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Summary

Semicompeting risks data arise when two types of events, non-terminal and terminal, are 

observed. When the terminal event occurs first, it censors the non-terminal event, but not vice 

versa. To account for possible dependent censoring of the non-terminal event by the terminal 

event and to improve prediction of the terminal event using the non-terminal event information, it 

is crucial to model their association properly. Motivated by a breast cancer clinical trial data 

analysis, we extend the well-known illness-death models to allow flexible random effects to 

capture heterogeneous association structures in the data. Our extension also represents a 

generalization of the popular shared frailty models that usually assume that the non-terminal event 

does not affect the hazards of the terminal event beyond a frailty term. We propose a unified 

Bayesian modeling approach that can utilize existing software packages for both model fitting and 

individual specific event prediction. The approach is demonstrated via both simulation studies and 

a breast cancer data set analysis.
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1. Introduction

Semicompeting risks data arise when two types of events, a non-terminal event and a 

terminal event are observed. When the terminal event occurs first, it censors the non-

terminal event. Otherwise the terminal event can still be observed when the non-terminal 

event occurs first [1, 2]. This is in contrast to the well-known competing risks setting where 

occurrence of either of the two events precludes observation of the other (effectively 

censoring the failure times) so that only the first-occurring event is observable. More 

information about the event times is therefore contained in semicompeting risks data than 

typical competing risks data due to the possibility of continued observation of the terminal 
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event after the non-terminal event. Consequently, this allows for modeling of the association 

between the non-terminal and terminal events without making unverifiable assumptions. 

Adequate modeling of the association is important to address the issue of dependent 

censoring of the non-terminal event by the terminal event [3, 4]. It also can allow modeling 

of the influence of the non-terminal event on the hazard of the terminal event and thus 

improve prediction of the terminal event [3].

Semicompeting risks data are frequently encountered. In oncology clinical trials, time to 

tumor progression and time to death of cancer patients from the date of randomization are 

typically recorded. It is generally expected that the two event times are strongly correlated. 

Main objectives of the trials usually include estimation of treatment effects on both of these 

events. When the time to death is the primary endpoint, there may also be great interest in 

predicting the overall survival based on disease progression to facilitate more efficient 

interim decisions in subsequent clinical trials [3]. It is therefore crucial to model the 

association between the two types of events adequately. Another semi-competing data 

example arises in AIDS treatment studies where the non-terminal event is first virologic 

failure and the terminal event is treatment discontinuation [5].

Semicompeting risks data have been popularly modeled using copula models [1, 2, 4, 6-14]. 

The copula model includes nonparametric components for the marginal distributions of the 

two types of events and an association parameter to accommodate dependence. However 

one contentious feature of the copula models is that the non-terminal event is specified as a 

latent failure time for any subject experiencing the terminal event first. Such a supposition is 

often considered unnatural in the classical competing risks setting [15], and those concerns 

carry over to the semi-competing risks setting. Xu et al. [15] suggested the well-known 

illness-death models to tackle both of these issues. Their approach not only allows for easy 

incorporation of covariates but also is based only on observable quantities; no latent event 

times are introduced. Their general illness-death models differentiate three types of hazards: 

hazard of illness, hazard of death without illness, and hazard of death with illness. 

Incorporation of covariates is achieved through proportional hazards modeling. 

Nonparametric maximum likelihood estimation (NPMLE) based on marginalized likelihood 

is used for inference.

Our research is motivated by randomized breast cancer clinical trial B-14 conducted by the 

National Surgical Adjuvant Breast and Bowel Project (NSABP) comparing the effect of 

tamoxifen with placebo on cancer recurrence [16, 17]. For each subject, the first recurrence 

at any anatomic site—be it local (or regional) or distant—is recorded. If a local recurrence 

occurs first, patients will continue to be followed up for the first recurrence at the distant 

location and hence both types of events may be observed. If distant metastasis was the first 

event, then reporting of additional local failure is not required; indeed, owing to likely 

clinical intervention upon detection of distant recurrence, the natural history of the local 

disease process would be interrupted. As such, local recurrence after distant recurrence will 

have a different biological and clinical interpretation than it will in the absence of distant 

recurrence. For these reasons, the data follow a semicompeting risks structure where the 

local failure is considered as non-terminal and distant failure as terminal [16]. Age and 

tumor size at baseline were also collected and are known prognostic factors for cancer 
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recurrence. Our objectives are two-fold. The first is to estimate the effects of baseline 

variables treatment, age and tumor size on both local and distant recurrences. It is likely that 

the treatment effect may be quite different on local and distant recurrences. It is also 

conceivable that the treatment effects may be different on direct distant recurrences and on 

distant recurrences after local recurrences. As such, the second objective is to predict distant 

recurrences using baseline prognostic factors and, as time progresses, local recurrences as 

well. The association between local and distant recurrences may depend on patient's age and 

tumor characteristics. Proper modeling of such association can lead to improvement both in 

terms of estimation efficiency and prediction accuracy.

Xu et al. [15] used a single gamma frailty term to model the association between the non-

terminal and terminal events mainly for mathematical convenience, as it leads to close-form 

expressions of the marginal likelihood. In addition to the restriction of using a single 

variable to capture all associations, it is also hard to extend the gamma frailty framework to 

incorporate covariates or random effects into modeling the association structure [18, 19]. 

For our purpose, we will extend the gamma frailty model to multivariate log-normal frailty 

models to analyze the motivating data set. The log-normal frailty models can easily 

incorporate covariates [18, 20-25]. Whereas our extension is theoretically straight-forward, 

our goal and contribution is to deal with multiple challenges arising in semi-competing risks 

and in our motivating example in a unified way.

Our extension also represents a generalization of the popular shared frailty models for joint 

modeling of non-terminal and terminal events [18, 19]. These shared frailty models can be 

restrictive because they usually assume that the effect of the non-terminal event on the 

terminal event hazard is captured solely by frailty terms. As a result, shared frailty models 

tend to put strong assumptions on the association structure and may be inadequate to capture 

relationships in the data due to time-varying processes leading to the non-terminal and 

terminal events, similar to the longitudinal data analysis setting [26]. In contrast, our general 

model assumes that the terminal event hazard function is possibly changed after 

experiencing the non-terminal event beyond what is accounted for by the frailty terms.

With the log-normal frailty model, it is unfortunately impossible to derive the marginal 

likelihood function in an explicit form, and as such, parameter estimation and inference 

relies on numerical algorithms [25]. In this paper, we propose using Bayesian Markov Chain 

Monte Carlo methods (MCMC) that have previously been applied in frailty models [23, 

27-30]. The Bayesian paradigm provides a unified framework for carrying out estimation 

and predictive inferences. In particular, we show that computation and modeling can be 

simply implemented using existing software packages such as WinBUGS [31], JAGS [32], 

and Stan [33]. In section 2 we describe the model formulation. In section 3, we present 

details of the Bayesian analysis including prior specification, implementation of the MCMC, 

and computation using existing software packages. In section 4, we discuss individual 

specific prediction of the terminal event. In section 5, we present results from some 

simulation studies. In section 6, we conduct a thorough analysis of the motivating dataset. 

We end the article with a brief discussion.
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2. Model and likelihood

Let T1 be the time to the non-terminal event, e.g., disease progression (referred to as illness 

hereafter), T2 be the time to the terminal event (referred as death hereafter), and C be the 

time to the censoring event (e.g. the end of a study or last follow-up assessment status). 

Observed variables consist of X1 = T1 ∧ T2 ∧ C, X2 = T2 ∧ C, δ1 = 1(T(1 ≤ T2 ∧ C), and δ2 

= 1(T2 ≤ C). Note that T2 can censor T1 but not vice visa, whereas C can censor both T1 and 

T2, just T2, or neither. In addition, a vector of covariates Z is observed. We assume that C is 

independent of the joint distribution of T1 and T2 given Z.

2.1 Models for semicompeting risks data

Semicompeting risks data such as these can be conveniently modeled using illness-death 

models [15]. These models assume individuals begin in an initial healthy state (state 0) from 

which they may transition to death (state 2) directly or may transit to an illness state (state 1) 

first and then to death (state 2) (see Figure 1). As in [15], the hazards or transition rates are 

defined as follows:

(1)

(2)

(3)

Equations (1) and (2) are the hazard functions for illness and death without illness, which 

are the competing risks part of the model. Equation (3) defines the hazard for death 

following illness. In general, λ3(t2|t1) can depend on both t1 and t2. These equations define a 

semi-Markov model. When λ3(t2|t1) = λ3(t2), the model becomes Markov. The ratio λ3(t2|

t1)/λ2(t2) partly explains the dependence between T1 and T2. When this ratio is 1, the 

occurrence of T1 has no effect on the hazard of T2. We refer models that force λ3(t2|t1) = 

λ2(t2) as “restricted models” and models without this assumption as “general models”.

To account for the dependency structure between T1 and T2, Xu (2010) introduced a single 

shared gamma frailty term γ to capture association among λ1(t1), λ2(t2) and λ3(t2|t1). Here 

we extend the association model using multivariate random effects. In particular, we specify 

the following conditional transition functions:

(4)

(5)

(6)
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where λ01(t1), λ02(t2) and λ03(t2|t1) are the unspecified baseline hazards; β1, β2 and β3 are 

vectors of regression coefficients associated with each hazard; z̃ usually consists of 1 and a 

subset of covariates from z, and b represents random effects that account for possible 

associations among the three hazards λ1(t1|z, b), λ2(t2|z, b) and λ3(t2|t1, z, b). For simplicity, 

hereafter we adopt the setting where the baseline hazard λ03(t2|t1) does not depend on t1. We 

assume a normal distribution for the random effects, b~N(0, Σ). The zero mean constraint is 

imposed so that the random effects represent deviations from population averages. The 

covariance matrix Σ is assumed to be unconstrained.

Models (4) - (6) allow multivariate random effects with arbitrary design matrix in the log 

relative risk. In its simplest form, when z̃ = 1, the frailty term b is reduced to a univariate 

random variable that accounts for the subject-specific dependency of three types of hazards. 

The models in Xu et al. (2010) belong to this simple case where they assume that exp(b) 

follows a gamma distribution. However, in many cases, random effects models that 

incorporate covariates such as clinical center may better account for the correlation structure 

in the data. Then the term z̃′b can be used to incorporate these random effects. For example, 

clustered semicompeting risks data frequently arise from oncology trials evaluating 

efficacies of different treatments. A typical model for this type of data is to have both 

subject-level and cluster-level frailty terms [23, 30].

Note that the general models allow much flexibility in model specification in case of prior 

scientific knowledge or data sparsity. For example, we can set λ02(t2) = λ03(t2) but still 

allow different coefficients for the fixed covariates in (5) and (6). The models can also easily 

incorporate time-dependent covariates. For example, if drug or behavioural interventions 

were administered to a subset of subjects after illness onset at t1, then an intervention 

indicator can be incorporated into λ3(t2|t1) in (6). However care must be given to 

identifiability issues. If all subjects receive the intervention immediately after illness, then 

the intervention effect is confounded with the baseline hazard λ03(t2). In this case, we need 

to put constraints on λ03(t2), e.g. λ02(t2) = λ03(t2), in order to estimate the drug effect.

2.2 Likelihood

For a subject i, we observe (x1i, x2i, δ1i, δ2i, zi). Let N1i(t) = 1(x1i ≤ t, δ1i = 1), N2i(t) = 1(x2i 

≤ t, δ1i = 0, δ2i = 1), and N3i(t) = 1(x2i ≤ t, δ1i = 1, δ2i = 1) be the counting processes for the 

three event patterns. Correspondingly, let dNki(t) be the jump size of Nki(t) at time t. Let 

R1i(t) = 1(x1i ≥ t), R2i(t) = 1(x1i ≥ t, x2i ≥ t), and R3i(t) = 1(x2i ≥ t > x1i) be the at-risk 

processes for the three event patterns. With the proportional hazards assumptions (4)-(6) the 

corresponding conditional (on b) likelihood is proportional to

(7)

where , , and 

. Likelihood (7) follows from direct counting process 

formulation. We can view (7) as comprising Poisson kernels for the jumps of the counting 
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processes dNki(t) with means of λki(t)dt. That is dNki(t) ~ Poisson(λki(t)dt). Note that with 

the restricted model where λ3i(t|z, b) = λ2i(t|z, b), the likelihood reduces to

(8)

The baseline hazard functions λ0k(t) are left unspecified. Similar to Zeng and Lin (2007) 

[18], we take λ0k(t) as a discrete function, or Λ0k(t) as a step function, with increments or 

jumps occurring at the corresponding observed distinct failure time points. In other words, 

for Λ01(t), its jump points are at those x1i with δ1i = 1; for Λ02(t), its jump points are at those 

x2i with δ1i = 0 and δ2i = 1; and for Λ03(t), its jump points are at those x2i with δ1i = 1 and 

δ2i = 1. The jump sizes are treated as parameters. When the sample sizes are small or the 

number of events is low, the need to estimate such a large number of parameters may lead to 

computational instability. In this case we can also model the baseline hazards from 

parametric distributions such as the exponential, Weibull, lognormal, etc. However, these 

parametric assumptions can be too restrictive. An attractive compromise is to adopt 

piecewise constant (PWC) baseline hazards models to approximate the unspecified baseline 

hazards, which may significantly reduce computational time [34]. For k = 1, 2, 3, the follow-

up times are divided into Jk intervals with break points at sk,0, sk,1, ... , sk,Jk where sk,Jk 
equals or exceeds the largest observed times and sk,0 = 0. Usually, sk,j can be chosen 

according to percentiles of the observation period from the study design or according to the 

observed event times [35]. The baseline hazard function then takes values h0k,j in the 

intervals (sk,j–1, sk,j] for j = 1, ... , Jk.

3. Bayesian approach

Estimation for frailty models can usually be conducted using either the expectation-

maximization (EM) algorithm [18, 36-39] or MCMC methods [23, 27, 39-46]. When the 

EM algorithm is used, the unobserved random effects are treated as ‘missing values’ in the E 

step, which often involves intractable integrals. Monte Carlo methods have been used to 

approximate the integrals [19, 25, 39] but their implementation is not straightforward and 

usually needs to be treated on a case-by-case basis. For semi-competing risks data, 

involvement of different event types will make programming a daunting task that can easily 

discourage ordinary users. In addition, for prediction of future events, high order integration 

involving complicated functions of random effects is needed under the EM algorithm.

We propose Bayesian approaches for computation. The Bayesian framework is naturally 

suited to our setting with conditionally independent observations and hierarchical models. 

The Bayesian approach allows us to use existing software packages like WinBUGS [31], 

JAGS [32], and Stan [33] in which model fitting becomes very accessible to any user. For 

example, the program for WinBUGS only involved tens of lines of code (see the Supporting 

Web Materials).

In order to carry out the Bayesian analysis, we specify the prior distributions for various 

parameters as follows. Following Kalbfleisch [47], the priors for Λ0k(t) are assigned as 

gamma processes with means  and variances , for k=1, 2, 3. The increments 
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dΛ0k(t) are distributed as independent gamma variables with shape and scale parameters 

 and c, respectively. Here  can be viewed as an initial estimate of Λ0k(t). 

The scale c reflects the degree of belief in the prior specification with smaller values 

associated with higher levels of uncertainty. In our computation, we take c = 0.0001. For 

univariate censored survival data without any frailty term, the prior for Λ0(t) has the virtue 

of being conjugate and the Bayes estimator (given β) for Λ0(t) is a shrinkage estimator 

between the maximum likelihood estimate and the prior mean  [27]. In our 

computation, we take the mean process  to be proportional to time, that is, 

with r = 0.1. With this formulation, r can be considered as the mean baseline hazard rate. In 

actual fitting, we used gamma distribution priors as a result of the gamma process 

discretized on a pre-specified partition of the time interval [35, 48]. While it is common and 

popular to create the partition based on observed data, it is not fully legitimate within the 

Bayesian setting. The choices had minimal impact on our simulation studies.

For regression parameters, independent normal prior distributions are assigned 

 with Ik as the corresponding identity matrices for k = 1, 2, 3. Usually, 

large values of  are used so that the prior distributions bear negligible weights on the 

analysis results. However relevant historical information about regression parameters can be 

incorporated into the prior distribution to enhance the analysis results.

Finally, we specify an inverse Wishart prior distribution for the unconstrained covariance 

matrix, Σ~ W−1(V, d). The scale matrix V is often chosen to be an identity matrix multiplied 

by a scalar ν. The choice of ν is fairly arbitrary. The sensitivity of the results to changes of ν 

needs to be examined to ensure the prior distribution can leave considerable prior 

probabilities for extreme values of the variances terms. If we have evidence to assume no 

correlation among the random effects, diffuse priors can be directly specified on the 

diagonal elements of  for g = 1, ... . , d. With minimum prior information, 

we can choose ag = 0.01 and bg = 0.01.

For the piecewise constant baseline models, diffuse gamma distribution priors can be 

specified for h0k,j, h0k,j~G(aj, bj) for j = 1, ... . , Jk. With minimum prior information, we can 

choose aj = 0.01 and bj = 0.01.

Because the posterior distributions involve complex integrals and are computationally 

intractable, MCMC methods are used. The existing packages WinBUGS, JAGS, and Stan all 

led to similar results in our simulation studies. Our analysis was based on Stan version 1.1.0 

[33], an open-source generic BUGS-style [49] package for obtaining Bayesian inference 

using the No-U-Turn sampler [50], a variant of the Hamiltonian Monte Carlo [51]. For 

complicated models with correlated parameters, the Hamiltonian Monte Carlo avoids the 

inefficient random walks used in simple MCMC algorithms such as the random-walk 

Metropolis [52] and Gibbs sampling [53] by taking a series of steps informed by first-order 

gradient information, and hence converges to high-dimensional target distributions more 

quickly. However we provide the WinBUGS program codes for the general models with 

Cox and PWC types of baseline hazards in the Supporting Web Materials due to the long-

standing status of WinBUGS. Program codes for other packages are available upon request.

Han et al. Page 7

Stat Med. Author manuscript; available in PMC 2016 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Prediction for terminal events

Within the Bayesian framework, it is straightforward to predict an individual's survival, 

which is often of great interest to both patients and physicians. Denote β = (β1, β2, β3). The 

survival probability at time t* for a patient i with illness at x1i < t* and still alive at x2i < t* 

is

(10)

The first term in the integrand of (10) is given in the Appendix. Direct evaluation of (10) can 

be very computationally challenging even when the dimension of bi and β are only 

moderately high. Because we have draws of bi and β from the posterior distribution, 

and β(m) for m = 1, ... , M, however, a straightforward approximation of (10) arises via a 

simple average with the following form: 

. Similarly the 

survival probability for terminal event at time t* for a patient i who is censored for both 

illness and death events at x1i = x2i is

(11)

The first term in the integrand of (11) is also given in the Appendix. Again (11) may be 

approximated by .

5. Simulation study

To evaluate the performances of the various proposed models, we generated simulated 

datasets with various sample sizes (n = 100, 250, 600) based on either the restricted or the 

general models. The simulated datasets were then analysed using proposed models. In 

particular, we generated data according to models (4) - (6) with various baseline models or 

regression coefficients. Weibull distributions were used to generate the baseline hazard 

functions to represent non-uniform baseline hazards that may be encountered in practice. 

Specifically, for simulating data from general models, we chose λ01(t) = λ02(t) = 1.25t0.25 

and λ03(t) = 2.5t0.25. For simulating data from the restricted models, we chose λ01(t) = λ02(t) 

= λ03(t) = 1.25t0.25. Following Xu et. al. [15], the censoring time C was simulated from a 

50:50 mixture distribution of a uniform distribution on (1.5, 3) and a point mass at 3.

A fixed covariate Z1~ unif(0, 2) was applied to all three types of hazards, with 

corresponding coefficients β1 = β2 = 1.0 and β3 = 0.5 for simulating data from general 

models, and β1 = 1.0, β2 = β3 = 0.8 for simulating data from the restricted models, 

respectively. Random effects were incorporated using Z2 = 1 and Z3~ unif(0, 3) with the 

corresponding random effects generated independently using normal distributions with 

variances  and  respectively. With such simulation settings, around 50% 

patients will experience illness, death before illness, or death after illness by the end of 

study.
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Data analyses were conducted using the general models with Cox-type and PWC baseline 

hazards and the restricted models with Cox-type baseline hazards. With gamma process 

priors, we refer to these models as the Cox general model, the PWC general model, and the 

Cox restricted model respectively. We report results from 500 replications. The results are 

summarized in Table 1. The average posterior mean (Mean), the standard deviation (SD) of 

the posterior mean, the average standard deviation of the posterior distribution (ESE), and 

the coverage probabilities of the 95% credible intervals (CP) are listed in the table.

For data generated from the restricted model with n = 250, we can see that the Cox restricted 

model fitted well with very small biases for both regression coefficients and variance 

estimates of the random effects. When analysed using the Cox and 10-piece PWC general 

models, the fitted values from all models agreed well with the true values. Unsurprisingly, 

the magnitudes of SD or ESE were larger for , , β2, and β3 when compared with those 

from the Cox restricted models.

For data generated from the general model with n = 250 and n = 600, the general models 

fitted well with very small biases for both regression coefficients and variance parameters of 

two random effects. Compared with the PWC general model, the Cox general model had 

larger ESEs and SDs. When analysed using the Cox restricted model, relatively larger biases 

were observed. Because the Cox restricted model used the same hazard parameter for the 

two types of terminal hazards, the resulting average posterior mean of the regression 

coefficient fell between the true values of β2 and β3. On the other hand, the biases for β1 

were small. We think this was likely due to factorization of the likelihood into a part that 

involves only β1 and another part involving both β2 and β3. The β1 part takes the same form 

in both the restricted and the general models.

We further simulated data under the general model with sample size n = 100. In this small 

sample size setting, the general model still performed relatively well, especially when the 5-

piece PWC model was used. The biases were larger, especially for the variance components 

under the Cox model. The main reason for this was the sparsity of events with such small 

sample sizes and the complexity of the Cox model. When 10-piece PWC models were used, 

biases of similar magnitudes to Cox model were observed (data not shown).

We used Stan to perform all the simulations. With 10,000 posterior samples and 2,000 burn-

in iterations, it took an average of 7.3 minutes for the PWC models with 20 pieces and 39.5 

minutes for the Cox models to fit each replicate with n=600 on a Linux server with 2.40GHz 

Intel Xeon(R) E7340 CPU and 4.0 GB RAM. Three multiple chains were run in parallel and 

the method of Gelman-Rubin was used for convergence diagnosis [54].

6. Application to the breast cancer data

Between 1982 and 1988, 2892 women with estrogen receptor-positive breast tumors and no 

auxiliary node involvement were enrolled in NSABP Protocol B-14, a double-blind 

randomized trial comparing 5 years of tamoxifen (10 mg b.i.d.) with placebo [16, 17]. 

Among 2850 patients with follow-up times of at least 6 months before any events, 1424 and 

1426 patients received placebo and tamoxifen, respectively. A total of 237 patients had local 
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recurrence and 93 of these patients further developed distant metastasis. An additional 428 

patients experienced distant recurrence without prior local failure for a total of 521 patients 

with distant metastasis events. Second primary cancers and non-cancer deaths are treated as 

independent censoring on recurrence. This dataset was previously analyzed using missing 

data approach for semicompeting risks data [16], where the occurrence of non-terminal 

event was assumed not to change the hazard of the terminal event. We report results from 

model fitting using Cox type baseline hazards. Corresponding PWC baseline hazards gave 

very similar results.

6.1 Results from restricted models

We first fitted a Cox restricted model with random intercept to compare the effect of the 

treatment. Covariates considered were age and tumor size at randomization. The results are 

summarized in Table 2. As compared with placebo, tamoxifen significantly reduced both 

local and distant recurrences with estimated log hazard ratios of −1.274 (95% credible 

interval (CI): −1.642, −0.938) and −0.713 (95% CI: −1.019, −0.012), respectively. Our 

results confirmed substantial effect of tamoxifen from [16]. There also seem to be 

differential effects of the treatment on the two types of recurrence.

According to Table 2, both age and tumor size had substantial effects on recurrences. 

Younger women had greater chance of recurrence. It is known that younger women usually 

have worse prognosis, as younger age at onset is associated with more aggressive tumor 

types. Every increase of 10 years in age led to a reduction of local recurrence with an 

estimated log hazard ratio of −0.4 (95% CI: −0.56, −0.24) and of distant failure with an 

estimated hazard ratio of −0.26 (95% CI: −0.39, −0.12). An increase in the tumor size also 

resulted in significant increases of hazard rates for both recurrence types. The estimated 

variance of the frailty term is 4.360 (95% CI: 3.223, 5.887), indicating a strong association 

between the local and distant recurrences. This is consistent with a large observed 

percentage of distant recurrences among patients with local recurrences. There were 39.2% 

of patients with local failures further developed distant failures whereas 16.4 % of patients 

without local failures developed distant failures.

We next fitted a Cox restricted model that incorporated intercept, age and tumor size to the 

random effects. The results are also shown in Table 2. An unstructured matrix was used for 

the variance-covariance of the random effects. The posterior means of covariance were 

found to be rather close to zero (data not shown), indicating minimum correlation among the 

random effects. The variances for the random intercept, age and tumor size were 4.264, 

0.024 and 0.018, respectively, with 95% CIs of (2.676, 5.899), (0.018, 0.032), and (0.014, 

0.024) respectively. The posterior means of the log-hazard ratios of the treatment were 

−1.425 and −0.843 for the local and distant recurrences respectively.

6.2 Results from general models

We fitted the random intercept Cox and the multivariate random effects Cox general models 

with results presented in Table 3. Based on the random intercept Cox model, the estimated 

cumulative baseline hazards are plotted in Figure 2. In addition, for comparison, the 

estimated cumulative baseline hazards based on restricted models are plotted in the same 
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figure. Notice that the restricted models do not distinguish the two types of hazards for the 

terminal events while the general models do. The cumulative hazards for distant failure with 

and without local recurrence are quite similar before 40 months, but then diverge from each 

other. The variance of the random intercept is 2.617 with a standard deviation of 1.143, 

which is smaller than that from the restricted model, possibly because the dependence of T2 

on T1 may partly be captured by the different baseline hazard functions λ02(t2) and λ03(t2).

Based on the random intercept Cox general model, tamoxifen significantly reduced the local 

recurrence with an estimated log hazard ratio of −1.130 (95% CI: −1.512, −0.802). 

Tamoxifen also had a significant effect on distant recurrence without local failure with an 

estimated log hazard ratio of −0.616 (95% CI: −0.949, −0.340). However, tamoxifen showed 

no effect in reducing distant recurrence following local failure. This is possibly because 

once a tumor has demonstrated ability to recur locally despite tamoxifen, then the treatment 

is also less likely to reduce risk of distant failure. The increase in tumor size had comparable 

effects of increased risk on all three types of recurrences. On the other hand, age had 

significant effects on both local and distant failure without local recurrence, but no 

significant effect on distant recurrence following local failure, indicating an age-independent 

metastatic rate after local failure.

For the multivariate random effects Cox general model, the standard deviations (SDs) for 

the posterior distribution of the variance of random effects are relatively small, as compared 

with the mean estimate (mean/SD ratio is larger than 5). The correlations among the three 

random effects were negligible. There were noticeable changes for the mean and SD values 

of the regression coefficients due to the inclusion of different random effects in the two 

models. To determine which model is preferred, we used the Deviance Information Criteria 

(DIC) [55] which is defined as the sum of the posterior expectation of deviance function D̄, 

and the effective number of parameters pD. Smaller values of D̄ indicate better fit and 

smaller values of pD indicate more parsimonious model. Models with smaller values of DIC 

are preferred. With the Bayesian approach, DIC can be easily calculated from posterior 

distributions. Table 4 reports these quantities for various Cox models. For both restricted 

and general models, including random effects for age and tumor size resulted in reduction of 

the DIC. In addition, general models have smaller DIC than the corresponding restricted 

models. In particular, the multivariate random effects Cox general model yielded smallest 

DIC and is therefore preferred.

6.3 Predicting distant recurrences

With posterior samples for regression parameters and frailty terms, the prediction of future 

events for subjects that are censored for local and/or distant recurrence is straightforward. 

Based on formulae (10) and (11), we illustrate the predictions of the survival probabilities 

for distant recurrence using two selected individuals, one with δli = 1 and δ2i = 0, the other 

with δ1i = δ2i = 0. The prediction was based on the multivariate random effects Cox general 

model. The results are in Figures 3 and 4. Figure 3 is for a patient treated with tamoxifen, 

aged 35 at the time of randomization with a tumor size of 20 mm. The patient experienced 

local recurrence at 49 month and censored at 100.6 month for distant recurrence. Figure 4 is 
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for a patient treated with placebo, aged 61 at the time of randomization with a tumor size of 

33 mm. The patient was censored at 107.9 months.

7. Discussion

We have developed flexible frailty models for semicompeting risks data. Our models can 

incorporate different covariates into the frailty terms for three different types of hazard 

functions corresponding to the illness, death without illness, and death after illness. Our 

methods extended the gamma frailty models by Xu et al. (2010) which used a single frailty 

term to correlate the events and did not consider covariates for the frailty term. In clinical 

trial settings, this model will help address important questions such as whether continuing 

treatment is still beneficial for the terminal event after the occurrence of the non-terminal 

event. We used Bayesian methods for estimation. Our choice over the EM algorithm was 

mainly computational. With the development of general purpose software packages such as 

WinBUGS, JAGS and Stan, implementation of the Bayesian approach and model based 

predictions became very straightforward. Our models will also work with clustered data [23, 

40]. Further they can be extended to other frailty models such as correlated frailty models 

[23]. We are also adapting our approach to the joint modeling of semicompeting risks data 

with longitudinally observed biomarker data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX Prediction of survival probability for individual patients

With Bayesian framework, it is straightforward to predict an individual's future event on the 

basis of his or her event history. First we prove the following two formulae that are 

generally true for the illness-death hazard models based on (1)-(3).

(A.1)

(A.2)

For (A.1), we can add (1) and (2) evaluated at a particular time point t to obtain
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So the hazard function of T1 ∧ T2 is dΛ1(t) + dΛ2(t) which immediately leads to (A.1). Now 

from (1), we can further obtain

(A.3)

From (3), we can obtain

(A.4)

From (A.3) and (A.4) we have (A.2).

Now denote β = (β1, β2, β3). The conditional survival probability at time t* for a patient with 

illness at x1i < t* and censored for death at x2i < t* is

Here the last equality used (A.2). By plugging the frailty model (6), we have

This leads to a formula for (10). The survival probability for death at time t* for a patient 

censored at x1i = x2i < t* for both illness and death is

The denominator and the second term of the numerator can be obtained directly using (A.1). 

For the first term of the numerator,

By plugging in the frailty models (4)-(6), we can obtain a formula for (11).
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Figure 1. 
Illness-death model framework
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Figure 2. 
The estimated baseline cumulative hazards for the NSABP B-14 dataset based on the 

random intercept Cox restricted (left) and the random intercept Cox general models (right).
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Figure 3. 
Prediction of the distant recurrence survival probability for a patient who experienced the 

local failure. The prediction was based on the multivariate random effects Cox general 

model. The posterior mean is the solid line while the 2.5% and 97.5% quartiles are dashed 

lines.
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Figure 4. 
Prediction of the distant recurrence survival probability for a patient who did not experience 

the local failure. The prediction was based on the multivariate random effects Cox general 

model. The posterior mean is the solid line while the 2.5% and 97.5% quartiles are the 

dashed lines.
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