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Abstract

Maternal diabetes is a significant risk factor for structural birth defects, including congenital heart 

defects and neural tube defects (NTDs). With the rising prevalence of type 2 diabetes and obesity 

in women of childbearing age, diabetes-induced birth defects have become an increasingly 

significant public health problem. Maternal diabetes in vivo and high glucose in vitro induce yolk 

sac injuries by damaging the morphology of cells and altering the dynamics of organelles. The 

yolk sac vascular system is the first system to develop during embryogenesis, therefore, it is the 

most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of 

nutrient transportation due to vasculopathy. Although the functional relationship between yolk sac 

vasculopathy and structural birth defects has not yet been established, a recent study reveals that 

the quality of yolk sac vasculature is inversely related to embryonic malformation rates. Studies in 

animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, 

including hypoxia-inducible factor-1α (HIF-1α), apoptosis signal-regulating kinase 1 (ASK1) and 

its inhibitor thioredoxin-1 (Trx), c-Jun-N-terminal kinases (JNK), nitric oxide (NO) and nitric 

oxide synthase (NOS). Yolk sac vasculopathy is also associated with abnormalities in arachidonic 

acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk 

sac lead to reduction in diabetes-induced malformations. Although the role of the human yolk in 

embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is 

negatively affected by maternal diabetes. Mechanistic studies have identified potential therapeutic 

Address Correspondence to and reprint request to: Peixin Yang, PhD, University of Maryland School of Medicine, Department of 
Obstetrics, Gynecology & Reproductive Sciences, BRB11-039, 655 W. Baltimore Street, Baltimore, MD 21201, 
pyang@fpi.umaryland.edu, Tel: 410-706-8402, Fax: 410-706-5747. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure: None of the authors have a conflict of interest.

HHS Public Access
Author manuscript
Am J Obstet Gynecol. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
Am J Obstet Gynecol. 2016 February ; 214(2): 192–202. doi:10.1016/j.ajog.2015.09.082.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targets for future intervention against yolk sac vasculopathy, birth defects, and other complications 

associated with diabetic pregnancies.
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Globally, 60 million women of reproductive age (18–44 year old), and about 3 million 

American women, have diabetes mellitus, and it has been estimated that this number will 

double by 20301,2. Due to the large number of women affected by diabetes, embryonic 

anomalies stemming from maternal diabetes has become a prevalent public health issue3–5. 

In fact, maternal diabetes-induced embryonic complications have become the leading cause 

of infant mortality in the United States6. Pregestational type 1 or 2 diabetes is a significant 

risk factor for structural birth defects, the most common anomalies being congenital heart 

defects and neural tube defects (NTDs)3–5,7. It has been well established that the rate of birth 

defects increases linearly with the degree of maternal hyperglycemia, which is the major 

teratogenic factor in maternal diabetes5,8–13.

The yolk sac is an extra-embryonic membrane derived from the same progenitor cells that 

produce the embryo14, and it plays an important role in supporting embryonic 

development14, 15. Pregestational diabetes alters the growth and structure of the human yolk 

sac 16,17, and abnormalities in human yolk sac structures are associated with embryonic 

malformations 18,19, suggesting the importance for studying the yolk sac in diabetic 

embryopathy. During the most critical, vulnerable period of embryogenesis, the rodent yolk 

sac encompasses the embryo and serves as the primitive placenta14,15,20,21. After 

implantation and prior to the formation of the placenta, embryonic growth is essentially 

dependent on the proper development of the yolk sac vasculature, which includes the 

vitelline circulation. The vitelline circulation serves as the site for the exchange of nutrients, 

production of red blood cells and blood vessels, and synthesis of essential embryonic 

proteins20,21. During mouse embryonic development, the yolk sac vascular system is the 

first system to develop, and it is the most sensitive to hyperglycemia15. Hyperglycemia 

causes yolk sac vasculopathy that ultimately leads to embryonic malformations or 

lethality15,22. Diabetes-induced defects in the vascular system have been directly linked to 

NTDs23, highlighting the importance of studying diabetic yolk sac vasculopathy. This report 

summarizes the mechanisms underlying maternal diabetes-induced yolk sac injuries and 

yolk sac vasculopathy, and explores the possible causal relationship between yolk sac 

vasculopathy and structural anomalies.

The development of yolk sac vasculature

Although the human yolk sac resides outside of the embryo, similar to the rodent yolk sac, it 

plays an important role in early embryonic vasculogenesis 24. The murine yolk sac is 

derived from the same progenitor cells that produce the embryo14. In mice, conceptus 

vasculogenesis starts with the emergence of vascular endothelial growth factor receptor-2-

positive (VEGFR2+ or Flk+) cells in the yolk sac25. These Flk1+ progenitor endothelial cells 

form blood islands that fuse to generate a primary capillary plexus at embryonic day 7.5 
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(E7.5)25. In addition, extra-embryonic mesodermal cells proliferate to form angioblastic 

cords on E7.526. At E8.0, blood islands fuse and establish the primary capillary network, 

which is intimately associated with mural cells27,28. By E9.5, the capillary plexus has 

remodeled into a complex hierarchy of mature small and large vessels, and functional 

vitelline circulation is established29. A critical number of Flk1+ cells and blood islands are 

crucial for normal vasculogenesis25.

Vasculogenesis begins in the yolk sac prior to embryonic vasculogenesis and development 

of the cardiovascular system. In addition, the yolk sac and embryonic vasculatures are 

regulated by the same group of angiogenic and survival factors via common 

mechanisms22,30, 31. Therefore, the elucidation of the mechanism underlying 

hyperglycemia-induced yolk sac vasculopathy is important in the etiology of diabetic 

embryopathy.

Maternal diabetes induces yolk sac structure failure and dysfunction

Experimental evidence has elucidated the precise role of the yolk sac in mammalian 

embryonic development, as well as the relationship between yolk sac injury and 

embryopathy15, 32. The structures and prostaglandin E2 levels of human yolk sacs are 

altered by maternal diabetes 15,16,33. Studies have shown that yolk sac development is 

morphologically impaired under hyperglycemic conditions34. For example, conceptuses 

exposed to excess glucose demonstrate decreased size and gross malformations34. 

Furthermore, exposure to excess glucose causes the visceral yolk sac capillaries and vitelline 

vessels to become sparse, patchy, and non-uniformly located34. Under high glucose 

conditions, the visceral yolk sac endodermal cells have reduced numbers of rough 

endoplasmic reticulum, ribosomes, and mitochondria34. These defects in yolk sac structures 

suggest that hyperglycemia during organogenesis has a primarily deleterious effect on yolk 

sac functions.

Hyperglycemic conditions also appear to affect the transport function of the yolk sac. For 

example, experiments using horseradish peroxidase as a tracer protein to examine the 

transport function of the visceral endodermal yolk sac cells have shown that the cellular 

uptake of peroxidase is diminished in conceptuses cultured under hyperglycemic 

conditions35. These findings indicate that hyperglycemia inhibits transport of nutrients from 

the yolk sac to the embryo. Coupled together with the experiments demonstrating a 

deleterious effect of hyperglycemia on cell morphology, these data suggest that yolk sac 

failure is associated with diabetic embryopathy.

Maternal diabetes induces yolk sac vasculopathy

In mice, abnormal development and arrested development of the yolk sac vasculature on 

E7.5 can result in congenital malformations in a wide variety of organs and tissues, as well 

as embryonic lethality15,22,30,36. The adverse effects of hyperglycemia on the yolk sac have 

been documented in maternal diabetic animal models and in vitro cultured rodent 

embryos15,22,30,36. Under hyperglycemic conditions, development of the blood vessels in the 

yolk sac is disrupted and the cellular structures in the vessels are altered30,36. Conceptuses 

display various, profoundly abnormal yolk sac vasculature, with some completely devoid of 
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vasculogenesis, and others having a branched plexus with no apparent arborization or 

distinction of arteries and veins23,30,36,37.

The adverse effects of hyperglycemia on yolk sac vasculature development can be 

characterized by arbitrarily assigning morphological scores to individual vasculatures23. 

Using this rating system, one group showed that the yolk sac vasculature score of the 

hyperglycemia group was significantly lower than that of the euglycemic group23. Yolk sac 

vasculature morphologic scores were inversely correlated with embryonic malformation 

rates, such that the higher the score, the lower the rate of malformations, and vice versa23.

Although the developing yolk sac contains a diverse cell population, evidence shows that 

vascular endothelial cells are the primary targets of hyperglycemic insults30,37. Platelet-

derived endothelial cell adhesion molecule (PECAM-1), an endothelial cell marker, 

modulates endothelial cell migration, cell-cell adhesion, and in vitro and in vivo 

angiogenesis38. Under hyperglycemic conditions, the presence of yolk sac vasculopathy is 

associated with the failure of PECAM-1 tyrosine phosphorylation30,37. Thus, hyperglycemia 

may adversely impact vascular endothelial cell functions, including apoptosis, proliferation, 

and differentiation through regulation of endothelial cell specific cellular intermediates and 

signaling.

Molecular intermediates and signaling pathways contribute to maternal 

diabetes-induced yolk sac vasculopathy

Studies show that maternal diabetes induces yolk sac vasculopathy through two distinct sets 

of molecular events. In one set of events, hypoxia-inducible factor 1(HIF-1) and vascular 

endothelial growth factor (VEGF), two proteins that are typically active in normal 

vasculogenesis, are down-regulated by maternal diabetes39. In another set of events, 

maternal diabetes induces activation of a key apoptosis related kinase, known as apoptosis 

signal regulating kinase 1 (ASK1), which increases induced nitric oxide synthase (iNOS) 

expression and the promotion of apoptosis 40,41. Inhibition of events downstream of ASK1 

activation, such as c-Jun-N-terminal kinases (JNK1/2) signaling, abolishes maternal 

diabetes-induced vasculopathy23,42. The protective effect of thioredoxin-1, an inhibitor of 

ASK1, on hyperglycemia-induced vasculopathy has been demonstarted39. The elucidation 

of the mechanisms underlying hyperglycemia-induced yolk sac vasculopathy can aid in the 

development of preventative methods for maternal diabetes-induced cardiovascular defects 

in humans.

The role of HIF-1 in yolk sac vasculopathy

HIF-1 is a key transcriptional regulator for hypoxia regulation of embryonic vascular 

development. It is an oxygen-sensitive heterodimer consisting of a constitutively expressed 

HIF-1β subunit, and an oxygen-regulated HIF-1α subunit43. Regulation of HIF-1 activity 

depends on the degradation of the HIF-1α subunit in normoxic conditions 43. The molecular 

basis of HIF-1 α degradation is the oxygen-dependent hydroxylation of at least one of the 

two proline residues in its oxygen-dependent degradation domain by specific 

prolylhydroxylases (PHD1, PHD2 and PHD3)44–47. In this orm, HIF-1 α binds to the von 
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Hippel-Lindau tumor suppressor protein, which acts as an E3 ubiquitin ligase, and targets 

HIF-1α for proteasomal degradation 48,49. During conditions of normoxia, HIF-1 β is found 

in the nucleus, while HIF-1 α is cytoplasmic and rapidly degraded 49. Reduced oxygen 

levels during embryonic development permit the accumulation of HIF-1α protein in the 

cytoplasm50. Subsequently, HIF-1α translocates to the nucleus, engages HIF-1β, and forms 

the HIF-1 complex that initiates transcription50–52.

HIF-1 functions as a master regulator of angiogenesis by controlling the expression of 

multiple angiogenic growth factors52,53. Maternal diabetes has been shown to reduce 

HIF-1α levels in the embryo, leading to vasculopathy39. Maternal diabetes reduces the 

embryonic hypoxic environment-induced HIF-1α. AdCA5, an adenovirus encoding a 

constitutively active form of HIF-1α, blocks diabetes-induced vasculopathy, demonstrating 

that HIF-1α reduction contributes to diabetes-induced vasculopathy 39. Mice that lack HIF-1 

activity due to HIF-1α- or HIF-1β-null mutations develop extensive vascular defects, similar 

to those observed in diabetic yolk sac vasculopathy, including inadequate vessel formation 

and aberrant vascular remodeling 54, 55. HIF-1 deficiency also decreases cell survival, 

leading to abnormal vasculogenesis56. In our previous study, we demonstrated that a 

decrease in HIF-1α expression is responsible for the VEGF reduction induced by maternal 

diabetes39. This suggests that the HIF-1α-VEGF signaling pathway plays a role in maternal 

diabetes-induced vasculopathy (Fig. 1).

The pro-apoptotic ASK1-JNK1/2 pathway

Apoptosis has been hypothesized as a primary mechanism of diabetes-induced birth 

defects 57–59. Under euglycemic conditions, very low basal levels of apoptosis are observed 

in the embryonic tissues during organogenesis (E7-E11)60. In contrast, compelling evidence 

demonstrates that maternal hyperglycemia enhances apoptosis in the E7-E11 embryonic 

tissues 31, 61–66. However, the apoptotic mechanism in this disease process is not well 

understood. Evidence from clinical and experimental studies has revealed that maternal 

diabetes leads to an imbalance in intracellular reduction-oxidation (redox) homeostasis, 

resulting in intracellular oxidative stress57–59,67–70. Recent studies have demonstrated that 

oxidative stress and ER stress are the main biochemical and molecular mechanisms 

underlying maternal diabetes- induced apoptosis66,71–75.

JNK1/2 are pro-apoptotic factors that belong to the mitogen-activated protein kinase 

(MAPK) family76. MAPKs are members of a complex superfamily of serine/threonine 

kinases that are activated in response to a variety of extracellular stimuli76,77. The basic 

assembly of the MAPK signaling pathway is a three component module76, involving 

sequential activation of MAPK kinase kinase (MAP3K), MAPK kinase (MAPKK), and 

MAPK 78,79. MAP3K phosphorylates and thereby activates MAPKK, and activated 

MAPKK in turn phosphorylates and activates MAPK79. Because the activation status of 

MAPKs largely depends on MAP3Ks, it is important to understand how MAP3Ks are 

regulated. Fourteen different MAP3Ks have been identified 76. Among them, several 

MAP3Ks, including ASK1, TAK1 and MLK3, are known to activate the JNK pathway in 

response to diverse stimuli78–80. In our previous work, we indicated that at a concentration 

of 800 nM, an inhibitor of JNK1/2 (SP600125), significantly abrogated hyperglycemia-
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induced yolk sac vasculopathy in both morphologic score and vasculature morphology, 

strongly suggesting that JNK1/2 activation plays an important role in hyperglycemia-

induced yolk sac vasculopathy 23 (Fig. 2).

ASK1-mediated apoptosis is involved in the pathogenesis of several oxidative stress-related 

diseases such as brain ischemia81, ischemic heart disease82, and Alzheimer’s disease83. 

ASK1 activation leads to apoptosis via the JNK or the p38MAP kinase pathways80. ASK1 is 

activated by phosphorylation of Thr-845 in its activation loop, and ASK1 is required for 

reactive oxygen species (ROS)- and endoplasmic reticulum (ER) stress-induced JNK 

activation and apoptosis58,59,80,84–86. Recently, it has been shown that high glucose-induced 

activation of ASK1 mediates hyperglycemia-induced endothelial cell senescence87. We have 

demonstrated that ASK1 is activated in diabetic yolk sac vasculopathy, and that ASK1 

deletion morphologically ameliorates diabetic yolk sac vasculopathy23. This indicates that 

ASK1 mediates maternal diabetes-induced endothelial progenitor apoptosis or senescence 

by JNK1/2, and that activation of the ASK1-JNK1/2 pathway leads to vasculopathy (Fig. 2).

Altered nitric oxide and nitric oxide synthase (NOS) in yolk sac vasculopathy

Nitric oxide (NO) is a small multifunctional gaseous molecule that acts as a vasoactive 

modulator, signaling molecule, and free radical in mammalian systems. NO is synthesized 

from oxidation of L-arginine by three distinct NO synthases (NOS): neuronal (nNOS), 

endothelial (eNOS), and inducible (iNOS), using the cofactors, NADPH, FAD, and 

tetrahydrobiopterin (BH4)88,89. nNOS and eNOS are constitutively expressed at low 

levels88. iNOS generates very high concentrations of NO only when induced 90. NO has 

been shown to be involved in cell differentiation, proliferation, and apoptosis, and the effect 

of NO is both physiologically essential and cytotoxic 91–93. Upon generation, NO freely 

diffuses through the cell membrane into the exracellular space, and subsequently modifies 

protein thiols or cysteine residues. In addition, NO induces a variety of biological responses 

by interacting with free radicals94–97. NO interacts with several signaling pathways to 

mediate these responses, including MAPK, Janus kinase (JAK), and JNK pathways, as well 

as reactive oxygen depending on signaling pathways98–100.

During blood island formation in diabetic pregnancies, the endoderm produces NO which 

inhibits NOS. Inhibition of NOS, L-NG-monomethyl arginine citrate (L-NMMA), leads to 

developmental arrest at the primary plexus stage, and ultimately vasculopathy22. 

Administration of an NO donor reverses these adverse effects on yolk sac vasculature22. 

Additionally, it has been reported that NO derived from iNOS plays a detrimental role in 

human disease101. Moreover, iNOS and eNOS are expressed during early embryonic 

vasculogenesis, and the alteration of NO expression induces yolk sac vasculopathy22. 

Hyperglycemia increases iNOS protein expression and activity through ASK140,41. The 

increase of iNOS leads to over-production of NO that causes DNA damage, ER stress, NF-

kB and respiratory inhibition102 that may play a vital role on embryonic malformation (Fig. 

3).
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The protective effect of the ASK1 inhibitor thioredoxin-1 in yolk sac vasculopthay

Thioredoxin-1 (Trx) is a 12-kDa protein with a redox-active dithiol in the active site (-Cys-

Gly-Pro-Cys-) and constitutes a major thiol reducing system103. Trx is a potent antioxidant 

and reduces ROS through interactions with its redox-active center, which protects cells from 

stress-induced damage through anti-oxidative, anti-apoptotic, and anti-inflammatory 

effects103. Trx shows an anti-apoptotic function by inhibiting cell death signals104, 

activating survival signaling pathways105,106, or scavenging ROS107. Diabetic yolk sac 

vasculopathy is an oxidative stress and apoptotic disease process39–41,58,59,71. Therefore, 

Trx is able to reduce diabetic yolk sac vasculopathy via its anti-oxidative and anti-apoptotic 

functions (Fig. 4).

Trx is expressed ubiquitously in mammalian cells and its expression is essential for early 

differentiation and morphogenesis of the mouse embryo108. Genetic deletion of Trx leads to 

an early embryonic lethal phenotype109. Trx-deficient embryos die shortly after 

implantation, and the conceptuses are resorbed prior to gastrulation109. When 

preimplantation, Trx-null embryos are placed in culture, the inner mass cells of the 

homozygous embryos fail to proliferate109. This indicates that proper levels of Trx are 

essential for normal embryogenesis. Trx levels are reduced in embryonic tissues exposed to 

diabetes39, implying that Trx reduction is involved in the pathogenesis of diabetic 

emrbyopathy.

Trx is expressed ubiquitously in endothelial cells110 and protects them from ROS-induced 

apoptosis111. Trx is active in the vessel wall and functions either as an important 

endogenous antioxidant, or interacts directly with signaling molecules to influence cell 

growth, apoptosis, and inflammation112,113. Recent evidence implicates that Trx is involved 

in cardiovascular diseases associated with oxidative stress, such as atherosclerosis110; 

vascular injuries114, ischemia reperfusion injury115, and hypertension116. In vivo studies 

have shown a protective role of Trx in different cardiovascular diseases114,115. Thus, Trx is 

considered an important target for therapeutic intervention of cardiovascular disorders.

It has also been reported that Trx stimulates angiogenesis via induction of angiogenic 

factors117. For example, hyperglycemia-induced yolk sac vasculopathy in mice can be 

ameliorated by treating with exogenous human Trx recombinant protein39. Based on the 

profound beneficial effects of Trx on vascular functions and diabetic vasculopathy, 

induction or overexpression and deoxidation of Trx is able to reverse hyperglycemia-

induced yolk sac vasculopathy (Fig. 4).

Therapeutic implications of targeting the yolk sac

The leading intervention strategy currently applied to prevent diabetic embryopathy is 

rigorous glycemic control with lifestyle modifications and various anti-diabetic agents, such 

as insulin, and other therapies, such as anti-hypertensives, as needed57,71. Unfortunately, 

continuous euglycemic control is difficult to achieve and maintain, and even transient 

exposure to hyperglycemia causes embryonic malformation118.
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Our group has shown that fatty acid supplements have some beneficial effects on the 

outcome of diabetic pregnancies119. We analyzed the fatty acid composition in major lipid 

groups of the yolk sac in rats119, and found that maternal diabetes induces quantitative and 

qualitative abnormalities in major lipid groups of the yolk sac119. This implies that the 

teratogenic mechanism of diabetic embryopathy may be related to a deficiency in essential 

fatty acids in the yolk sac119. In addition, we used dietary supplementation of arachidonic 

acid and myo-inositol, in vitro and in vivo, and showed that these substrates can reduce the 

incidence of diabetes-related malformation in offspring120.

Previous work also has indicated that arachidonic acid prevents hyperglycemia-associated 

yolk sac damage and embryopathy119–122. When rodent conceptuses were cultured in 

normal, arachidonic acid-supplemented normal, and arachidonic acid-supplemented 

hyperglycemic rat serum122, the addition of 20 mg/ml of arachidonic acid prevented open 

neural tubes, increased number of lysosome-like structures in the visceral endodermal yolk 

sac cells, advanced neuropil formation in the neuroepithelium, significant reduction of ER, 

and decreased size and number of lipid droplets in embryos cultured under high glucose 

conditions122.

Dietary myo-inositol supplements also appear to significantly decrease the incidence of 

NTDs in offspring of diabetic dams123. The results of a previous study showed that dietary 

therapy successfully restored myo-inositol levels in the yolk sac and reduced 

malformation123. These therapies hold promise for use as a dietary prophylaxis against 

diabetic embryopathy in humans.

Future perspectives and clinical relevance

Investigating the mechanisms underlying yolk sac vasculopathy in animal models may 

reveal the pathophysiology of adverse pregnancy outcomes in diabetic women, and may 

provide a strategy for preventing and treating diabetic embryopathy.

Pathological studies have revealed that placental vascular dysfunction and placental 

infarction occur in diabetic pregnancies124–129. While most of these studies have only 

reported findings after birth, we and others hypothesize that the vasculopathy actually starts 

as early as the yolk sac period. The primary yolk sac in humans is formed in the beginning 

of the second week of pregnancy (ADD BACK REF 142). Although human and murine 

embryonic dependence on the yolk sac differs, findings in animal models do suggest that 

preventing vasculopathy in the human yolk sac may influence the subsequent development 

of the placenta and, thus, the outcome of the pregnancy. Indeed, placental vasculopathy in 

humans increases the need for obstetric intervention, the rates of preterm birth, stillbirth and 

miscarriage130–137.

Implementing the earliest possible interventions that can prevent aberrant embryogenesis 

remains a significant hurdle to improving the outcomes and reducing the healthcare costs 

associated with diabetic pregnancies138–140. Although most international guidelines 

recommend intensive glycemic control during diabetic pregnancy, most of the current 

guidelines do not stress the importance of pre-pregnancy glucose control. Unless a woman 

has diagnosed diabetes prior to pregnancy or a medical history of metabolic syndrome, some 
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women may not even be screened for diabetes until 24 to 28 weeks of gestation141–144. 

International guidelines also suggest that target glucose levels be based on glycated 

hemoglobin, which only represents a general blood sugar level within the past three months. 

However, even short spikes in glucose can be detrimental to the fetus. In reality, 

normalization of glucose metabolism using daily mean glucose level is preferable and 

desirable.

In addition, many pregnancies are unplanned145. Therefore, intervention strategies often 

miss the most important phase of organogenesis, the first weeks of the first trimester of 

pregnancy.. This may be a reason why there is such a high incidence of diabetes related birth 

defects despite modern prenatal care. Thus pregnancy education in women who currently 

have or who are at high-risk for diabetes should be implemented prior to pregnancy139,146.

Because the fetuses are extremely vulnerable to hyperglycemia during the yolk sac period, it 

is pivotal to maintain the glucose stability very early in pregnancy. Different types of insulin 

are used clinically to control glucose, and insulin analogues are often used to treat type 1 or 

2 diabetic patients147. For women whose blood glucose is poorly controlled by daily insulin 

injections, subcutaneous insulin pumps might be useful in such settings148,149. Although 

insulin and insulin analogues have been shown to improve HbA1c, with less risk of 

hypoglycaemia and with little or no adverse effects on the developing fetus147,150–152, use of 

anti-diabetic therapeutics alone has not completely eliminated the incidence of 

hyperglycemia-induced birth defects153.

To date, there has been no single, “best” approach to control glucose in pregnant, diabetic 

women. Studies in animal models have suggested that, in addition to anti-pharmaceutical 

interventions, dietary supplements that improve the lipid content of the yolk sac can reduce 

congenital malformations in offspring of diabetic dams118. However, only isolated clinical 

trials in humans have been performed to date. Large-scale, multicenter clinical trials are 

needed to determine if targeting the health of the yolk sac, either by using nutritional 

supplements or therapeutics that improve yolk sac vasculogenesis, can prevent diabetic 

embryopathy.
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Figure 1. Maternal diabetes induces yolk sac vasculopathy via reduction of HIF-1α

Under normoxic conditions, specific prolylhydroxylases (PHDs) induce oxygen-dependent 

hydroxylation of HIF-1α. HIF-1α then binds to the von Hippel-Lindau tumor suppressor 

protein (pVHL), which acts as an E3 ubiquitin ligase and targets HIF-1α for proteasomal 

degradation. Under hypoxic conditions, HIF-1α translocates to the nucleus, engages HIF-1β, 

and forms the HIF-1 complex that initiates transcription of downstream genes, including 

VEGFs. Maternal diabetes reduces HIF-1α levels by enhancing its degradation. The lack of 

HIF-1α leads to the development of extensive vascular defects, which is similar to diabetic 

yolk sac vasculopathy.
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Figure 2. Maternal diabetes induces endothelial progenitor apoptosis via ASK1 activation
Maternal diabetes induces oxidative stress, which causes ER stress by aggravating unfolding 

protein response (UPR) events in the ER. Oxidative stress and ER stress induce 

phosphorylation of the Thr-845 present on the activation loop of ASK1, thereby activating 

ASK1. ASK1 activation then leads to the phosphorylation of JNK1/2, which activates 

several transcription factors. These transcription factors ultimately induce endothelial 

progenitor cell apoptosis and senescence.
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Figure 3. Overproduction of NO mediates maternal diabetes-induced yolk sac vasculopathy
Maternal diabetes-induced oxidative stress activates ASK1. The phosphorylation of ASK1 

stimulates iNOS gene expression, which generates very high concentrations of NO. The 

detrimental role of NO derived from iNOS includes DNA damage, ER stress, NF-kB 

inhibition, and respiratory inhibition, all of which contribute to yolk sac vasculopathy.
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Figure 4. Thioredoxin-1 (Trx) reduces diabetic yolk sac vasculopathy by scavenging ROS
Reduced Trx is a potent antioxidant that decreases ROS levels through the function of its 

redox-active center. Trx ultimately protects cells from stress-induced damage by anti-

oxidative, anti-apoptosis, and anti-inflammation processes. Maternal diabetes-induced 

oxidative stress disturbs the redox balance of Trx, leading to a disproportionate increase in 

oxidized Trx. High levels of oxidized Trx are associated with several cardiovascular 

diseases, including atherosclerosis, vascular injuries, ischemia reperfusion injury, 

hypertension, and yolk sac vasculopathy. The therapeutic strategy for maternal diabetes-

associated embryopathy may be through induction or overexpression, and deoxidation of 

Trx.
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