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Computational Tool
SpringSaLaD: A Spatial, Particle-Based Biochemical Simulation Platform
with Excluded Volume
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ABSTRACT We introduce Springs, Sites, and Langevin Dynamics (SpringSaLaD), a comprehensive software platform for
spatial, stochastic, particle-based modeling of biochemical systems. SpringSaLaD models biomolecules in a coarse-grained
manner as a group of linked spherical sites with excluded volume. This mesoscopic approach bridges the gap between highly
detailed molecular dynamics simulations and the various methods used to study network kinetics and diffusion at the cellular
level. SpringSaLaD is a standalone tool that supports model building, simulation, visualization, and data analysis, all through
a user-friendly graphical user interface that should make it more accessible than tools built into more comprehensive molecular
dynamics infrastructures. Importantly, for bimolecular reactions we derive an exact expression relating the macroscopic on-rate
to the various microscopic parameters with the inclusion of excluded volume; this makes SpringSaLaDmore accurate than other
tools, which rely on approximate relationships between these parameters.
INTRODUCTION
Computational modeling has become indispensable for
elucidating the properties of complex biochemical net-
works. In a traditional modeling approach the modeler de-
fines the various chemical species of interest and the
reaction kinetics between them, which defines a closed
network of reactions that can be simulated in a number of
ways. If the copy number of the individual species is low,
the kinetics should be simulated by solving the chemical
master equation for the stochastic population probabilities.
If the number of molecules is large enough and the system
is well mixed, then deterministic simulations can be per-
formed by numerically solving ordinary differential equa-
tions (ODEs). Copasi (copasi.org) is a popular example of
a simulator for ODEs and stochastic network models (1).
Spatial dynamics within an explicit geometry can be
modeled by adding diffusion terms to the reaction equations
and solving the resulting partial differential equations.
MCell (mcell.org (2)) and Smoldyn (smoldyn.org (3)) are
popular software platforms for modeling discrete Brownian
motion and stochastic reactions. Virtual Cell (vcell.org) is a
comprehensive software environment for modeling and
simulating reaction networks and membrane transport either
stochastically or deterministically, with the option of ac-
counting for diffusion in realistic cellular geometries (4,5).
But there are two problems with these commonly used tools
for computational systems biology: they cannot readily
handle models with combinatorial complexity, and, for
spatial models, they do not accurately model the excluded
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volume and spatial extent of interacting molecules or
clusters.

A combinatorially complex system makes it difficult or
impossible for the modeler to specify a reaction network
without additional computational tools. For example, a re-
ceptor with 10 phosphorylation sites can exist in 210 ¼
1028 states, with an even larger number of reactions needed
to describe the transitions between these states. In general,
the size of the reaction network grows exponentially with
the number of potential protein modifications or binding
sites, and this phenomenon is termed ‘‘combinatorial
complexity’’. Tools such as BioNetGen (6,7) automatically
generate reaction networks from a small number of defined
rules, but the exponential increase in network size ulti-
mately limits the practical simulation of such large net-
works. In a recent study (8), we estimated that it would
take a 2.54 GHz Intel Xeon processor 290 years to generate
the reaction network for simple model of the synaptic ki-
nase CaMKII. Even if network generation completed in a
reasonable amount of time, we would not have the compu-
tational resources required to simulate such a large system
of differential equations or store the results of such
calculations.

Some particle-based methods circumvent the problems of
combinatorial complexity by avoiding the process of
enumerating all species and reactions (9–12). Instead, these
methods (also known as agent-based or network-free simu-
lators) use reaction rules to probabilistically spawn the
states of individual molecules during the simulation, and
therefore only need to consider the potential reactions for
species (i.e., states) that are actually present in the system.
These methods are implemented in several openly acces-
sible software tools (11,13,14).
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A major limitation of most spatial simulators is that they
treat all molecules, even large multicomponent complexes,
as point particles. Various approaches exist to model the ef-
fects of excluded volume, such as adding density-dependent
terms in reaction-diffusion equations (15,16) or by defining
a reaction that moves nearby particles apart (as implemented
in Smoldyn), but in general such methods are unable to
model important properties that depend on the spatial extent
and composition of the complex, such as the effects of
spatial orientation and the reduced diffusion of larger com-
plexes. One biologically important example of such a sys-
tem is ligand-induced membrane receptor clustering, as
illustrated in Fig. 1, which shows a system of trivalent recep-
tors clustered by interacting with bivalent ligands. Such in-
teractions lead to the formation of molecular clusters that
increase local concentration of biomolecules, potentially
triggering signaling events. We have included such com-
plexes in a class of biophysical structures called pleomor-
phic ensembles (PEs) (12,17,18), because these complexes
are often plastic, with dynamic and variable composition.
Accurate modeling of PEs requires tools that account for
their extended spatial structure and excluded volume, as
these properties underlie essential features of PEs, such as
reduced access to open binding sites on the interior of the
cluster or rebinding of newly dissociated monomers.
Furthermore, because the sizes and compositions of pleo-
morphic ensembles are open-ended (i.e., sampling an infin-
ite number of states), a particle-based algorithm is required.
For these reasons, pleomorphic ensembles cannot be
FIGURE 1 Receptor clustering example. Ligand-induced clustering of

membrane receptors is one example of a system with combinatorial

complexity where spatial organization and excluded volume can strongly

modify system dynamics and equilibrium organization. Bivalent ligands

are shown in blue, trivalent receptors are shown in red, and the cyan line

represents the membrane. To see this figure in color, go online.
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modeled by computational tools such as MCELL, Smoldyn,
or Virtual Cell.

In principle, PEs could be modeled with molecular dy-
namics (MD) simulations, but the large sizes of these sys-
tems, which consist of tens to hundreds of proteins, make
such simulations computationally impractical. These sys-
tems are best modeled using a mesoscopic, coarse-grained
approach, where individual proteins are modeled as a single
site or a collection of linked sites. In recent years a number
of programs have become available for such mesoscopic
modeling, most notably SRSim (19) and ReaDDyMM
(20,21). However, these and other programs of this class
require a level of computational expertise that makes them
inaccessible to the typical biologist. Moreover, all available
programs implement bimolecular reactions by relating
macroscopic on-rates to the microscopic parameters using
formulae that are only approximate in the presence of
excluded volume, or which were derived assuming well-
mixed conditions that are invalid for the typical systems
studied.

Here we introduce a standalone modeling and simulation
package, SpringSaLaD, which implements spatial, particle-
based models with excluded volume and accurate biochem-
ical reactions, including the treatment of allostery. Notably,
we derive and implement an exact formula to relate bimolec-
ular macroscopic on-rates to the various microscopic param-
eters. The platform offers a simple but powerful user interface
and allows for the simulation of receptor clustering and other
multistate pleomorphic ensembles. It will run in a reasonable
time on any modern personal computer (hours to a few days,
depending on the number of molecules simulated). The soft-
ware is written in Java and is freely available as a standalone
.jar file for Windows, Mac, or Linux at www.ccam.uchc.edu/
resources/ccam_software.html#SpringSaLaD. The simula-
tion code is bundled as an independent .jar file, and may be
used on the command line to, for example, run hundreds of
simultaneous simulations on a Linux cluster. A User’s Guide
and Tutorial are included in the downloadable zip file, and are
also available in the Supporting Material. Source code is
freely available on Github at pjmichalski/SpringSaLaD
(GUI components) andpjmichalski/LangevinNoVis01 (simu-
lation components).
MATERIALS AND METHODS

Please see the Supporting Material.
RESULTS

Molecule description

Springs, Sites, and Langevin Dynamics (SpringSaLaD) de-
scribes the molecules in the system as a set of distinct spher-
ical sites connected by links, which are modeled with stiff
springs. The sites may represent different domains within
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the macromolecule, and may be selected as binding sites for
potential reactions with other binding sites. Many biological
molecules of interest can be described in such a manner, and
two of these are shown in Fig. 2: the hemoglobin tetramer
and a GFP-tagged a-tubulin. Models that seek to describe
finer details, such as the motion of individual amino acids,
are more appropriately simulated with MD, while models
with less detail will run faster with simulators that assume
molecules to be infinitesimal points.

We will use a model of protein kinase A (PKA) to illus-
trate the three steps involved in molecule construction.
These steps and the GUI for molecule construction are
shown in Fig. 3. Firstly, we define the types of sites in the
molecule. For example, PKA contains two types of sites:
regulatory and catalytic domains. Each type can have asso-
ciated with it an arbitrary number of internal states with
their own associated set of biochemical reactions (reactions
are described below). For example, the regulatory domain
could have three states describing the number of bound
cAMP molecules (0, 1, or 2), and the catalytic domain could
have an inactive and active state reflecting its kinase activity.
Each type also has an associated physical size, diffusion
constant, and color (for visualization purposes).

Secondly, sites are added to the molecule, and each site is
assigned one of the previously defined types. To construct
PKA we would add four sites, assigning two of them to be
regulatory domains and two to be catalytic domains. Physi-
cally, sites are modeled as impenetrable spheres to accu-
rately capture excluded volume effects.

Thirdly, links are added to connect the sites to each other.
Each site can be linked to an arbitrary number of other sites
in either two or three dimensions. The only requirement is
that sites cannot overlap. Links are stiff and thus define an
intersite distance, but are free to rotate around the sites.
For example, a triangular molecule with three sites will
not maintain its geometry in the simulation with only two
links, but will if a third bond is added to enforce a distance
between the two outer sites. Links are only used to control
a

b

the distance between sites and do not occupy physical space,
and both sites and other links are free to pass through a link.
Excluded volume is only enforced by sites.

To specify membrane-bound molecules, a special anchor
designation is assigned to a site, which restricts it to two-
dimensional diffusion within the membrane; the anchor
site can then be linked to sites that diffuse in the adjacent
volume, effectively restricting those sites to be part of a
membrane-bound molecule.

SpringSaLaD provides several convenience methods for
constructing large linear polymers, and other convenience
methods for constructing large arrays of linked receptors.
Molecules must be defined as intracellular, extracellular,
or membrane-bound. These and other details can be found
in the User’s Guide and Tutorial, which are available in
the Supporting Material.
Geometry

SpringSaLaD currently only supports a rectangular geome-
try with reflecting boundary conditions. The rectangular ge-
ometry is partitioned into an extracellular space, a planar
membrane, and an intracellular space. The size of the mem-
brane and the depths of the intra- and extracellular spaces
are user-defined. Future versions of SpringSaLaD will sup-
port a wider variety of geometries.
Particle motion: diffusion and constraints due to
binding

Particle motion is influenced by two classes of forces:
random forces that lead to diffusional motion, and interpar-
ticle forces that impose the constraints from intra- and inter-
molecular bonds. These forces are incorporated in the
overdamped Langevin equation (22),

z v
. ¼ F

.

rand þ F
.

bonds; (1)
FIGURE 2 Examples of coarse-grained models.

Two examples of proteins that can be readily decom-

posed into nanometer-sized domains appropriate for

coarse-grained modeling with SpringSaLaD. (a) The

hemoglobin tetramer can be coarse-grained into four

independent biochemical sites. (b) Any globular

GFP-tagged protein can be represented as two con-

nected sites. Here we show GFP-tagged a-tubulin.

The images on the left are modified from the original

images available at (a) http://zeiss-campus.magnet.

fsu.edu/articles/probes/fpintroduction.html, and (b)

http://upload.wikimedia.org/wikipedia/commons/3/

3d/1GZX_Haemoglobin.png. To see this figure in

color, go online.
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FIGURE 3 PKA model. (Top) A description of PKA in terms of SpringSaLaD model components. PKA is composed of two regulatory sites and two cat-

alytic sites. The state of a regulatory site is defined by the number of bound cAMP molecules, while the catalytic subunit can be in either an inactive or an

active state. (Bottom) The SpringSaLaD molecule editor GUI, as used to construct the PKA molecule described on the top. To see this figure in color, go

online.
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where z is the coefficient of viscous friction, v
.

is the parti-
cle velocity, and F

.

rand and F
.

bonds represent the random
forces and the total force of bonds. The random forces are
guaranteed to recapitulate the desired diffusion, provided
they are chosen from normal distribution with variance

�
F
.

randðtÞ$F
.

randðt0Þ
� ¼ 2ndDz

2 dðt � t0Þ; (2)

where D is the desired diffusion coefficient, nd is the dimen-
sion of the system (here nd ¼ 3), and the delta-function sim-
Biophysical Journal 110(3) 523–529
ply states that the random force is uncorrelated in time. The
bonds are modeled as stiff springs,

F
.

bonds ¼
X
i

ki ðri � r0;iÞ bri; (3)

where the sum runs over all bonds, ki is a spring constant, bri
is the unit vector pointing from the particle to the neighbor
with which it shares a bond, ri is the current interparticle dis-
tance, and r0;i is the equilibrium bond distance. The exact
value of the spring constant is not important, provided the
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spring is stiff enough to keep sites near the expected dis-
tances but not so stiff that accurate motion requires unrea-
sonably small time steps. In practice, only the ratio k=z is
required, and in SpringSaLaD this ratio is the same for all
bonds and links, namely, k=z ¼ 108 s�1; this allows us to
use time steps of ~1–100 ns for biologically relevant diffu-
sion constants.
Reactions

Zeroth-order

SpringSaLaD supports particle creation reactions, which
may be used to buffer the concentration of a species. Given
a macroscopic creation rate, kcreate, with units mM/s, a single
molecule is added to the system at each time step with prob-
ability kcreateVdt, where V is either the intra- or extracellular
volume depending on the location of the molecule. A mole-
cule is added by testing random positions in the system until
a position is found that does not overlap with other particles.
Note that this mechanism will fail in extremely dense sys-
tems. In such a system a simple, constant-rate zeroth order
reaction is not consistent with physical constraints, and is
not an appropriate modeling construct.

First-order

SpringSaLaD supports three general types of first-order re-
actions, all of which are described by a reaction rate, r,
with units s�1, and which occur at each time step with prob-
ability rdt. These are:

1) Bond dissociation reactions: when a dissociation reac-
tion occurs, the bond is simply removed from the system.

2) Internal state transitions: these describe the transitions
between the internal states of each site, as defined by
the type of that site. The probability of these transitions
can depend on the identities of binding partners or the
states of other sites in the same molecule. The former de-
pendency would be used, for example, to prevent a tran-
sition from an unphosphorylated to a phosphorylated
state unless the site is bound to a kinase. The latter de-
pendency can be used to model allosteric interactions.

3) Decay reactions: these are used to remove molecules
from the system.
Second-order

SpringSaLaD supports binding reactions between two sites.
A bond is modeled by the creation of a new link between the
reacting sites. The link is modeled identically to the links
that hold molecules together, except it has an associated
off-rate controlling molecular dissociation. Particle-based
simulations often use the Smoluchowski approach (23) to
model bimolecular reactions, but such an approach is
incompatible with excluded volume. Instead, we modified
the approach described in Erban and Chapman (24) to ac-
count for excluded volume. Each site is associated with
two radii: the physical radius, ri (i ¼ 1,2), which is defined
in molecule construction and enforces excluded volume,
and a slightly larger reaction radius, Ri. Two reactive sites
undergo a binding reaction with probability l dt per time
step when their reaction radii overlap. The reaction rate l

is related to the macroscopic on-rate, kon, with units of
mM�1 s�1, through

kon ¼ 4pRDf

1� R

a
f

; (4)

where

f ¼ 1�
�r0
R

� r0 sinh

�
R� r

r0

�
þ r cosh

�
R� r

r0

�

r sinh

�
R� r

r0

�
þ r0 cosh

�
R� r

r0

� (5)

and r0 ¼
ffiffiffiffiffiffiffiffiffi
D=l

p
, D ¼ D1 þ D2, r ¼ r1 þ r2, R ¼ R1 þ R2,

and a is the dissociation radius.
The derivation of this equation and additional discussion

of bimolecular reactions can be found in the Supporting
Material.
Data analysis

SpringSaLaD comes packaged with an interactive three-
dimensional viewer to visualize simulation results. The
viewer is implemented in Java3D and provides methods
for saving images and generating movies in a variety of for-
mats. (Currently, the viewer will only work onWindows and
Linux machines. The viewer is disabled on Macs because of
an incompatibility between Java3D and the latest versions
of Java on Macs.) Two example videos (Movies S1 and
S2) that show clustering in the Nck-nephrin-Nwasp system
are available in the Supporting Material. The program keeps
track of a variety of observables, such as the number and
types of bound particles or the number of sites in a particular
state, and automatically displays this data in a convenient
tabular format. Stochastic simulations require many runs
to compute average properties. SpringSaLaD provides the
option to launch runs in sequence or in parallel, depending
on the user’s computational resources, and automatically
computes averages and standard deviations of the observ-
ables in the data tables. Instructions for the viewer and
data analysis are provided in the User’s Guide and Tutorial.
Algorithm implementation verification

We constructed simple models of analytically tractable sys-
tems to verify the accuracy and implementation of all simu-
lation algorithms. These included various tests of diffusion
and all implemented reactions. As an example, we modeled
Biophysical Journal 110(3) 523–529
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a system consisting of a single species undergoing a creation
and decay reaction. In this case SpringSaLaD reproduces
the full population distribution predicted by the time-depen-
dent solution to the chemical master equation. In the Sup-
porting Material, we provide a discussion of all the tests,
the models used, and the simulation results.
DISCUSSION

The software presented here fills an important gap in the
spectrum of publicly available biochemical simulation
platforms, allowing the simulation of systems that exhibit
combinatorial complexity, are too large for MD simulations,
and are influenced by spatial effects. Many important bio-
logical systems fall into this category, such as chromatin dy-
namics in the confines of a crowded nucleus, signaling in the
dense and diverse postsynaptic density of dendritic spines,
signaling in the narrow foot processes of kidney podocytes,
and the large variety of structures, such as receptor clusters,
cell adhesion complexes, or mRNA granules, which we
have described as PE (17). The primary conceptual require-
ment is that molecules must be described in a coarse-grained
manner as a linked collection of biochemically distinct sites,
with radii of a few nanometers. Modeling at a finer scale re-
quires MD simulations, while coarser models can be simu-
lated more efficiently with other methods. The description
in terms of linked sites automatically captures emergent
properties of a dynamic system, such as the reduced diffu-
sion coefficient of larger clusters because of the disordered
individual motions of its components.

There are three significant but unavoidable drawbacks to
our approach. Firstly, there is the increased computational
cost associated with tracking the hundreds of individual
sites. The simulation runs time scales linearly in the number
of particles (for a fixed concentration), which puts practical
limits on the number of molecules in the system. Secondly,
the simulation must use time steps of 10 ns to accurately
enforce excluded volume and prevent overextending the
springs holding sites together. This is orders-of-magnitude
smaller than the 100 ms time steps typical in Smoldyn and
the 1 ms to 1 s time steps common in ODE or partial differ-
ential equation simulations. On the other hand, it is many or-
ders-of-magnitude larger than the femtosecond time steps
used in MD simulations. We find that simulations following
up to 1000 particles over the course of 1–10 s will run in
1–5 days. We have several improvements planned, such as
a port to Cþþ and parallelization of individual simulations,
which will allow simulation of larger systems.

Thirdly, there is the practical difficulty in relating some
microscopic parameters required in the model to macro-
scopic parameters measured in the lab. For example, Spring-
SaLaD requires the user to define a diffusion constant for
each site in a molecule, whereas the experimentally acces-
sible parameter is the diffusion coefficient of the molecule
as a whole. In some cases, such as linear polymers or spher-
Biophysical Journal 110(3) 523–529
ical globules, the two parameters can be related, but for an
arbitrary geometry there is no exact formula to relate the
macroscopic and microscopic diffusion coefficients, and
the modeler may have to try several microscopic values to
find one that is appropriate. A similar difficulty arises
when defining the on-rate of a bimolecular reaction. If the
reactive site is buried in a relatively inaccessible pocket of
a large molecule, then the true microscopic on-rate may
be many orders-of-magnitude larger than the macroscopic
value. Again, no exact relation exists for an arbitrary geom-
etry, and a parameter scan may be required to find a suitable
value. These limitations are not unique to SpringSaLaD, but
are faced in any coarse-grained modeling approach.

To our knowledge, the one truly new feature described
here is the Smoluchowski-like algorithm used to model
bimolecular interactions with excluded volume. Although
Eq. 4 is derived with standard methods, we are not aware
of its previous publication, and it is not used in any other
biochemical simulation platform. SpringSaLaD packages
these methods together with standard treatments of first-or-
der reactions, allosteric state transitions, and Langevin dy-
namics within a convenient, user-friendly interface, which
will make these methods available to a broader community
of biochemical modelers. In the next year we plan to inte-
grate SpringSaLaD with the Virtual Cell modeling and
simulation platform (4,5,25,26), where it will be offered
as an additional tool to complement the wide variety of
modeling methods supported by VCell.
SUPPORTING MATERIAL

Supporting Materials and Methods, Supporting Results, twelve figures, one

table, SpringSaLaD User’s Guide and Tutorial, and two movies are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)

04810-9.
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