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Abstract

INTRODUCTION—Ebbert et al. reported gene-gene interactions between rs11136000-rs670139 

(CLU-MS4A4E) and rs3865444-rs670139 (CD33-MS4A4E). We evaluate these interactions in the 

largest dataset for an epistasis study.

METHODS—We tested interactions using 3837 cases and 4145 controls from ADGC using meta- 

and permutation analyses. We repeated meta-analyses stratified by APOEε4 status, estimated 

combined OR and population attributable fraction (cPAF), and explored causal variants.

RESULTS—Results support the CLU-MS4A4E interaction and a dominant effect. An association 

between CLU-MS4A4E and APOEε4 negative status exists. The estimated synergy factor, OR, and 

cPAF for rs11136000-rs670139 are 2.23, 2.45 and 8.0, respectively. We identified potential causal 

variants.

DISCUSSION—We replicated the CLU-MS4A4E interaction in a large case-control series, with 

APOEε4 and possible dominant effect. The CLU-MS4A4E OR is higher than any Alzheimer’s 

disease locus except APOEε4, APP, and TREM2. We estimated an 8% decrease in Alzheimer’s 

disease incidence without CLU-MS4A4E risk alleles and identified potential causal variants.
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1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disease, and is the third leading 

cause of death in the United States [1]. AD is characterized by the accumulation of amyloid 

plaques and neurofibrillary tangles in the brain. Many genetic loci exist that modify AD risk, 

but collectively, they explain only a fraction of AD’s heritability [2] and are not 

diagnostically useful [3,4]. Rare variants with large effects and epistatic interactions may 

account for much of the unexplained AD heritability, but are largely unknown due to 

limitations in traditional GWAS studies. While rare variant and epistatic effects on AD are 

poorly understood, recent studies suggest that gene-gene interactions play a critical role in 

AD etiology and progression [3,5–7].

A previous study [3] reported evidence of two gene-gene interactions that increase AD risk. 

Specifically, Ebbert et al. reported interactions between rs11136000 C/C (CLU; minor allele 

= T, MAF = 0.38) and rs670139 G/G (MS4A4E; minor allele = T, MAF = 0.38) genotypes 

(synergy factor (SF) = 3.81; p = .016), and the rs3865444 C/C (CD33; minor allele = A, 

MAF = 0.21) and rs670139 G/G (MS4A4E) genotypes (SF = 5.31; p = .003). All three 

variants have been implicated in numerous AD GWAS studies [8–13] and are on the 

“AlzGene Top Results” list [14], which summarizes the most established genes associated 

with AD.

MS4A4E and CLU were recently replicated in a large meta-analysis of 74046 individuals, 

but CD33 did not replicate [15]. Despite CD33 failing to replicate, several studies 

demonstrated that CD33 is involved in AD-related pathways and pathology, giving 

convincing evidence that CD33 is somehow involved in AD. Three specific studies 

demonstrated that CD33 alters monocyte function, amyloid uptake, and that CD33 

expression is associated with clinical dementia ratings [16–18]. rs3865444 is located in the 

5′UTR of CD33.

The association between CLU and AD status has been strongly established by both genetic 

and biological data. Recent studies demonstrated that rs11136000—an intronic SNP within 

CLU—is associated with AD-related pathology in healthy individuals including neural 

inefficiency [19] and decreased white matter integrity [20].

MS4A4E is a member of the membrane-spanning 4-domains subfamily A, but little else is 

known about the gene. However, rs670139—located in the MS4A4E 3′UTR according to 

gene model XM_011545416.1—is consistently associated with AD [15,18,21].

In this study, we attempted to replicate these gene-gene interactions using the largest dataset 

used in an epistasis study, to date [22]. We performed an independent meta-analysis of 

datasets from the Alzheimer’s Disease Genetics Consortium (ADGC) using 3837 cases and 

4145 controls, followed by a combined meta-analysis that included the original Cache 

County results [3] with an additional 326 cases and 2093 controls. We also tested for dosage 

or dominant effects and an APOEε4 effect. Finally, we explored possible causal variants 

using whole-genome sequence data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI).
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2. Methods

2.1. Data description

We used SNP data from the ADGC, which consists of 32 studies collected over two phases 

and includes 16000 cases and 17000 controls. All subjects are self-reported as being of 

European American ancestry. More information about this dataset can be found in Naj et al. 

[8] and the ADGC data preparation description [23].

Genotype data from 2419 individuals from the Cache County Study on Memory Health and 

Aging were also used in this study. The full cohort of 5092 individuals represented 

approximately 90% of the Cache County population aged 65 and older when the study 

began in 1994 [24]. The Cache County data consists exclusively of individuals of European 

American ancestry. Exactly 2673 individuals were excluded from the original Cache County 

analysis because of incomplete genotype or clinical data [3]. Additional information on this 

dataset can be found in previous reports [3,24].

Whole-genome data from 747 (223 controls, 195 cases, 329 MCI) individuals were used in 

this article and were obtained from the ADNI database (adni.loni.usc.edu). ADNI is a large 

collaboration from several academic and private institutions, and subjects have been 

recruited from over 50 sites across the U.S. and Canada. Currently, over 1500 adults (ages 

55 to 90) participate, consisting of cognitively normal older individuals, people with early or 

late MCI, and people with early stage AD. For up-to-date information, see www.adni-

info.org.

2.2. SNP data preparation and statistical analysis

As gene-gene interactions are challenging to identify and replicate, we used the highest 

quality data possible. For each ADGC dataset, we filtered SNPs imputed with low 

information (info < 0.5) and converted the IMPUTE2/SNPTEST format files to PLINK 

format, using PLINK v1.90b2i [25,26]. We used the default PLINK uncertainty cutoff of 

0.1, meaning any imputed call with uncertainty greater than 0.1 was treated as missing. We 

included SNPs with a missing genotype rate less than 0.05 and individuals with a missing 

rate less than 0.01. We then extracted the SNPs of interest: rs3865444 (CD33), rs670139 

(MS4A4E), and rs11136000 (CLU) and tested Hardy-Weinberg equilibrium [27,28]. Using R 

v3.1.1 [29], we excluded samples without complete data for all covariates including age, 

gender, case-control status, APOEε4 dose, and the two SNPs being tested in the 

corresponding interaction. Entire datasets missing the respective SNPs or covariates after 

data cleaning were excluded from further analysis. The requirement of complete data for 

both SNPs and all covariates is necessary for this analysis. Unfortunately, this requirement 

led to the exclusion of 23 and 24 entire datasets for the CD33-MS4A4E and CLU-MS4A4E 

interactions, respectively. We also excluded the ADC1 dataset because it contained only one 

AD case, likely making it biased.

Following data preparation, we tested the individual interactions in each dataset using 

logistic regression. We defined the R models as “case_control ~ rs3865444 + rs670139 + 

rs3865444:rs670139 + apoe4dose + age + sex” and “case_control ~ rs11136000 + rs670139 

+ rs11136000:rs670139 + apoe4dose + age + sex” for the CD33-MS4A4E and CLU-
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MS4A4E interactions, respectively. Case-control status, SNPs, and sex were coded as 

factors, age was numeric, and apoe4dose was an ordered factor from 0–2.

Using results from each study, we performed a meta-analysis to test replication across the 

ADGC datasets using METAL (version 2011-03-25) [30], and performed a second meta-

analysis including the original Cache County results to provide synergy factor and odds ratio 

estimates from the largest number of samples possible. We tested the originally reported 

interactions and heterozygous interactions (rs11136000 C/C—rs670139 G/T and rs3865444 

C/C—rs670139 G/T) to test for potential dosage or dominant effects based on suggestive 

evidence found in the original Cache County study (Supplemental Table 1). We assessed 

whether there is a dosage or dominant effect based both on whether the heterozygous 

interaction is significant and a t-test comparing two means. Specifically, we tested for a 

significant difference between the homozygous and heterozygous effect sizes. A significant 

difference would suggest a dosage effect, whereas an insignificant difference would suggest 

the effect might be dominant.

Following the meta-analyses, we performed a permutation analysis with 10000 permutations 

for interactions that replicated independently. For each ADGC dataset, we randomly 

permuted case-control status across all individuals, tested the interaction, and reran the 

meta-analysis. We stored the p-values from each of the 10000 meta-analyses and calculated 

the empirical p-value by finding the original p-value’s rank in the distribution of p-values 

divided by the number of permutations. We also calculated the combined population 

attributable fraction (cPAF) as previously described [3,8].

Results are represented using both odds ratios and synergy factors [6,31] and their 

associated 95% confidence intervals and p-values. Synergy factors represent the ratio 

between the observed and expected odds ratios for the two interacting SNPs (Equation 1). 

The expected odds ratio for the interaction assumes there is no synergy between the SNPs 

(i.e., the SNPs are independent) and equals the product of the individual odds ratios (the 

denominator of Equation 1) [6,31]. Essentially, the synergy factor measures how strongly 

the observed and expected odds ratio relationship deviates from linearity, as the synergy 

factor deviates from one. A synergy factor equal to one suggests no synergy; rather, there is 

no evidence of statistical epistasis.

Because synergy factors less than 1 can be challenging to interpret, we present interaction 

synergy factors in the direction greater than 1. Consequently, we performed all interaction 

analyses using each gene’s homozygous minor allele as the reference group, which is 

opposite the direction standardly used in genome-wide association studies. This also has the 

added advantage that the interaction’s odds ratio is presented in the risk direction for easy 

comparison to top AD risk loci. To calculate the interaction’s odds ratio, we used each SNPs 

individual odds ratio as previously reported in a larger dataset [21], but we had to invert the 

individual odds ratios to be the same direction as our analyses. We then calculated the 

interaction’s observed odds ratio (Equation 1) using the inverted odds ratios. We also 

estimated each synergy factor’s 95% confidence interval using rmeta [32].
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Based on results from the interaction replication, we performed a synergy factor analysis 

using the Cortina-Borja synergy factor Calculator [31] to test for an APOEε4 effect for the 

CLU-MS4A4E interaction. Specifically, we stratified the combined ADGC and Cache 

County data by APOEε4 status and tested for an association between the interaction and 

case-control status within each stratum. Alleles rs11136000 C and rs670139 G were used as 

the exposed groups.

2.3 Exploring causal variants

As a follow up analysis, we explored causal variants for replicated interactions using 747 

(223 controls, 195 cases, 329 MCI) ADNI whole genomes that were sequenced, aligned to 

hg19, and variants identified by Illumina using their internal analysis procedure. We used 

linkage disequilibrium, Regulome DB (accessed November 2014) [33], and functional 

annotations from wAnnovar [34] to isolate SNPs of interest. We first extracted all SNPs 

within approximately 50 kilobases of each SNP of interest, calculated linkage disequilibrium 

using Haploview [35], and retained all SNPs with a D′ ≥ 0.99. Using Regulome DB and 

wAnnovar, we annotated each remaining SNP for: (1) known regulation and functional 

effects; (2) minor allele frequencies from the 1000 Genomes Project [36], 6500 Exomes 

Project [37], and the ADNI dataset; and (3) corresponding MutationTaster predictions [38]. 

We retained all nonsynonymous SNPs, SNPs located in untranslated regions (UTRs), and 

SNPs with a Regulome DB score less than 4. For each retained SNP, we tested individual 

associations with case-control status in the 223 controls and 195 cases using the VarStats 

tool in the Variant Tool Chest (VTC) [39] and subsequently tested their interaction with all 

SNPs in the other interacting gene using logistic regressions in R.

3. Results

3.1 Sample and dataset demographics

Sample demographics and minor allele frequencies for rs11136000, rs670139, and 

rs3865444 are presented for each dataset (Table 1). Eight of the 32 datasets with 3837 cases 

and 4145 controls passed quality controls for the CD33-MS4A4E interaction while seven 

datasets with 3140 cases and 2713 controls passed for CLU-MS4A4E. The remaining 

datasets were either missing required SNP(s), missing a covariate, or consisted of only 

controls and could not be included in the analysis. All SNPs passed Hardy-Weinberg 

equilibrium in all remaining datasets for both cases and controls.

3.2 Homozygous and heterozygous interaction meta-analysis results

The heterozygous interaction between the rs11136000 C/C (CLU) and rs670139 G/T 

(MS4A4E) genotypes did not replicate in the independent analysis, though it is suggestive 

(SF = 1.58, p = 0.07, Figure 1a; Supplemental Table 1). Although the heterozygous 

interaction did not replicate independently in ADGC, the combined meta-analysis including 

Cache County is significant (SF = 1.90, p = 0.01, Figure 1a; Supplemental Table 1). The 

originally reported homozygous CLU-MS4A4E interaction between the rs11136000 C/C 

(CLU) and rs670139 G/G (MS4A4E) genotypes replicates in the independent meta-analysis 

(SF = 1.79, p = 0.008, Figure 1b; Supplemental Table 1). The combined meta-analysis is 

also significant (SF = 2.23, p = 0.0004, Figure 1b; Supplemental Table 1). The individual 
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SNP odds ratios, as previously reported for rs11136000 and rs670139 [21], are 0.83 and 

1.09, respectively. The inverted individual SNP odds ratios for rs11136000 and rs670139, 
are 1.20 and 0.92, respectively. The expected odds ratio for the interaction is 1.20 * 0.92 = 

1.10, thus the observed odds ratio is 2.23 * 1.10 = 2.45. Empirical p-values obtained from 

permutations support the main interaction (ADGC: p = 0.035 with Cache: p = 0.002) and the 

cPAF for CLU-MS4A4E is 8.0. Comparing means to determine whether there is a dosage or 

dominant effect between the heterozygous and homozygous interactions was not significant 

(p = 0.22).

We found an association between the CLU-MS4A4E interaction and case-control status in 

APOEε4 negative subjects in the combined ADGC and Cache County data (SF = 2.08, p = 

0.004, Figure 2a; Supplemental Table 2) that did not exist with APOEε4 positive subjects 

(SF = 1.19, p = 0.26, Figure 2b; Supplemental Table 2). The CD33-MS4A4E interaction 

failed to replicate in either the independent or combined meta-analyses (Figures 3a and 3b, 

Supplemental Table 1).

3.3 Exploring causal variants

We explored causal variants in the CLU and MS4A4E regions using the ADNI whole-

genome data. There were 36 and 32 SNPs that fit the inclusion criteria previously described 

for SNPs near rs11136000 and rs670139, respectively (Supplemental Tables 3 and 4). Most 

of the SNPs are rare (MAF < 0.01) according to the 1000 Genomes, 6500 Exomes, and 

ADNI datasets. None of the SNPs were significantly associated with case-control status 

individually or in the pairwise interactions. We identified two SNPs in MS4A4E (rs2081547 

and rs11230180) that have a Regulome DB score of ‘1f’ and have been shown to modify 

MS4A4A expression [40], the gene upstream from MS4A4E. A score of ‘1f’ means they are 

known to modify expression and are known DNase and transcription factor binding sites.

4. Discussion

In this study we attempted to replicate two gene-gene interactions and their association with 

AD case-control status in the largest dataset used in an epistasis study, to date. The CD33-

MS4A4E interaction failed to replicate and may have resulted from over-fitting in the Cache 

County data as previously described by Ebbert et al. [3] Over-fitting happens when a model 

identifies random data patterns as significant when they are not truly relevant to the question 

at hand. While there is substantial evidence that CD33 function is related to AD pathways 

and pathology [16–18], our data do not support an interaction with MS4A4E that impacts 

AD risk.

We replicated the CLU-MS4A4E interaction, demonstrated an association in APOEε4 

negative subjects, and reported evidence of a possible dominant effect for MS4A4E. The 

homozygous interaction between rs11136000 (CLU) and rs670139 (MS4A4E) replicates 

independently in the ADGC datasets, supporting its validity. To provide synergy factor and 

odds ratio estimates from the largest number of samples possible, we report the combined 

meta-analysis synergy factor and odds ratio including the Cache County data. Given the 

broad sampling and large sample size used for this analysis, our results are likely to be 
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generalizable to other populations of European ancestry. Further investigating this 

interaction in other ethnic groups is warranted.

Comparing the CLU-MS4A4E odds ratio of 2.45 to top AD risk alleles according to 

AlzGene.org [14] along with APP, PLD3, and TREM2 adds greater perspective. 

Momentarily ignoring APOEε4, APP, PLD3, and TREM2, the highest individual odds ratio 

is from APOEε2 (OR = 1.61) [3,14] when inverting to its respective risk allele, followed by 

ABCA7 (OR = 1.23) [3,14], both of which are dramatically lower than 2.45. Of known AD 

risk loci, only APOEε4 (OR = 3.68), APP (OR = 5.29), and TREM2 (OR = 5.05) have ORs 

greater than 2.45 [3,14,41,42]. The CLU-MS4A4E odds ratio is even greater than the PLD3 

Val232Met mutation (OR = 2.10) [43]. These results suggest the CLU-MS4A4E interaction 

may play an important role in AD etiology.

A distinction must be made regarding statistical and biological epistasis, however [22]. 

While there is evidence that CLU, like CD33, interacts indirectly with MS4A2 [3], little is 

known about MS4A4E itself and we do not know whether it biologically interacts with 

CLU. MS4A2 indirectly modifies BCL2L1 activation or expression [3], which physically 

interacts with CLU. Research suggests CLU prevents amyloid fibrils and other protein 

aggregation events [44] while MS4A4E may facilitate aggregation as a membrane-spanning 

protein. Membrane-spanning proteins play diverse roles in cell activity including transport 

and signaling. Experiments will be required to determine whether there is biological 

epistasis between CLU and MS4A4E, and whether the interaction affects amyloid fibril 

formation. Our results indicate further investigative efforts in gene-gene interactions (and 

protein-protein interactions) may be important to resolve AD etiology.

Comparing means for the effect estimates to assess whether there is a dosage or dominant 

effect between the CLU-MS4A4E heterozygous and homozygous interactions was not 

significant, suggesting there may be a dominant effect for the rs670139 G allele. A dominant 

effect has important epidemiologic and heritability implications. Since the CLU-MS4A4E 

interaction increases risk, heterozygous individuals may be at equal risk compared to 

homozygous individuals.

We found an association between the CLU-MS4A4E interaction and case-control status in 

APOEε4 negative subjects in the combined ADGC and Cache County data that did not exist 

with APOEε4 positive subjects. This potential three-way interaction may provide valuable 

insight into AD risk and protective factors. A recent paper by Jun et al. [45] found CLU has 

a stronger association in APOEε4 positive individuals while the region surrounding MS4A4E 

has a stronger association in APOEε4 negative individuals. Further statistical and biological 

studies will be necessary to clarify these potential associations. Since all analyses in this 

study used each gene’s homozygous minor allele as the reference group, the interaction 

between CLU-MS4A4E major alleles is framed as a risk factor, meaning the interaction 

between the minor alleles is protective. Since the tested heterozygous interaction also 

increases risk, the protective association may only apply to the interaction between the 

homozygous minor alleles.
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We report several rare potential causal variants linked to rs11136000 or rs670139 with a D′ 

≥ 0.99 in the ADNI whole-genome data. No individual variants were significantly associated 

with AD risk in the ADNI data, but the analysis was likely underpowered with only 240 

controls and 202 cases. Two particularly interesting variants, rs11230180 and rs2081547, 

are known to affect MS4A4A expression. We believe further analysis of these variants is 

necessary to better understand their involvement in AD. Exploring the effects of rs670139, 

itself, may also be important. Little is known about MS4A4E, including the gene’s 

chromosomal structure. According to gene model XM_011545416.1, rs670139 is in the 

MS4A4E 3′UTR, but other gene models differ. 3′UTR variants can affect transcription and 

translation.

The cPAF for CLU-MS4A4E is 8.0, suggesting there would be an approximate 8% decrease 

in AD incidence across the population if both major alleles were eliminated. In reality, this 

estimate is for the causal variants that rs670139 and rs11136000 may be tagging, but the 

overall effect is nontrivial. Identifying a targeted treatment in the associated pathways could 

have a significant impact.

A major gap in AD literature to date is the lack of known causal variants. Several SNPs have 

repeatedly turned up in genome-wide association studies, but the tagSNPs themselves are 

unlikely to play a direct role in AD etiology. What is more likely is that the tagSNPs are in 

close linkage disequilibrium with one or more causal variants. We hypothesize two possible 

explanations: (1) the SNPs are linked to multiple rare variants that drive AD development 

and progression; or (2) there is another common variant in the region with functional effects 

that remain unknown. In either case, given the biological complexity of AD and results 

presented in this study, we believe epistasis plays a critical role in AD etiology. As such, the 

community must continue to identify and vet these and other interactions that are supported 

in the literature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in Context

We replicated the CLU-MS4A4E interaction (OR=2.45, SF=2.23, p=0.0004) in the largest 

dataset used in an epistasis study, to date, demonstrated an association in APOEε4 

negative subjects, and reported evidence of a possible dominant effect for MS4A4E on 

Alzheimer’s disease risk. This association represents a rare result in the study of epistasis 

in Alzheimer’s disease: a strong effect, replicated in multiple independent datasets. 

Comparing the CLU-MS4A4E odds ratio of 2.45 to odds ratios for each top Alzheimer’s 

disease risk allele along with APP, PLD3, and TREM2 adds greater perspective to the 

interaction’s effect. Of well-established Alzheimer’s disease risk loci, only APOEε4 

(OR=3.68), APP (OR=5.29), and TREM2 (OR=5.05) have odds ratios greater than 2.45. 

The odds ratio for the CLU-MS4A4E interaction is even greater than the Val232Met 

mutation in PLD3 (OR=2.10). These results suggest the CLU-MS4A4E interaction may 

play an important role in Alzheimer’s disease.
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Figure 1. Forest plot showing heterozygous (Panel A) and homozygous (Panel B) CLU-MS4A4E 
interaction replication with potential dominant effect
We tested the original homozygous interaction between the rs11136000 C/C (CLU; minor 

allele = T, MAF = 0.38) and rs670139 G/G (MS4A4E; minor allele = T, MAF = 0.38) 

genotypes, which replicated in ADGC independently (synergy factor = 1.79, p = 0.008, 

Panel B). We also report the combined meta-analysis including the original Cache County 

results to present a synergy factor estimate from the largest number of samples possible, 

which is also significant (synergy factor = 2.23, p = 4e-04, Panel B). We also tested for a 

dosage or dominant effect based on suggestive evidence in the original Cache County results 

(Panel A) by testing the heterozygous interaction between the rs11136000 C/C (CLU) and 

rs670139 G/T (MS4A4E) genotypes, which did not replicate independently, but is suggestive 

(synergy factor = 1.58, p = 0.07, Panel A). The combined analysis, including the original 

Cache County results, is significant (synergy factor = 1.90, p = 0.01, Panel A).
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Figure 2. Forest plot showing APOEε4 negative association with Alzheimer’s disease case-control 
status
We tested for an APOEε4 association with the CLU-MS4A4E interaction using the Cortina-

Borja Synergy Factor Calculator [31]. Specifically, we stratified the combined ADGC and 

Cache County data by APOEε4 status and tested for an association between the interaction 

and case-control status within each stratum. Alleles rs11136000 C and rs670139 G were 

used as the exposed groups. We found an association in the APOEε4 negative stratum 

(synergy factor = 2.08, p = 0.004, Panel A) that did not exist in the APOEε4 positive stratum 

(synergy factor = 1.19, p = 0.26, Panel B), suggesting an APOEε4 effect exists for this 

interaction.
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Figure 3. Forest plot showing failed replication for heterozygous (Panel A) and homozygous 
(Panel B) CD33-MS4A4E interaction
We tested the original homozygous interaction between the rs3865444 C/C (CD33; minor 

allele = A, MAF = 0.21) and rs670139 G/G (MS4A4E; minor allele = T, MAF = 0.38), 

which did not replicate in ADGC independently (p = 0.81, Panel B) and was not significant 

in the combined meta-analysis (p = 0.28, Panel B). We also tested the heterozygous 

interaction, which also was not significant (without Cache: p = 0.64, Panel A; with Cache: p 

= 0.44, Panel A).
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Equation 1. The synergy factor describes the relationship between the expected odds ratio 
(denominator) and the observed odds ratio (numerator) for interacting variants
The expected odds ratio (denominator) assumes that both variants are independent (i.e., 

there is no synergistic, or non-linear effect on the phenotype) while the observed odds ratio 

(numerator) is the actual effect. A synergy factor that deviates from 1 indicates a statistical 

interaction between the variants that affects the phenotype.
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