparison with the wild-type,

and after 6 ms the ectodomain lies flat on the membrane, resem-

bling the configuration of the unliganded structure (Figure 5C).

Following this change in orientation, the interactions of this

mutant with the membrane are very similar to those of the unli-

ganded structure (Figure S6). Taken together, our data suggest

that, while the FN2 domain is constrained by tight interactions

with the lipid bilayer surface, flexible regions upstream of FN2

allow for a range of EphA2 ectodomain orientations relative to

bilayer/membrane.

We extended our study of the monomeric receptor by simula-

tion of crystal-structure-based dimers of the liganded and unli-

ganded forms (see Experimental Procedures). We note that, as

for the monomeric models, the creation of the dimers did not

lead to any major steric clashes with the membrane. After

10 ms of simulations we noted dynamic differences when

compared with the monomer simulations. For the upright dimer

the configuration stayed very stable during the whole simulation,

unable to adopt a conformation as flexible as the monomer
Structure 24, 337–347, February 2, 2016 ª2016 The Authors 341



Figure 5. Flexibility in the Liganded EphA2

Monomer and Dimer Ectodomain + TM

Domain Systems

(A and B) Flexibility of the wild-type monomer (WT

and K441E + R443E mutant) (A) showing that while

for the majority of the time the ectodomain is

approximately orthogonal to the membrane, there is

a degree of flexibility. Stars depict bent or lying-on-

the-membrane orientations of the ectodomain, as

presented in (B), which also provides the distance (d)

of the LBD from the center of the bilayer.

(C) Flexibility of the K441E + R443E monomer and a

snapshot at the end of the simulation.

(D) Flexibility of the WT dimer system. To evaluate

ectodomain flexibility in our simulations, we calcu-

lated the dot product between the z vector (i.e.

perpendicular to the membrane) and a vector

formed by the centers of mass of the LBD and FN2.

The dot product is close to 1when the ectodomain is

orthogonal to themembrane and close to 0when the

ectodomain lies flat on the surface of themembrane.
(Figure 5D). For the unliganded dimer, as was seen for themono-

mer, the ectodomains quickly (within a few tens of nanoseconds)

moved down onto the bilayer surface where they remained for

the whole 10 ms. One monomer is positioned on top of the other,

resulting in asymmetrical interactions with the membrane (Fig-

ure 6C). The first monomer presents interactions equivalent to

those seen in the monomeric simulations, interacting mainly

with themembrane through theFN2domain and LBD (Figure 6D).

The asymmetry is also visible in terms of lipid preference be-

tween the two monomers. Interestingly, asymmetric receptor di-

mers are suggested to occur in other signaling systems, such as

the EGFRs (Arkhipov et al., 2014).
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DISCUSSION

We have presented MD simulations and

biophysical data showing that the EphA2

ectodomain harbors a membrane-binding

motif in the FN2 domain which preferen-

tially interacts with anionic lipids. The cell

membrane is composed of different lipids,

often arranged into specific domains,

whose biological functions are only begin-

ning to emerge. For example, lipid (nano)

domains (sometimes denoted as ‘‘lipid

rafts’’) are densely packed regions that

are enriched in signaling proteins and play

important roles in membrane signaling

events (Simons and Toomre, 2000). The

lipid composition of these nanodomains

differs from the average, overall neutral,

composition of the mammalian cell mem-

brane (van Meer et al., 2008). Nanodo-

mains are often enriched in anionic lipids

(Pike et al., 2002), such as glycolipid GM3

(Koldsø et al., 2014). Activated EphA2 is

known to localize to lipid nanodomains

(Chakraborty et al., 2012) and requires the

presence of negatively charged lipids for
at least some of its functions (Tawadros et al., 2012). As demon-

strated previously for the EGFR (Hofman et al., 2008), interaction

of EphA2with specific anionic lipids could act as amechanism to

trigger the coalescence of lipid nanodomains to form more

extended signaling platforms. Conversely, the clustering of

anionic lipids around EphA2 could guide the receptor toward

specific lipid domains, in agreement with the lipid shells theory

(Anderson and Jacobson, 2002).

The simulations of the EphA2 ecto + TM domains suggest that

the receptor adopts at least two different conformations at the

cell surface. In one arrangement the receptor ectodomain sits

‘‘upright’’ on the membrane while in the second it lies ‘‘flat’’ on



Figure 6. EphA2 Ectodomain Interacting with the Membrane Starting from the Unliganded Conformation

(A) Histogram showing the normalized average number of contacts (see Experimental Procedures for details) to the bilayer as a function of residue number for the

LBD and FN2 domain, which are interacting with the membrane (Figure 4C).

(B) Main residues of the LBD domain interacting with the membrane. The ephrin-binding site is not involved.

(C) A snapshot of the unliganded dimer at the end of the simulation showing the asymmetric interaction of the two monomers with the membrane.

(D) Histogram of the normalized average number of contacts for the two monomers starting from the unliganded dimer conformation.

See also Figure S6.
the membrane surface. Both conformations are consistent with

known biological receptor functions. In the upright conformation

the receptor LBD is in a position presumably compatible with

binding ephrin ligand presented by a neighboring cell (Figure 7).

This conformation also allows packing of the receptor into dense

signaling clusters as previously proposed based on crystal

structures (Himanen et al., 2010; Seiradake et al., 2010). Our

simulations suggest that the FN2-membrane interaction we

describe here has a stabilizing effect on this EphA2 conforma-

tion, which can be removed by mutation of the relevant mem-

brane-binding site on FN2. The flat orientation of the EphA2

ectodomain on the membrane surface could represent a

functionally distinct receptor conformation, as postulated for

EphA4 based on a recent crystal structure data, and seems to

also exist for the EphA2 receptor, perhaps in a less stable confor-

mation due to a smaller interface between the FN2 and LBD do-

mains (Xu et al., 2013). As recently suggested by Nikolov et al.

(2014), the two EphA2 conformations we describe may reflect

clustering at different receptor densities, with the ‘‘flat’’ configu-
ration corresponding to the formation of less tightly packed clus-

ters compared with the ‘‘upright’’ conformation. Cluster density

may in turn have an effect on the signaling outcome (Lohmüller

et al., 2013). Xu et al. (2013) have postulated that the ‘‘flat’’

configuration may also help to create a larger platform to

propagate ephrin-Eph signaling. Nevertheless, as seen for other

RTKs, such as EGFR, it is still not clear how membrane lipid

composition may favor active or inactive forms (Arkhipov

et al., 2013, 2014; Kaszuba et al., 2015; Kästner et al., 2009;

Webb et al., 2008). Furthermore, the membrane environment

(Arish et al., 2015) and/or the glycosylation of the protein (Kas-

zuba et al., 2015) may impact on the behavior of RTKs. Interest-

ingly, the ‘‘flat’’ EphA2 conformation appears to be compatible

with ephrin ligand binding, as the main ephrin-binding site is

not obscured. This conformation could, for example, promote

in cis interaction with ephrins, also found in lipid nanodomains

(Gauthier and Robbins, 2003; Levental et al., 2010). This would

be in addition to a second in cis ephrin-binding site thought to

exist at the Eph FN domains (Carvalho et al., 2006; Falivelli
Structure 24, 337–347, February 2, 2016 ª2016 The Authors 343



Figure 7. EphaA2 Receptor Clustering

An integrated model (based on NMR and X-ray structural data in combination

with our ‘‘upright’’ simulation model of the ecto + TM domain in a bilayer) of the

structure of an Epha2 dimer is used to produce an illustrative model of EphaA2

receptor clustering. In the center (in yellow and orange) a dimer of receptor

interacting through the TM helices (PDB: 2K9Y) is shown, combined with (in

gray) the X-ray structures of an array of EphA2 receptors (Seiradake et al.,

2010) (PDB: 2X11). Ephrin ligands are shown in green and blue along with a

schematic representation of the bilayer of an opposing cell membrane (broken

wavy lines).
et al., 2013). Thus, the data presented here form the basis for

future work exploring in cis interactions of Eph receptors with

ephrin and other cell-surface molecules.

Eph receptors are known to dimerize and further cluster upon

ligand-induced activation. Our simulations show that the upright

orientation seemed to be less flexible than for the monomeric re-

ceptor, a characteristic that may help to retain a favorable

conformation to propagate formation of a signaling array by

addition of monomers (Seiradake et al., 2010). Singh et al.

(2015) proposed recently that the formation of unliganded di-

mersmight reduce EphA2 pro-tumorigenic signaling by reducing

the supply of free monomers. In our simulations, we can see that

the unliganded dimer configuration might sequester monomeric

forms at the membrane and potentially hide (by interactions with

the membrane surface) important binding sites for the seeding

effect (see Seiradake et al., 2010) including residues 246–248,

254–255–257, or 378 and 380 (Figure 6D, monomer 1). In our

model, the distance between the two TM helices is�52 Å, which

is in agreement with a separation of �48 Å from fluorescence

resonance energy transfer measurements (Singh et al., 2015).

We postulate that this configuration may impose some steric

constraints: on the extracellular LBD side the extension of the

signaling platform suggested by Xu et al. (2013) might be pre-

vented; and on the cytosolic side of the membrane the kinase
344 Structure 24, 337–347, February 2, 2016 ª2016 The Authors
domains might be held apart, preventing them from signaling

(Figure 6D).

The CG simulation protocol uses an elastic network model to

maintain the tertiary structure of the proteins (Bond et al., 2007;

Periole et al., 2009). This may dampen the larger-scale dynamic

of the systems, so that in the future extended atomistic simula-

tions could be used to further validate our model. Furthermore,

the use of a CG force field might be anticipated to restrict the

spatial and chemical resolution of protein/lipid contacts (Marrink

and Tieleman, 2013). It is encouraging that we obtain a good cor-

relation between simulation and experimental studies of the

anionic lipid-binding preference. Our results using this PC/PG

system will act as a stepping stone toward constructing more

biologically relevantmodels usingmulticomponent lipidmixtures

that better mimic the compositional complexity of living cell

membranes (Ingólfsson et al., 2014) aswell as the study of glyco-

sylation effects (as in recent studies of EGFR [Kaszuba et al.,

2015]).

Taken together, the biophysical and computational data pre-

sented here increase our molecular understanding of how

EphA2 receptors are oriented and function within a model lipid

membrane. Significantly, the model presented provides an

essential stepping stone toward the analysis of full-length Eph

receptor structure at the cell surface, its clustering (Figure 7),

and themechanism of how Eph receptors transfer signals across

the cell membrane.

EXPERIMENTAL PROCEDURES

System Construction

FN2 Domain Interacting with the Membrane

We used two different protocols. We coarse grained the FN2 domain (Fig-

ure S1A) using an in-house protocol. An elastic network was applied to further

constrain the tertiary structure of the protein, using a cut-off of 7 Å. We then

positioned the domain�120 Å away from the center of mass of the membrane

(Figure 1B) rotating it about the x, y, or z axes to create four different starting

orientations (Table S1). We used this protocol to assess the interaction of

the FN2 domain with a palmitoyloleoylphosphatidylcholine (POPC)membrane,

and with a mixed POPC/palmitoyloleoylphosphatidylglycerol (POPG) (3:2)

membrane. We also used the four different starting positions of the FN2

domain in a self-assembly approach whereby POPC lipids were initially in

random positions around the protein. We identified the most representative

structure of the FN2 domain interacting with the mixed PC/PG bilayer and con-

verted the system to an atomistic representation using a CG2AT protocol,

which has been used for a number of systems (Stansfeld and Sansom,

2011a). We then extracted one TM helix from the NMR structure of the

EphA2 TM dimer (PDB: 2K9Y) (Bocharov et al., 2010) to generate an AT model

of EphA2 FN2 fused to its TM helix in a PC/PG lipid bilayer. We modeled the

seven-residue extracellular juxtamembrane linker (sequence: S528–G533) be-

tween FN2 and TM domains using Modeller (Eswar et al., 2007). We then

applied the Alchembed method (Jefferys et al., 2015) to smoothly embed the

FN2 domain + TM helix in the bilayer.

Ectodomain Monomers Interacting with the Membrane

We constructed two different systems, corresponding to the ectodomain

monomers in an unliganded or liganded state using, respectively, one mono-

mer from the 2X10 or 2X11 PDB entries. In the latter case, we removed the

ephrin ligand. For each structure we used Modeller (Eswar et al., 2007) to

construct missing loops. In each case we then superposed the full EphA2 ec-

todomain structure onto our atomistic FN2 domain model attached to the TM

helix. We then concatenated the ectodomain part (i.e. LBD to FN1 domains) to

our model FN2 + TM in the membrane. We then extended the lipid bilayer to

create a large 4 3 4 patch of membrane. The resultant model was then

converted to coarse grain using an in-house script. We used the VMD

plugin mutator (http://www.ks.uiuc.edu/Research/vmd/plugins/mutator/) on

http://www.ks.uiuc.edu/Research/vmd/plugins/mutator/


the atomistic model of the liganded monomer to construct the K441E + R443

mutant, then coarse grained it as described above.

Ectodomain Dimers Interacting with the Membrane

Based on the atomistic monomer models, we constructed each dimer by

superimposing each of two ectodomain monomers onto the PDB structures

of the ectodomain + TM dimers, then placing the full dimer in the membrane.

We coarse grained the membrane and the proteins (making sure that we did

not link the monomers together by the elastic network) as described above.

We then applied the Alchembed methodology (Jefferys et al., 2015) to remove

clashes due to the insertion of the new monomer in the membrane.

CG MD Simulations

CG MD simulations were performed using GROMACS versions 4.5. and 4.6

(www.gromacs.org) (Hess et al., 2008) and the MARTINI 2.1 force field (Mon-

ticelli et al., 2008). For the PC membrane, a pre-assembled membrane

composed of 249 POPC molecules was used for the encounter protocol

while the self-assembly method involved 242 lipids. Water and counterions

were added to equilibrate the system. For the mixed PC/PG bilayer, we

used a pre-assembled bilayer from previous work (Kalli et al., 2010)

composed of 151 POPC and 98 POPG lipids. After 100 steps of steepest

descent, we performed 5 ns of equilibration before the production runs

(see Tables 1 and S1 for details). In the case of the self-assembly method,

after the 500 ns of self-assembly we performed 2 ms of simulation to assess

the stability of the system. The electrostatic/coulombic interactions were

shifted to zero between 0 and 12 Å and the Lennard-Jones interactions be-

tween 9 and 12 Å. A Berendsen thermostat with a reference temperature of

310 K in combination with a Berendsen barostat with a coupling constant of

1.0 ps, a compressibility of 5.0 3 10�6 bar�1, and a reference pressure

of 1 bar was used in the equivalent protocols published recently (Kalli

et al., 2011, 2013). The integration step was 40 fs. For the CG simulations

of monomers and dimers we used the same parameters as for the single

FN2 domain simulations with a coupling constant of 1.0 ps, a compressibility

of 3.0 3 10�4 bar�1, and a reference pressure of 1 bar to be consistent with

recent CG simulations of large membranes (Ingólfsson et al., 2014; van Eer-

den et al., 2015). The integration step was 20 fs.

AT MD Simulations

Atomistic simulations were carried out using the GROMOS96 43a1 force field

(Scott et al., 1999). Water and counterion molecules were added to equilibrate

the system. Then a 5,000-step steepest descent minimization was performed

followed by an equilibration phase. The production run was then performed for

300 ns. Long-range electrostatics (beyond 10 Å) were modeled using the par-

ticlemesh Ewald procedure. The same cut-off distancewas used tomodel van

der Waals interactions. The reference temperature was 310 K. The simulation

was performed at constant temperature, pressure, and particle number using

semi-isotropic pressure coupling with the Parrinello-Rahman barostat (Parri-

nello and Rahman, 1981) and the V-rescale thermostat (Bussi et al., 2007).

The integration time step was 2 fs.

Simulation Analysis

VMD (Humphrey et al., 1996) was used to render system structures and was

combined with Tcl scripts to analyze the simulations. Each simulation was

centered on the protein using the trjconv command provided by the

GROMACS 4.5.5 package. We used Tcl scripts in VMD and take a frame every

2 ns to calculate the number of contacts for each residue. We then concate-

nated the results of each simulation and normalized them to obtain the graphs

in Figures 3 and S3. We used the VMD plugin to perform radial distribution

calculation using NC3 beads for PC and GLH beads for PG lipids. We used

the Volmap VMD plugin on the last 200 ns of simulation to create the density

plot shown in Figure 2B.

FN2 Expression and Mutagenesis

Cloning

A construct coding for human EphA2 FN2 (residues 436–534, Uniprot: P29317)

was cloned into the AgeI-KpnI cloning site of a pHLsec vector (Aricescu et al.,

2006), also coding for an N-terminal secretion signal sequence and a C-termi-

nal polyhistidine tag. Point mutants (K441E + R443E) were generated using

PCR techniques.
Protein Purification

We expressed EphA2 FN2 (wild-type or mutant) transiently in HEK293T cells,

in the presence of kiffunensine (Aricescu et al., 2006). Proteins were purified

from cell culture medium using Ni-affinity chromatography. EphA2 FN2

domain does not contain native glycosylation sites, but the sequence of the

vector tag, together with the last residue in our construct (N534), introduced

an artificial glycosylation site at N534. This site was glycosylated in the wild-

type and mutant proteins (not shown). To remove the artificial glycan, we

treated our samples with EndoH (Grueninger-Leitch et al., 1996), and re-puri-

fied the proteins using size-exclusion chromatography.

Liposome Pull-Down Assay

We prepared lipid vesicles by drying dioleoylphosphatidylcholine (DOPC), di-

oleoylphosphatidylglycerol (DOPG), or a 1:1 (w/w) mixture of DOPG and DOPC

under constant argon flow to avoid oxidation. We re-suspended the resultant

lipid film in buffer (100 mM NaCl, 20 mM Tris [pH 7.5]) and sonicated the

mixture for 15 min to generate vesicles. Final lipid concentrations were

2 mg/ml. We mixed 100 ml of vesicle suspension with equal amounts of wild-

type or mutant EphA2 FN domain 2 protein, incubated these at room temper-

ature for 10 min, and centrifuged them at >20,0003 g for 10 min. We repeated

the experiments seven times. For each set the bound protein fractions were

visualized by western blot using mouse anti-pentaHis antibody (Qiagen).

Data analysis was done with ImageJ (Schneider et al., 2012). In each set, we

normalized the data using the corresponding value measured for wild-type

protein pelleted with DOPC vesicles. After normalization, we calculated aver-

ages and SEM from all experiments.
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Koldsø, H., Shorthouse, D., Hélie, J., and Sansom, M.S.P. (2014). Lipid clus-

tering correlates with membrane curvature as revealed by molecular simula-

tions of complex lipid bilayers. PLoS Comput. Biol. 10, e1003911.

Kubiak-Ossowska, K., Mulheran, P.A., and Nowak, W. (2014). Fibronectin

module FN III9 adsorption at contrasting solid model surfaces studied by

atomistic molecular dynamics. J. Phys. Chem. B 118, 9900–9908.

Kullander, K., and Klein, R. (2002). Mechanisms and functions of eph and eph-

rin signalling. Nat. Rev. Mol. Cell Biol. 3, 475–486.

Lai, K.-O., and Ip, N.Y. (2009). Synapse development and plasticity: roles of

ephrin/Eph receptor signaling. Curr. Opin. Neurobiol. 19, 275–283.

http://refhub.elsevier.com/S0969-2126(15)00497-9/sref5
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref5
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref5
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref7
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref7
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref10
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref10
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref11
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref11
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref11
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref12
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref12
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref12
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref13
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref13
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref13
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref14
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref14
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref15
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref15
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref15
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref16
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref16
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref16
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref16
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref18
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref18
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref19
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref19
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref19
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref20
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref20
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref20
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref24
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref24
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref24
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref25
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref25
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref25
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref26
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref26
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref26
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref27
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref27
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref29
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref29
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref29
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref29
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref30
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref30
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref30
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref30
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref31
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref31
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref33
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref33
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref33
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref34
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref34
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref34
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref35
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref35
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref35
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref36
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref36
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref36
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref37
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref37
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref37
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref38
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref38
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref38
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref39
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref39
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref39
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref39
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref40
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref40
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref40
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref40
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref41
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref41
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref41
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref41
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref42
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref42
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref42
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref43
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref43
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref43
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref44
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref44
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref45
http://refhub.elsevier.com/S0969-2126(15)00497-9/sref45


Lee, H.J., Hota, P.K., Chugha, P., Guo, H., Miao, H., Zhang, L., Kim, S.-J.,

Stetzik, L., Wang, B.-C., and Buck, M. (2012). NMR structure of a heterodi-

meric SAM: SAM complex: characterization and manipulation of EphA2 bind-

ing reveal new cellular functions of SHIP2. Structure 20, 41–55.

Levental, I., Grzybek, M., and Simons, K. (2010). Greasing their way: lipid mod-

ifications determine protein association with membrane rafts. Biochemistry

49, 6305–6316.

Li, J., Wen, P.-C., Moradi, M., and Tajkhorshid, E. (2015). Computational char-

acterization of structural dynamics underlying function in active membrane

transporters. Curr. Opin. Struct. Biol. 31, 96–105.

Lohmüller, T., Xu, Q., and Groves, J.T. (2013). Nanoscale obstacle arrays frus-

trate transport of EphA2-Ephrin-A1 clusters in cancer cell lines. Nano Lett. 13,

3059–3064.

Lumb, C.N., and Sansom, M.S.P. (2012). Finding a needle in a haystack: the

role of electrostatics in target lipid recognition by PH domains. PLoS

Comput. Biol. 8, e1002617.

Marrink, S.J., and Tieleman, D.P. (2013). Perspective on the Martini model.

Chem. Soc. Rev. 42, 6801–6822.

Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., and

Marrink, S.-J. (2008). The MARTINI coarse-grained force field: extension to

proteins. J. Chem. Theory Comput. 4, 819–834.

Nikolov, D.B., Xu, K., and Himanen, J.P. (2014). Homotypic receptor-receptor

interactions regulating Eph signaling. Cell Adh. Migr. 8, 360–365.

Parrinello, M., and Rahman, A. (1981). Polymorphic transitions in single crys-

tals: a new molecular dynamics method. J. Appl. Phys. 52, 7182.

Pasquale, E.B. (2010). Eph receptors and ephrins in cancer: bidirectional sig-

nalling and beyond. Nat. Rev. Cancer 10, 165–180.

Periole, X., Cavalli, M., Marrink, S.-J., and Ceruso, M.A. (2009). Combining an

elastic network with a coarse-grained molecular force field: structure, dy-

namics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–

2543.

Pike, L.J., Han, X., Chung, K.-N., and Gross, R.W. (2002). Lipid rafts are en-

riched in arachidonic acid and plasmenylethanolamine and their composition

is independent of caveolin-1 expression: a quantitative electrospray ioniza-

tion/mass spectrometric analysis. Biochemistry 41, 2075–2088.

Posse de Chaves, E., and Sipione, S. (2010). Sphingolipids and gangliosides of

the nervous system in membrane function and dysfunction. FEBS Lett. 584,

1748–1759.

Qin, H., Noberini, R., Huan, X., Shi, J., Pasquale, E.B., and Song, J. (2010).

Structural characterization of the EphA4-Ephrin-B2 complex reveals new fea-

tures enabling Eph-ephrin binding promiscuity. J. Biol. Chem. 285, 644–654.

Roberts, S.K., Tynan, C.J., Winn, M., and Martin-Fernandez, M.L. (2012).

Investigating extracellular in situ EGFR structure and conformational changes

using FRET microscopy. Biochem. Soc. Trans. 40, 189–194.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH image to

ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.

Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R.,

Fennen, J., Torda, A.E., Huber, T., Krüger, P., and Van Gunsteren, W.F.
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