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Abstract

Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this 

work, a simple but effective regularized least squares integrating with nonlinear kernel fusion 

(RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our 

proposed algorithm achieves the state-of-the-art results with area under precision-recall curve 

(AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled 

receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance 

can further be improved by using a recalculated kernel matrix, especially for the small set of 

nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions 

can be validated by experimental data reported in the literature, bioassay results in the PubChem 

BioAssay database, as well as other previous studies. Our analysis suggests that the proposed 

RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may 

help to accelerate drug discovery by identifying novel drug targets.

Graphical Abstract

Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions.
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1. Introduction

Identifying interactions between chemical compounds and target proteins plays a 

fundamental role in drug discovery processes. Pharmaceutical companies, on the one hand, 

would like, as soon as possible, to detect hidden adverse events (such as adverse drug 

reactions), which has been a major global health concern, causing side effects, 

hospitalizations, even deaths [1]. On the other hand, they also would like to explore adverse 

events to find new applications [2] (drug repositioning or drug repurposing). Both of the 

purposes can be attributed to accurately identify the potential drug-target interactions (DTI). 

It is well known that experimental validation of interactions is costly and laborious. 

Therefore, application of in silico methods for this challenge is needed.

Several traditional methods [3, 4], such as ligand-based QSAR (quantitative structure-

activity relationship) and receptor-based docking, are often used to predict DTI. However, 

they often have limitations. For QSAR, its performance might be decreased when the 

training samples are not enough. For docking, it largely depends on the 3D crystal structures 

of protein targets. Therefore, it is difficult to study DTI for membrane proteins due to the 

limited number of known 3D structures. In addition, docking-based methods are not 

computationally efficient and previous studies mostly focused on one single target. With the 

advent of chemogenomics research accelerated by high-throughput screening (HTS) 

campaigns of large-scale chemical libraries and the completion of human genome project, 

more chemical and genomic data are now publicly available, which enables researchers to 

study DTI at a large scale, such as studying interactions among multiple drugs and multiple 

targets using computational approaches.

In 2008, Yamanishi and colleagues [5] proposed a bipartite network method for the 

integration of chemical and genomic spaces to predict DTI of four classes of protein targets, 

i.e., enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors 

(NR). Their models suggested many potential interaction pairs between drugs and targets. 

As a following study, Bleakley et al. [6] proposed a novel supervised inference method to 

predict unknown drug-target interactions from the same datasets used by Yamanishi and co-

workers. Their kernel-based models using support vector machine (SVM) transformed the 

edge-prediction problem into the binary classification problem of points with label. Results 

from their models gave high performance in terms of AUC (area under receiver operating 

characteristic curve) and AUPR (area under precision-recall curve).

van Laarhoven et al. [7] used a simple machine learning method called (kernel) regularized 

least squares (RLS) to predict DTI by using only the topological information from the 

adjacency matrix of drug-target network. Then they defined a kernel on the topology 

profiles, called Gaussian interaction profile (GIP) kernel. Using the only defined kernel, 

results from their models exhibited a significant improvement for AUPR over results of the 
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state-of-the-art methods at that time. Furthermore, they found that by combining the 

topological information with others (such as chemical and genomic information), the 

performance could further be improved. However, their method was focusing on the setting 

where both drugs and targets are known, which means that they used known interactions for 

predicting novel ones. Thus, for the situation where both drugs and targets are new (meaning 

that there are not interactions between them), these models are not feasible. In order to 

overcome such limitation, Mei and co-workers [8] introduced a neighbor-based interaction-

profile inferring (NII) method and integrated it into the existing bipartite local model (called 

BLM-NII). By incorporating NII algorithm, the performance of DTI predictions for the four 

benchmark datasets presented a significant improvement, which turned out to be the best 

results.

Apart from the aforementioned popular methods for predicting DTI, various novel statistical 

methods were also proposed, such as restricted Boltzmann machines [9], Bayesian matrix 

factorization [10], even ranking-based method [11]. All these methods exhibited good 

performance but those kernel-based methods have been the most popular ones.

It is noted that the previous kernel-based methods [7, 8] for DTI predictions used only a 

simple linear combination of different kernels as input to form final kernel matrix. However, 

that approach may not be appropriate when linear relationship is not evident among kernels. 

Thus, in this work, we explored a nonlinear kernel fusion (KF) technique, which was 

originally applied successfully in patient similarity network by Wang et al. [12], to combine 

different kernels for predicting DTI. The kernel fusion algorithm can derive both shared and 

complementary information from various kernel matrices, even those from a small number 

of samples. In order to validate the effectiveness of our proposed algorithm, we integrated a 

simple but effective regularized least squares (incorporating NII) with novel nonlinear 

kernel fusing (RLS-KF) technique, and compared the results of DTI predictions for the four 

benchmark DTI datasets [5] with those from previously reported methods. Moreover, we 

recalculated the kernel matrices of drug compounds and target proteins, and results based on 

this exhibited a further improvement especially for the small NR dataset. Importantly, most 

of the top predicted interaction pairs have been successfully validated by either experimental 

data reported in the literature, confirmatory assay results in the PubChem BioAssay 

database, as well as by results in other previous studies.

2. Material and experimental methods

2.1. Dataset

Four drug-target interaction networks, including enzymes, ion channels, G protein-coupled 

receptors and nuclear receptors in human, originally studied by Yamanishi et al. [5], were 

used as the benchmark datasets in the current work. These interaction information was 

retrieved from KEGG BRITE [12], BRENDA [13], SuperTarget [14] and DrugBank [15] 

databases. Protein sequences of the target proteins were obtained from the KEGG GENES 

database [12]. Target sequence similarity matrices (denoted by St, which is an M by M 

square matrix, where M denotes the number of targets) between proteins were computed 

using a normalized version of Smith-Waterman score [16]. Chemical compounds were 

derived from the KEGG DRUG and COMPOUND databases [12]. Chemical structure 
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similarity matrices (denoted by Sd, which is an N by N square matrix, where N denotes the 

number of drugs) between compounds were computed using the SIMCOMP tool [17]. The 

M by N adjacency matrix, Y, where Yij = 1 if drug i interacts with target j, and Yij = 0 

otherwise, was the same to that used in the previous study [5]. Table 1 lists the summary of 

all four datasets.

2.2. Problem formalization

Given three matrices, St, Sd and Y, the task is how to make use of them to predict 

interactions between drug compounds and target proteins, which includes four scenarios of 

interactions between existing/new drugs and targets as described in the literature [8]. A brief 

diagram (Fig. 1) is given to explain the notation of existing/new drugs and targets, which 

assumes there are 4 targets (T1 through T4) and 5 drugs (D1 through D5) in total. Taking the 

first drug, D1, as a query drug, the purpose of current work is to predict if D1 interacts with 

T1 (in the test set) by using the related information from the training set (labelled in red). If 

there is at least one interaction known between D1 and any target from T2 through T4, then 

the current query drug is denoted as an existing drug (Figs. 1A and 1B), or a new drug 

otherwise (Figs. 1C and 1D). Similarly for the definition of existing targets and new targets, 

if there is at least one interaction between T1 (in the test set) and any drug from D1 through 

D5, the current target is denoted as an existing target (Figs. 1A and 1C), or a new target 

otherwise (Figs. 1B and 1D). Thus, four scenarios are (A) existing drug – existing target, (B) 

existing drug – new target, (C) new drug – existing target and (D) new drug – new target. 

After determining one of these four scenarios, the prediction model is built (Fig. 1E) using 

the proposed RLS-KF algorithm, and finally the algorithm assigns a score to a drug-target 

pair (Fig. 1F) estimating the likelihood of an interaction between them, whereas the higher 

score is, the more likely the drug and target interact with each other. For other query drugs, 

they follow the same process. The complete flowchart of the proposed RLS-KF algorithm 

for DTI predictions is shown in Fig. 2.

2.3. Gaussian kernel of adjacency matrix Y

Given the adjacency matrix Y indicating the interaction profiles between drugs and targets, 

the Gaussian kernel between targets was calculated using the following equation:

(1)

Where Yti (or Ytj) is the interaction profile for the current target i (or j) with drugs, ||·|| 

denotes the Euclidean distance between Yti and Ytj, and σ is the kernel bandwidth. 

Generally, the kernel bandwidth can be determined by cross-validation, here in this work we 

just set it as the average interaction number for each target as described in the previous work 

[7]. Finally, the Gaussian interaction kernel for targets, denoted by Kt
gip (see Fig. 2, left 

panel), is an M by M symmetric matrix where M is the total number of targets. It should be 

noted that Kt
gip had to be recalculated since the adjacency Y matrix changed when 

performing cross-validation prediction. Likewise, the Gaussian interaction kernel matrix for 

drugs, denoted by Kd
gip (an N by N symmetric matrix where N is the total number of drugs), 
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was obtained in the same way (see Fig. 2, right panel). The details for calculating the 

Gaussian kernel can be referred to this literature [7].

2.4. Fusion of kernel matrices

The similarity matrices for targets and drugs, St and Sd, were first converted into kernel 

matrices by two simple steps: (1) making them symmetric using the following formula, Ssym 

= (S + ST) / 2, where ST denotes the transpose of S; (2) making them positive semi-definite 

by adding a small multiple of identity matrix as described in the work by van Laarhoven et 

al. [7]. The original St and Sd were subsequently converted into Kt and Kd (see Fig. 2). 

Different from the work by Mei et al. [8], which combined the Gaussian kernel matrix with 

chemical and genomic kernel matrices using a simple linear combination method by setting 

a weight parameter α (usually 0.5), in the work, the nonlinear kernel fusion technology was 

adopted. Given four kernel matrices, Kt, Kd, Kt
gip and Kd

gip, two kinds of fused matrices 

were obtained, respectively: (1) between Kt and Kt
gip, denoted by Kt

kf and (2) between Kd 

and Kd
gip, denoted by Kd

kf (see Fig. 2). The basic fusion process is described as what 

follows below (here, taking the fusion steps between Kt and Kt
gip as an example, whereas 

fusion between Kd and Kd
gip follows the similar process). First, these kernel matrices were 

normalized by dividing by the sum of the rows, such that each row of normalized matrix 

sums to one and then the normalized matrices were symmetrized as described above. The 

resulting matrices were denoted by P(1), and P(2), respectively for Kt and Kt
gip. Secondly, 

local similarity matrix for each P matrix was calculated by the following equation:

(2)

Where Ni denotes the nearest neighbors of the current target i, and the number of nearest 

neighbors (k) should be set by user (in this work k = 4). It can be noted that this operation 

made the similarities among non-nearest neighbors to zero. The generated matrices were 

denoted by L(1) and L(2), respectively, for P(1) and P(2). Thirdly, the key step of fusion 

operation was an iteration process and it was performed as follows:

(3)

(4)

Where P(1)
t+1 is the status matrix of target kernel (Kt) after t iterations, while P(2)

t+1 is the 

status matrix of the Gaussian-based kernel (Kt
gip). It should be noted that in the each 

iteration, the status matrices, P(1)
t and P(2) t, were further changed as follows: P(1)

t = P(1)
t+1+ 

I and P(2)
t = P(2)

t+1+ I, where I denotes identity matrix. After that, both P(1)
t and P(2)

t were 

further symmetrized as described before, respectively. The resulting status matrices were 

used in the next iteration. Here, the iteration step t should be set by user (in this work t = 2). 

After t steps, the two final status matrices (P(1)
t and P(2)

t) were averaged (i.e., Kt
kf = (P(1)

t + 
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P(2)
t) / 2) and then Kt

kf was normalized as before. At last, Kt
kf was further transformed as 

follows: Kt
kf = (Kt

kf + (Kt
kf)T + I) / 2), where (Kt

kf)T denotes the transpose of Kt
kf and I is 

identity matrix. For drugs, after applying the same steps, we can also obtain the final kernel 

matrix, Kd
kf. More detailed description of the fusion process was described in the work by 

Wang and co-workers [18].

2.5. Regularized least squares integrating with kernel fusion matrix

A simple but effective machine learning method, regularized least squares, was used to train 

the models. As described in the literature [19], the algorithm can be formulated by 

optimizing the choice coefficient c, which has a closed-form solution as follows:

(5)

Where KTr is the (NTr by NTr, where NTr denotes the number of samples in the training set) 

kernel matrix of the training set, and λ is a tuning parameter (set to 1 in this work). After 

solving the choice coefficient, the prediction in the test set can be easily obtained using the 

following equation:

(6)

Where KTe is the (NTe by NTr, where NTe denotes the number of samples in the test set) 

matrix of the test set (see Fig. 2).

The flowchart for current DTI predictions is described in Fig. 2, where the left panel shows 

the prediction based on targets, and the right panel shows the prediction based on drugs. 

Thus, two predicted matrices, Ŷ1 and Ŷ2, can be obtained. Then an aggregation function, 

aggr(Ŷ1, Ŷ2), was used to derive the final prediction Ŷ. Herein, the average and maximum 

aggregation functions were used similarly to the previous studies [7, 8].

The current algorithm absorbed the NII idea [8] in order to predict interactions from new 

drugs (or new targets). The key idea of NII is summarized as follows. When the current 

output profile values (one of columns of Y), yTr, are all zeros (e.g., see Fig. 1C and Fig. 1D), 

which means that the current query drug does not interact with any target at all, the choice 

coefficient cannot be appropriately obtained using equation 5. To resolve this need, a 

putative interaction profile can be obtained by NII described as the following (taking target-

based prediction (shown on the left panel in Fig. 2) as an example):

(7)

Where Kd
ki denotes the chemical structure similarity score for the current drug i and drug k, 

and Idi is the putative interaction profile for current drug i. After that, Idi was further scaled 

to [0, 1] using the following equation.
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(8)

Thus, the putative interaction profile Idi can be used as yTr in equation 5 to derive the choice 

coefficient. It should also be noted that when the protein target was new (e.g., see Figs. 1B 

and 1D), which means there was no interaction between this protein and any drugs, the 

prediction in the test set was obtained using Kt itself in order to reduce noise (that is ŷTe = 

Ktc* for the test set, see equation 6), rather than Kt
kf (taking target-based prediction as an 

example, which is shown in the left panel of Fig. 2). The proposed RLS-KF algorithm 

implemented in R language [20], can be downloaded in the github (https://github.com/

minghao2016/RLS-KF)

3. Results and discussion

3.1. Kernel matrices of four DTI datasets

Recently, kernel-based methods have been popular in various fields due to its high 

performance. It is well known that the choice of an effective kernel plays a key role in 

kernel methods. In this work, we first check kernel properties (positive semi-definite for the 

KF operation) of four similarity matrices in the benchmark datasets (enzymes, IC, GPCR 

and NR) to satisfy our proposed algorithm. As a result, all four similarity matrices for drug 

target sequences are already positive semi-definite, thus they are taken directly as the kernel 

matrices without any change. However, for the similarity matrices for drug compounds this 

is not the case. For the NR dataset, once we make the matrices symmetric, it is already 

positive semi-definite, while for GPCR, IC and enzymes, we need to perform two steps as 

described in the method to obtain appropriate kernel matrices. For the adjacency matrix, we 

calculate the Gaussian kernel matrix between objects based on the interaction profiles, since 

it has been reported this kernel can improve prediction performance when comparing with 

other kernels such as those based on correlation or inner products [7].

3.2. Parameter

In our work, the proposed kernel fusion technique requires two hyper-parameters. The first 

one is the number of nearest neighbor (denoted by k, in this work we simply set k = 4 for all 

tests) when constructing local similarity matrix in equation 2. It should be pointed out when 

there are multiple nearest neighbors with equal values at top k, we keep them all 

(considering all of them to be equally important), which is different from the work from 

Wang et al. [18], where they adopted only one of these equal nearest neighbor values. As a 

result when we set k to 4, the non-zero neighbors may be more than 4 in a row of the local 

matrix if multiple equal nearest neighbors co-exist. The second hyper-parameter of KF is the 

number of iteration (denoted by t, in this work we simply set t = 2 for all tests). It is 

noteworthy that the k and t values in this work are relatively small indicating that the KF 

process is computationally efficient. The other two hyper-parameters, σ and λ, used in 

equations 1 and 5 respectively, were set empirically in this work as described above.
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3.3. Evaluation of the proposed RLS-KF algorithm

To assess the effectiveness of our proposed RLS-KF algorithm for predicting drug-target 

interactions, we apply it to the four benchmark datasets. In the current work, we choose to 

use the 10-fold cross-validation method (specifically, it is per-column 10-fold cross-

validation, and this is repeated for each column) and repeat it 10 times, since it has been 

reported that this method provides a more robust evaluation for machine learning algorithms 

compared to the leave-one-out (LOO) cross-validation method [21]. Suitable statistical 

metrics are also important to provide an adequate evaluation for the proposed algorithm. 

Here, we utilize AUC and AUPR as the evaluation metrics in the current work. Table 2 

shows the results of our proposed RLS-KF algorithm for predicting drug-target interactions 

for the four benchmark datasets. It is encouraging that the AUC values for all the benchmark 

datasets are highly satisfactory. On the other hand, we also note that all of the four 

benchmark datasets possess the imbalanced property, e.g. the number of drug-target pairs 

with known interactions is far less than the number of pairs with no interaction evidence. 

Therefore, the AUPR metric, which is more sensitive for unbalanced datasets, is also used 

for assessing prediction results. When evaluated by AUPR, all of the predictive results are 

still encouraging, and AUPR values for the most of the predictions are higher than 90% 

except that for the GPCR dataset. We also note that the aggregation methods, e.g. average-

based vs max-based, have an effect on the results. In most cases, the average aggregation 

method outperforms the max-based aggregation method. The exception is however, for the 

NR dataset, for which predictive results from both methods are good and comparable.

3.4. Comparison with the state-of-the-art method

The proposed RLS-KF method is also evaluated by comparing it with BLM-NII from Mei 

and co-workers [8], which ranked as the top ones among several similar work for DTI 

predictions [5–7], and hence was considered as the state-of-the-art method. In addition there 

are two other reasons to select BLM-NII for this comparison. (1) Both RLS-KF and BLM-

NII are formulated in a similar way for predicting DTI. The difference between the two is, 

however, that the former uses the kernel fusion technique to combine multiple similarity 

matrices, while the latter uses the simple linear combination technique; (2) Both algorithms 

are applicable to DTI predictions for new drugs (or new targets). Results from the 

comparison between RLS-KF and BLM-NII are listed in Table 3. It should be noted that 

these results are obtained from 10 trials of 10-fold cross-validation obtained using the 

average aggregation function. It should also be pointed out that the current results of BLM-

NII are derived from our implementation (by setting hyper-parameter α = 0.5 in BLM-NII) 

which are slightly different from the original results reported by Mei et al. [8]. As shown in 

Table 3, when evaluated by AUC, it can be seen that there is no significant difference 

between results from the two algorithms with RLS-KF performing slightly better than BLM-

NII for all of four datasets. The performance differences become apparent when evaluated 

by AUPR, however. Based on AUPR, BLM-NII outperforms RLS-KF for the IC dataset, 

though only marginally. For the other three datasets including Enzymes, GPCR and NR, our 

proposed RLS-KF consistently performs better than BLM-NII. It is interesting to note that 

for the NR dataset, which has the smallest size among the four benchmark datasets, results 

from RLS-KF are very encouraging. For this dataset, AUPR from RLS-KF is 0.909, which 

significantly outperforms the result from BLM-NII (0.783). In fact, the previous studies [5–
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7] have suggested that prediction for the NR dataset is the most difficult task since the 

number of samples is relatively less sufficient. However, the proposed kernel fusion 

technique proves to be efficient for DTI predictions for this small dataset. Fig. 3 and Fig. 4 

show the corresponding AUC and AUPR curves, respectively. In summary, this comparison 

analysis suggests that the proposed regularized least squares algorithm integrating with the 

novel nonlinear kernel fusion technique, RLS-KF, can make stronger DTI predictions, and 

the kernel fusion technique to combine multiple similarity matrices plays a critical role in its 

success.

3.5. Effect of similarity measures on the performance of RLS-KF

The comparisons on AUPR and AUC described above for our proposed RLS-KF algorithm 

and the start-of-the-art method was done using the benchmark similarity matrices. It would 

be interesting naturally to investigate how similarity measures can affect the performance of 

the algorithm. Thus, in this work, we also calculated additional similarity matrices both for 

the drugs and targets. The new similarity matrices for the protein targets are calculated based 

on two methods. The first one is obtained by using the spectrum kernel (denoted by SK, the 

hyper-parameter kmers is set to 3 in this work) [22], and the other one is obtained by using 

Clustal Omega (denoted by CO) [23], for which Clustal Omega gives the distant matrix 

(denoted by distM), and (1 – distM) is calculated to obtain the similarity matrix. For the 

drug compounds, the similarity matrix is obtained by using the PubChem fingerprint 

(denoted by PCFP, ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/

pubchem_fingerprints.txt), which has been successfully applied in other research [24, 25]. 

As a result, we obtained two sets of combined matrices: SK-PCFP and CO-PCFP. Table 4 

shows the results of RLS-KF based on 10 trials of 10-fold cross-validation using the new 

constructed similarity matrices. The results are based on the average aggregation function. It 

can be noted that the results based on the new constructed similarity matrices do not show 

significant differences on AUC compared to those used in the earlier comparison analysis 

(Tables 3 and 4). When looking at AUPR, the performance of the benchmark matrices for 

the three larger benchmark datasets is only marginally better. However, for the smallest NR 

dataset, the performance (AUPR of 0.945 in SK-PCFP) exhibits further improvement 

compared to those obtained earlier from the benchmark similarity matrices (AUPR of 0.909 

obtained by RLS-KF, shown in Table 3). Further analysis of this result shows that, by using 

our proposed RLS-KF algorithm based on the combination of SK-PCFP, all the 90 known 

interactions for the NR dataset (see Table 1) can be retrieved from about the top 204 

predictions (sorting by descending order of prediction scores) out of the total 1404 possible 

combination of the drug-target pairs. These results are very encouraging which indicate the 

effectiveness of both the proposed RLS-KF algorithm and the new constructed similarity 

matrices (SK-PCFP), and suggest that the new similarity measures indeed have a positive 

effect on the performance of RLS-KF, especially for a dataset of smaller size. It should also 

be pointed out that in the current work, only drug-target network information, coupled with 

chemical structure information for the drugs and sequence information for protein targets, 

was used. It would be interesting to see whether prediction performance can be further 

improved by combining additional information, such as those from side effects [26], protein-

protein interactions, drug-drug interactions [27].
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3.6. Predicted interactions and validation

As shown in Table 4, it can be seen that our proposed RLS-KF algorithm combined with 

SK-PCFP gives the best results for the NR dataset, which is the most challenging dataset for 

DTI predictions as shown in the previous studies [5, 7, 8]. Therefore, we took the NR 

dataset as an example to further analyze the results of our proposed algorithm in greater 

details by looking into the novel predictions. Table 5 lists the top 10 predicted interactions 

(e.g. interactions not indicated by the benchmark dataset, sorted based on descending order 

of predicted scores) for NR based on the RLS-KF/SK-PCFP combination.

The top one predicted interaction occurs between D00316 (Etretinate) and hsa6096 (RAR-

related orphan receptor β). Etretinate is a medication which originally was used to treat 

severe psoriasis but withdrawn due to the high risk of birth defects. Now it is used to treat T-

cell lymphomas [28]. As it can be seen in Fig. 5, D00316 interacts with hsa5914, hsa5915, 

hsa5916, hsa6256, hsa6257 and hsa6258 in the benchmark NR dataset (blue solid line). 

Here, our RLS-KF algorithm predicts that it may also interact with RAR-related orphan 

receptor β (RORβ, hsa6096), which is consistent with the prediction by another previous 

study [21]. In addition, results from the study by Stehlin-Gaon et al. [29] indicate that 

several retinoids bind to RORβ. As Etretinate is an aromatic retinoid, a second-generation 

retinoid, there is a strong possibility of an interaction between Etretinate and RORβ. D00182 

(Norethindrone), the drug at the second position in Table 5, is an approved small molecular 

drug, which is known as an agonist for the progesterone receptor (hsa5241 in Fig. 5). In this 

work, it is predicted to interact with hsa2099 (Estrogen receptor 1). To validate this 

prediction, we searched the bioactivity data of D00182 in the PubChem BioAssay database 

[30], which has been successfully used by many studies [31–34]. It is interesting that both 

the confirmatory assays deposited by Tox21 (PubChem BioAssay ID: AID 743075 and AID 

743079) and the binding assay from ChEMBL [35] (AID 625258) support our prediction. 

For the third drug D00443 (Spironolactone) shown in Table 5, the predicted D00443-

hsa5241 interaction pair by our algorithm gets confirmed by resorting to the latest version of 

DrugBank, where Spironolactone is listed to act as an agonist for the progesterone receptor. 

The fourth drug, D00327 (Fluoxymesterone) is used in the treatment of breast neoplasms in 

women, which interacts with hsa367 and hsa2099 as reported in the benchmark dataset (Fig. 

5). Here, an D00327-hsa5241 interaction is predicted which is in line with the prediction in 

ChemSpider based on the SimBioSys LASSO score [36] (CSID 6205). D00075 

(Testosterone) is a steroid sex hormone which plays an important role in sustaining human 

health. It has been reported to target the Androgen receptor as an agonist (hsa367, Fig. 5). 

RLS-KF algorithm suggested two additional interactions with hsa5241 and hsa2099 

respectively. The former interaction was actually reported by the work from Duda et al. [37], 

while the predicted Testosterone-hsa2099 interaction is also suggested by multiple 

confirmatory bioassay data in PubChem (PubChem BioAssay ID: AID 588514 from NCGC, 

AID 743079 and AID 743075 from Tox21, as well as AID 402360 from ChEMBL). D01115 

(Eplerenone), acts as an antagonist against the Mineralocorticoid receptor (hsa4306). Our 

study predicts it interacts with hsa2908, a Glucocorticoid receptor. An antagonist activity 

assay confirms our prediction (PubChem BioAssay ID: AID 761383 from ChEMBL). Our 

prediction on the D01217 (Dydrogesterone)-hsa2099 interaction is cross-validated by the 

prediction obtained from ChemSpider based on LASSO score (CSID 8699). As for the 
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predicted interaction between D00951 (Medroxyprogesterone acetate) and hsa2099, the 

latest DrugBank version supports our result. As shown in Fig. 5, D00094 (Tretinoin) is the 

most promiscuous drug which interacts with nine targets as reported in the original NR 

dataset. Our algorithm predicts it may interact with one more target, hsa3174. However, this 

prediction is inconsistent with the result deposited in a profiling assay for RORA modulators 

in PubChem BioAssay (AID 2277) which reports small molecule bioactivity data for a panel 

of targets and flags Tretinoin as inactive against hsa3174. But, it should be noted that the 

primary screening data presented in AID 2277 may be prone to include false positives as 

well as false negatives. Therefore, further experiments are needed to validate this interaction 

proposed by our work.

In summary, by using the proposed RLS-KF algorithm, 6 out of the top 10 predicted 

interactions for the NR dataset can be validated by experimental data and the other three 

predictions are consistent with predictions from other studies.

3.7. External validation

Although our model exhibits encouraging results than the previous counterparts based on the 

benchmark datasets, it is also interesting to find out if the proposed algorithm can handle 

new dataset that was not covered by the benchmark datasets. Thus, taking the NR dataset as 

an example, we collected additional NR targets and corresponding drugs which are reported 

only in the latest DrugBank database. By a careful search in the DrugBank database, we 

retrieved 7 new NR targets and 26 corresponding drugs with a total of 31 newly indicated 

interactions between them. Then, we extended the benchmark NR dataset to 33 targets with 

80 drugs from the original 26 targets with 54 drugs. Following the same procedure, we used 

Gaussian kernel for drug molecules and spectrum kernel (kmers = 3) for protein targets. The 

parameters in the fusing process are kept as the same to those used before for the benchmark 

NR dataset (k = 4, and t = 2). When building models, we also performed 10 trails of 10-fold 

cross-validation with predicted scores ranked by descending order. As a result, about 90% 

out of the 31 interactions in the external set ranked at the top 100 positions or above out of 

the total 2640 potential drug-target pairs, and all the 31 known interactions can be retrieved 

(see supporting information) at about top 300 positions, indicating our proposed RLS-KF 

algorithm can handle the external dataset effectively.

4. Conclusion

In the work, we propose an effective similarity fusion method (RLS-KF) for drug-target 

interaction predictions. By comparing our method with other state-of-the-art methods, it is 

shown that RLS-KF produces higher AUC and AUPR in general demonstrating its enhanced 

power in DTI predictions. The results from our method are particularly encouraging for the 

NR dataset, which has shown as the most challenging dataset for the previous studies. 

Furthermore, when incorporating additional similarity measurement calculated for both drug 

compounds and target proteins, the prediction performance was further improved. 

Importantly, most of the top ranked DTI predictions can be validated by experimental results 

reported in the literature (which were reviewed retrospectively) and bioassay data deposited 

in PubChem, or otherwise supported by various in-silico studies. Such encouraging results 

indicate that RLS-KF is effective for studying DTI and novel target identification. Our 
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analysis suggests that the proposed method can be helpful in constructing drug 

polypharmacological profiles, hence providing new perspectives for network pharmacology 

and facilitating drug repositioning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1. A nonlinear kernel fusion algorithm is proposed to perform drug-target 

interaction predictions.

2. Performance can further be improved by using the recalculated kernel.

3. Top predictions can be validated by experimental data.
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Fig. 1. 
Brief diagram of four scenarios for DTI predictions.
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Fig. 2. 
Flowchart of the proposed RLS-KF algorithm for DTI predictions.
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Fig. 3. 
AUC curves of RLS-KS and BLM-NII for DTI predictions of the four benchmark datasets.
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Fig. 4. 
AUPR curves of RLS-KS and BLM-NII for DTI predictions of the four benchmark datasets.
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Fig. 5. 
Network of the top 10 predicted interactions for NR by RLS-KF algorithm, where the blue 

solid line denotes the known interactions reported in the benchmark NR dataset, while the 

blue dashed line denotes the predicted interactions.
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Table 1

Summary of the four benchmark datasets.

Data Enzymes IC GPCR NR

Number of targets 664 204 95 26

Number of drugs 445 210 223 54

Number of interactions 2926 1476 635 90
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Table 2

Results of RLS-KF based on 10 trails of 10-fold cross-validation for predicting the four benchmark datasets.

Datasets Aggregation function AUPR AUC

Enzymes
Max 0.892 ± 0.011 0.990 ± 0.001

Average 0.915 ± 0.007 0.990 ± 0.001

IC
Max 0.901 ± 0.006 0.987 ± 0.001

average 0.925 ± 0.005 0.989 ± 0.001

GPCR
Max 0.806 ± 0.010 0.981 ± 0.001

average 0.853 ± 0.006 0.984 ± 0.001

NR
Max 0.911 ± 0.011 0.987 ± 0.002

average 0.909 ± 0.013 0.987 ± 0.002
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Table 3

Performance comparison of RLS-KF with BLM-NII based on 10 trails of 10-fold cross-validation.

Data Method AUPR AUC

Enzymes BLM-NII 0.893 ± 0.005 0.984 ± 0.0004

RLS-KF 0.915 ± 0.007 0.990 ± 0.001

IC BLM-NII 0.931 ± 0.004 0.988 ± 0.001

RLS-KF 0.925 ± 0.005 0.989 ± 0.001

GPCR BLM-NII 0.827 ± 0.004 0.979 ± 0.001

RLS-KF 0.853 ± 0.006 0.984 ± 0.001

NR BLM-NII 0.783 ± 0.021 0.962 ± 0.003

RLS-KF 0.909 ± 0.013 0.987 ± 0.002
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Table 4

Results of RLS-KF based on 10 trials of 10-fold cross-validation using the new constructed similarity 

matrices.

Data Combination AUPR AUC

Enzymes SK-PCFP 0.907 ± 0.011 0.990 ± 0.001

CO-PCFP 0.911 ± 0.007 0.989 ± 0.001

IC SK-PCFP 0.912 ± 0.005 0.987 ± 0.001

CO-PCFP 0.922 ± 0.005 0.988 ± 0.001

GPCR SK-PCFP 0.835 ± 0.009 0.979 ± 0.001

CO-PCFP 0.842 ± 0.009 0.982 ± 0.002

NR SK-PCFP 0.945 ± 0.004 0.993 ± 0.001

CO-PCFP 0.942 ± 0.007 0.992 ± 0.001
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Table 5

Top 10 predicted interactions for the NR dataset using RLS-KF based on the SK-PCFP combination.

Order KEGG drug ID Drug name KEGG target ID Target name

1 D00316 Etretinate hsa6096 RAR-related orphan receptor β

2 D00182 Norethisterone hsa2099 Estrogen receptor 1

3 D00443 Spironolactone hsa5241 Progesterone receptor

4 D00327 Fluoxymesterone hsa5241 Progesterone receptor

5 D00075 Testosterone hsa5241 Progesterone receptor

6 D00075 Testosterone hsa2099 Estrogen receptor 1

7 D01115 Eplerenone hsa2908 Glucocorticoid receptor

8 D01217 Dydrogesterone hsa2099 Estrogen receptor 1

9 D00951 Medroxyprogeste rone acetate hsa2099 Estrogen receptor 1

10 D00094 Tretinoin hsa3174 Hepatocyte nuclear factor 4 gamma
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