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Abstract

Gene expression is regulated by complex networks of interactions between RNAs and proteins. 

Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; 

specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas 

non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies 

indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full 

spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative 

measurements of protein binding to large numbers of RNA variants, and the concepts aimed as 

describing resulting binding spectra: affinity distributions, comprehensive binding models and free 

energy landscapes. We discuss how these new methodologies and associated concepts enable 

work towards inclusive, quantitative models for specific and non-specific RNA–protein 

interactions.

RNA–protein interactions are critical for the regulation of gene expression1. Research over 

the last decades has shown that RNA is invariably bound and often altered by proteins in 

cells, and that in biological environments RNAs generally function together with proteins as 

RNA–protein complexes (RNPs) 2,3. It has also become clear that cellular RNA–protein 

interactions represent a very complex network, comprised of a large number of RNAs, 

proteins and RNA–protein interactions4. In addition, multitude of diseases have been linked 

to misregulation or malfunction of proteins that contact RNA 5–7. Thus, deciphering RNA–

protein interactions on both molecular and cellular scales is central to understanding human 

physiology and many diseases.

Typical eukaryotic cells contain thousands of different RNAs8. For every protein that 

interacts with RNA it is critical to understand the molecular characteristics that define 

whether and how the protein discriminates between different potential binding sites in these 

RNAs. For this purpose, proteins that interact with RNA are traditionally classified as either 

“specific” or “non-specific”. Specific proteins associate preferentially with defined RNA 

sequence or structure motifs, or a combination thereof. “Non-specific” proteins associate 

with RNA sites that appear to be devoid of sequence or structure motifs. Roughly half of all 

proteins that interact with RNA proteins fall into the “non-specific” category. Examples 
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include translation elongation and initiation factors, and proteins involved in RNA 

degradation9,10. Binding to diverse RNA sites is critical for the biological function of non-

specific proteins.

Although the terms “specific” and “non-specific” are widely used, a multitude of studies that 

mapped RNA–protein interactions in cells or measured RNA–protein association for large 

numbers of sequences in vitro, indicate that specificity, or the lack thereof, is a considerably 

more nuanced problem than suggested by the binary “specific vs. non-specific” 

classification. As descriptions of cellular RNA–protein interaction networks move towards 

systems-level, quantitative models4,11,12, and as other lines of research aim at engineering 

novel RNA-binding proteins13–16, a comprehensive, quantitative view on specificity and 

non-specificity is required. In this review, we discuss emerging approaches aimed at this 

goal. To emphasize the significance of these methods and concepts for a deeper 

understanding of cellular RNA–protein interactions, we start with a brief overview of the 

tremendous complexity of RNA–protein interactions in vivo (in the cell). We then discuss 

novel methods that enable quantitative measurements of protein binding to large numbers of 

RNA variants, and the concepts aimed as describing resulting binding spectra: affinity 

distributions, binding models and free energy landscapes. Finally, we review the insights 

gained and the potential provided by these new methods and the associated concepts towards 

a nuanced, inclusive description of specific and non-nonspecific RNA protein interactions.

The complexity of RNA-protein interactions

In mammalian cells, more than 1,000 diverse proteins directly interact with RNA 1,17–19. 

For the purpose of this review, we will refer to proteins that interact with RNA as RNA 

binding proteins (RBP), even though only a subset of these proteins function to solely bind 

RNA. In humans, a certain set of RBPs is expressed in all tissues investigated thus far1. For 

other RBPs, expression can vary considerably, and some are expressed exclusively in certain 

tissues 1,5,20,21. Many RBPs have a modular structure, often containing multiple, different 

RNA interacting domains 1,22,23. RNA interacting domains are traditionally called RNA-

binding domains (RBDs), but these domains often harbor functions that exceed mere RNA 

binding (Tab.1). For the purpose of this review we will keep the RBD designation. The main 

RBD classes include enzymatic domains that chemically alter RNA (nucleotidyltransferases, 

ribonucleases, RNA modifying enzymes), or that couple nucleotide binding or hydrolysis to 

RNA binding or structural remodeling (GTPases, helicases) (Tab.1). In addition, there are 

numerous RBDs that only bind RNA (Tab.1). Some RBDs are found in large numbers of 

proteins1,5,17. The most frequently occurring is the RNA Recognition Motif (RRM), an 

RNA binding module present in several hundred mammalian proteins24. The most common 

enzymatic domain is the helicase domain, found in roughly 70 human proteins that interact 

with RNA17,25. In contrast, other domains, for example RNA guanyltransferase, are found in 

only a single protein per organism 26. Finally, proteins that interact with RNA vary widely 

in their abundance, ranging from few to 100,000 molecules per cell27.

RNA binding is not restricted to proteins with domains that are traditionally viewed as 

RDBs. Recent work has revealed extensive RNA association of considerable numbers of 

metabolic enzymes lacking previously identified RBDs 28,18,19,29. Other studies show 
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association of (mostly long-non-coding) RNAs with transcription factors30–32. The number 

of proteins that demonstrably interact with RNA is thus likely to grow in the future.

The number of RNA species far exceeds the number of RBPs in typical eukaryotic cells. 

Human cells encode more than 20,000 different mRNAs (Fig. 1). Most cell types express 

between 11,000 and 15,000 at any time 33. The diversity of mRNAs is further increased by 

alternative splicing 34 and by chemical modifications 35–38. In addition to mRNAs, 

metazoan cells can express thousands of species of long non-coding RNAs and hundreds of 

micro RNAs (miRNAs), tRNAs and small nucleolar RNAs (snoRNAs) (Fig. 1). At certain 

stages of germ cell development, large numbers of piwi-interacting RNAs (piRNAs) are 

expressed39. On the other hand, there are only few ribosomal RNA (rRNA) and small 

nuclear RNA (snRNA) species (Fig. 1). Finally, cleaved RNA fragments are emerging as 

potentially regulatory molecules40–42.

The various RNA types differ dramatically in their abundance. In most eukaryotic cells, 

rRNA accounts for roughly 80–85% of the cellular RNA mass, followed by tRNA, mRNA 

and snoRNAs (Fig. 1). All other RNAs together account for less than 2% of the mass (Fig. 

1). At certain stages of germ cell development, these RNA mass ratios might change due to 

the expression of piRNAs39. Even within each RNA class, abundance varies widely. The 

expression levels for mRNAs range over four orders of magnitude33. A small number of 

expressed mRNA species often accounts for 50% of the cellular mRNA mass. For example, 

50% of the mRNA mass is contributed by only 250 mRNA species (~4%) in yeast, by 900 

mRNA species (~7%) in human cerebellum, and by less than 10 of mRNA species (~0.01%) 

in liver tissue 33. Another factor contributing to the disparity in cellular RNA mass is that 

RNAs vary greatly in their length, ranging from more than 10,000 nucleotides (mRNAs and 

lncRNAs) to only 22 nucleotides(miRNAs) (Fig. 1).

Any given RNA is usually bound by multiple proteins 3,4. Different proteins can either bind 

simultaneously, subsequently, or in a mutually exclusive manner 3,4. Conversely, most 

proteins can bind multiple RNAs43. Some proteins, such as mRNA export factors, require 

the capacity to contact many diverse mRNAs44, and the translation elongation factor Tu 

binds all charged tRNAs45. Given the number of RNAs and RBPs, the number of possible 

RNA–protein interactions is extremely large. Further variation is added by proteins that do 

not directly contact the RNA, but modulate the binding of RNA by RBPs, for example 

through post-translational modifications or by through interactions with RBPs 46,47. RNAs 

can also interact with one another, illustrated most prominently by the interactions between 

miRNAs, mRNA and ceRNAs48,49. Given the simultaneous presence of large numbers of 

RNAs and RBPs and the layers of modulation of these interactions by other proteins, 

cellular RNA–protein interactions represent a massive set of interdependent intereactions. 

Most RBDs recognize sites comprised of only to 3 to 8 nucleotides and often tolerate a high 

degree of sequence variation in these binding sites 3. Thus the number of potential 

interactions of even highly selective proteins in organisms with small transcriptomes such as 

yeast can be extrordinarily large.

Every interaction between an individual protein and a specific RNA site is dictated by the 

inherent affinity of the protein for the RNA site, the concentration of the protein, the 
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concentration of the RNA, the competition from other RNAs for association with the 

protein, and the competition of other proteins for the RNA binding site. In addition, proteins 

that interact with or modify RBPs can profoundly impact RNA binding patterns. Therefore, 

it is not surprising that substrate selection by a given protein rarely conforms to a binary 

specific vs. non-specific model. Yet, the challenge remains to devise models that describe 

RNA protein interactions in sufficient quantitative detail to allow predictions of the RNA 

binding pattern of individual proteins under a defined set of parameters. A critical first step 

towards this goal is addressed by approaches that quantitatively assess binding of proteins to 

many different RNA sites.

Measuring protein binding to many RNAs

Several methods have been developed to determine protein binding sites on RNAs on a 

transcriptome-wide scale50,51. The techniques rely on covalent crosslinking of protein to 

RNA by UV irradiation (CLIP and derivatives)52–55, or on immunoprecipitation of RNA-

bound proteins with a chemical crosslinker (RiPIT 56) or without 57. The crosslinked RNA 

fragments are identified by next generation sequencing or microarray analysis. These 

methods represent a quantum leap forward with respect to visualizing protein binding 

patterns on RNAs, often revealing binding to numerous different sites on large numbers of 

RNAs. The binding sites often allow the definition of consensus motifs for protein 

binding 43. Although powerful and highly instructive, these techniques do not currently 

provide quantitative data necessary to assess affinity or binding and dissociation kinetics of 

RNA–protein interactions.

Other, novel approaches aim at quantitatively measuring protein binding to large numbers of 

RNA variants in vitro. Recently, in vitro selection (SELEX) was combined with high 

throughput sequencing 13,58,59. Traditional SELEX combines multiple rounds of selection 

and amplification of has been traditionally used to identify RNA species preferentially 

bound by RBPs. The combination of SELEX with next generation sequencing allows the 

analysis of a much larger number of sequences than obtained with classic SELEX, and thus 

enables insight into RNA binding by RBP beyond the tightest bound species 13,58,59. 

SELEX has also been employed to determine binding preferences of RBPs in the cell 60. 

However, SELEX approaches bias the analysis towards the highest-affinity targets, even 

when combined with next generation sequencing.

To circumvent this bias towards the highest-affinity targets techniques have been developed 

that directly analyze interactions of proteins with large populations of diverse RNAs (Box 

1). These methods bypass the selection and amplification cycles of the SELEX procedure, 

and allow measurements of both weakly and tightly bound RNA species. Some of these 

techniques are analogous to high throughput methods for investigating the binding of 

transcription factors to large numbers of DNA sequences61. All of the approaches measure 

differences in protein binding to a pool of diverse RNA substrates that contain regions of 

randomized nucleotides (Box 1).
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Box 1

Techniques for measuring protein binding to many RNA sequences in vitro

a. RNA Compete. A pool of RNA species that contain a region of randomized 

sequence is incubated in vitro with a specific RNA binding protein (RBP) 129. 

The RBP is pulled-down, the bound RNAs are recovered and their sequence is 

determined by microarrays. The method has been used to determine sequence 

motifs for RNAs that bind tightest to a given protein 129,130.

b. RNA Bind-n-Seq (RBNS). This approach is similar to RNA Compete, however, 

the bound RNAs are analyzed by next generation sequencing 103. The number of 

sequences that can be measured simultaneously is limited by the throughput of 

the sequencer. This limit is currently at approximately (2.5 – 5) × 108 RNAs, 

which corresponds to a sequence space of 9 – 10 randomized nucleotides. 

RBNS has been used to obtain sequence motifs for RNA variants with the 

highest equilibrium binding affinity to a given RBP 103.

c. High Throughput Sequencing Kinetics (HiTS-Kin). This approach follows the 

enzymatic processing of various RNA substrates in a reaction that depends on 

an RBP, thus measuring functional binding of an RNA by the protein 67. 

Processed and non-processed RNA species are separated by gel electrophoresis, 

although other separation techniques can be employed. The ratios of processed 

or non-processed RNAs, or both, as a function of time are analyzed by next 

generation sequencing. HiTS-Kin provides association and dissociation kinetics 

and has been used to determine functional affinity distributions 67. The number 

of sequences that can be monitored simultaneously by HiTS-Kin is limited by 

the sequencing capacity and the desired quantitative coverage of the sample. 

The approach can be readily adapted to different experimental systems and to 

reactions in vivo, provided that reactive and unreactive RNA species can be 

separated.

d. RNA array and High-Throughput Sequencing-RNA Affinity Profiling (HiTS-

RAP). These techniques utilize a modified Illumina next generation sequencing 

protocol to directly visualize the RNA–protein interactions in the sequencer 

flowcell90,131. A pool of DNA sequences with randomized regions is 

immobilized in a sequences flowcell. The respective sequences are identified by 

a round of sequencing. Subsequently, each DNA serves as template for RNA 

polymerase to transcribe an RNA from each DNA template. Following 

transcription, the polymerase is stalled (in RNA array by biotin-streptavidin at 

the terminus of the DNA helix; in HiTS-RAP by binding of the protein Tus to a 

Ter site in the DNA). The transcribed RNA remains bound to the stalled 

polymerase, thus allowing identification of each RNA species. The RNA 

binding protein is fluorescently labeled. The interaction of the protein with the 

RNA is directly monitored by measuring fluorescence changes at the positions 

that correspond to the different immobilized RNAs. Proteins can be flowed in 

and out the flowcell multiple times and at different concentrations, providing 
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readout of binding and dissociation kinetics in real time90. Measuring the 

increase in fluorescence over time for each individual RNA species provides 

association rate constants. Dissociation rate constants are measured by 

challenging RNA-bound protein with buffer and monitoring the decrease in 

fluorescence over time. The RNA array and HiTS-RAP approaches are 

conceptually similar to techniques for measuring kinetics of protein-RNA 

interactions by single molecule fluorescence via total internal reflection 132.

RNA–protein affinity distributions

Most studies that map RNA–protein interaction on a transcriptomic scale show that RBPs 

often bind to RNA sites that vary considerably in sequence or structure 43,62. This is 

expected for proteins considered “non-specific” binders, but appears to contradict the notion 

of “sequence specific” binding proteins. Similar observations have been made for DNA 

binding by “specific” transcription factors 63: In vitro measurements of intrinsic affinities of 

transcription factors for all possible sequence variants of DNA oligomers showed that each 

protein had a wide range of binding affinities to the different sequence variants64–66. 

Differences between low and high affinity sites are often considerable, spanning several 

orders of magnitude with respect to equilibrium dissociation constants63–66. To describe the 

entire spectrum of affinities seen for a given DNA or RNA binding protein towards all 

possible DNA or RNA species, it is useful to employ affinity distributions 67, histogram 

plots of substrate variants with similar affinities (Fig. 2). Affinity distributions have revealed 

incremental contributions of the nucleotides in the binding site to the equilibrium binding 

free energy, rather than a drastic difference between nucleotide composition in preferred and 

non-preferred sites (Fig. 2). For “sequence specific” transcription factors, physiologically 

preferred binding sites cluster at the high-affinity region of the distribution61,67,68.

A complete RNA affinity distribution, in contrast to measurements of only sequences with 

high protein-affinity, has so far only been reported for C5, the protein subunit of RNaseP 

from Escherichia. coli. 67 (Fig. 2). The shape of the measured affinity distribution was 

highly similar to those seen for transcription factors67, also suggesting incremental 

contributions of the nucleotides in the binding site to the binding free energy. Incremental 

differences between sequence variants explain why proteins can bind with similar affinity to 
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a range of seemingly divergent sequences (Fig. 2), which is particularly significant for RNA 

binding proteins, because cognate sites for most RBDs encompass only 3–8 nucleotides3. 

Potential binding sites of this size occur with few substitutions at very high frequency even 

in small genomes. Ambivalence regarding protein binding preferences might be amplified 

by the varying expression levels of the RNAs33. At limiting concentrations of protein, low 

affinity non-consensus sites in highly expressed RNAs can efficiently compete for protein 

binding with high affinity consensus sites in an RNA expressed at a lower level. This 

scenario might be one of the reasons why in the cell proteins that are considered specific are 

often found bound to sites with relatively poor match to their consensus motifs62. It is an 

open question whether or not binding to degenerate sites has biological consequences other 

than protein sequestration.

Affinity distributions also provide the means to comprehensively quantify the specificity of 

a given RBP or RBD, although to our knowledge, this has not yet been reported. Most of the 

available affinity distributions for DNA and RNA binding proteins appear to follow a 

Gaussian distribution for binding free energies (Fig. 2b). The width of the distribution thus 

provides an objective parameter for the capacity of an RBP and RBD to globally 

discriminate between RNA substrate variants. Multi-modal distributions are also 

conceivable, these would describe different binding modes, which could arise, for example, 

through formation of stable RNA structures by a subset of substrates.

The structural basis for affinity distributions are not currently understood. However, a recent 

pioneering study investigated the structural basis for a range of affinities that the bacterial 

RBP RsmE shows towards different substrate variants 69, although no complete affinity 

distribution was measured. For RsmE, conformational adaptation of protein side-chains and 

RNA are responsible the range of affinities 69.

Binding models

As noted, affinity distributions are useful because they represent a non-biased description of 

protein binding to unstructured RNA, to a defined RNA structure, or to a combination of 

both. For proteins that bind to unstructured RNA, sequence variants in the high affinity 

region of the distribution share a consensus sequence motif 67, which can be expressed as a 

sequence probability logo 61 (Fig. 2b). Other regions of the distribution do not share a 

sequence consensus (Fig. 2b). Consensus sequences describe the probability by which a 

given nucleotide is present at a given position in the binding site for a subset of all sequence 

variants61,68. A larger number of sequence variants in a given subset of the distribution 

decreases the probabilities and thus reduces the strength of the consensus. There are several 

approaches to delineate consensus motifs from binding site-data, obtained either in vitro or 

in vivo70–77. A consensus motif can guide a qualitative prediction of whether or not a protein 

binds well to a certain motif. However, consensus motifs are not binding models, because a 

consensus motif does not allow affinity calculations for different sequence variants, nor does 

it provide information on the characteristics of the entire affinity distribution61,68.

The simplest model to describe binding of a protein to all RNA sequence variants is the 

Position Weight Matrix (PWM)61,68. A PWM is a score calculated for each nucleotide at 
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each position in the binding site (Fig. 3a). Thie sum of the individual nucleotide scores for a 

given sequence provides a score for this sequence variant 61. The PWM can also be 

visualized as logo68. It is important to note that a PWM logo thus differs from a probability 

logo, discussed above. If affinities are expressed as binding free energies, a PWM becomes 

an energy score, describing the energetic contribution of each nucleotide at each position to 

the binding free energy 61,68. A PWM implies that the nucleotides at each position 

contribute independently of each other to the binding of the protein61,68,78. In reality, the 

impact of a nucleotide at one position is often influenced by the surrounding sequence. 

PWMs often explain only a subset of the observed experimental variance in 

affinities61,66,68,79, and frequently fail to accurately explain the highest and the lowest 

observed affinities 67.

A better explanation of the observed experimental variance is usually accomplished by 

considering the coupling of contributions from different nucleotide positions in the binding 

model67,80,81 (Fig. 3b). Couplings are considered by assigning a score for each combination 

of nucleotides and then summing up the score for the combinations resulting in a given 

sequence 67. Even the incorporation of a modest number of pairwise couplings (called either 

Pairwise Interaction Matrix, PIM, or Dinucleotide Weight Matrix, DWM) often improves 

the binding model considerably67,80,81. However, it is critical to carefully evaluate that an 

improved fit does not simply result from the incorporation of more variables in the model. 

Of note, only roughly 20–30 % of the entire sequence space is needed in order to produce an 

unambiguous binding model, provided the sequences cover the entire range of the affinity 

distribution 67. Interdependencies between neighboring nucleotides in binding sites of DNA 

interacting proteins have also been described by Hidden Markov models 82,83, and these 

models are applicable to RBPs as well.

While the consideration of interdependencies between two nucleotides generally improves 

the binding model, further improvements can be accomplished by considering higher order 

couplings between more than two nucleotides in the binding model78. An array of 

approaches to accomplish this goal have been developed for DNA binding proteins, 

including higher order Hidden Markov models84, neural network analysis85, decision tree 

guided approaches86, higher order Bayesian networks87, and approaches that incorporate 

structural information about the protein88. Neural network analysis has been applied to 

RNA–protein interactions measured in vitro with the HiTS-Kin approach67. In this case, the 

neural network analysis considering higher order couplings between multiple nucleotides 

did not markedly improve the fit of the model to the data for the C5 protein, suggesting that 

pairwise couplings between mostly adjacent nucleotides are the major contributor to protein 

binding in the tested case67. Hidden Markov models were also used to improve rules 

predicting RNA binding patterns for the splicing factor PTB in vivo89.

Free energy landscapes

Substrate affinities for proteins that interact with RNA usually refer to equilibrium binding 

constants, which express the energetic difference between ground state (protein and RNA 

are unbound) and product state (protein and RNA are bound) in a one-step binding reaction 

(Box 2, part a). However, differences in equilibrium binding affinity between substrate 
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variants can arise from alterations in ground, transition, or product state energies, or from 

combinations thereof (Box 2, part a). These alterations can only be assessed through 

measurements of association and dissociation rate constants for the substrate variants. To 

date, only few studies have reported rate constants for many substrates67,90, and to our 

knowledge only one (REF.90) reported both association and dissociation rate constants — 

for the binding of the MS2 coat protein to a large set of variants of the cognate RNA 

hairpin90. In this study, differences in substrate preferences were mainly due to variations in 

substrate association rate constants, with comparably small contributions by dissociation rate 

constants. These observations suggest that for the MS2–substrate system differences in RNA 

binding are mainly due to variations in ground state energies, most likely reflecting the 

significance of RNA structure for substrate binding by MS2 90.

Box 2

Free energy landscapes for RNA–protein interactions

a. Free energy landscape of a single step of a reversible binding reaction between a 

protein and three RNA variants. The different binding affinities of sequence 

variants are reflected in different equilibrium free energy changes 

(ΔG∘Equilibrium). Different equilibrium binding affinities can result from 

differences in ground-, transition- or product-state free energies, or through 

combinations thereof, which correspond to changes in activation free energy for 

association (ΔG‡Association), dissociation (ΔG‡Dissociation), or both.

b. Free energy landscape of a binding reaction between a protein and structured 

RNA. Only one RNA variant is shown for simplicity. In this example the RNA 

binds in the unfolded state, however the mechanism is general and also applies 

to structural transitions more complex than hairpin unfolding. The unfolding 

step affects the equilibrium free energy change (ΔG∘), and thus the binding 

affinity. Depending on the transition state (TS) energy for the unfolding step, 

RNA structures can also impact the association and possibly dissociation 

kinetics.

c. Kinetic context of an RNA–protein binding reaction. Only one RNA variant is 

shown for simplicity.

The scheme shows ground and transition states (TS) for three consecutive reaction steps. 

The protein-RNA binding step is the middle step. Intrinsic specificity can only translate 

into biological specificity in the context of the reaction shown for the scenario indicated 

by the red colored transitions state energies for reaction A (rate constant kA) and C (rate 

constant kC). All other combinations of transition state energies reduce or virtually 

eliminate intrinsic specificity, as reflected in the isolated binding reaction.
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While comparable data for other RNA–protein interactions have not yet been reported, RNA 

structure is likely to impact selectivity even for proteins that bind to presumably 

unstructured sites (Box 2, part b). It is expected that a subset of a randomized substrate 

population forms at least transient secondary structures 91,92. The unfolding of even quite 

unstable structures will affect the substrate’s ground state and thereby impact the overall 

affinity distribution. Although it is known that sequestration of protein binding sites by RNA 

structures can greatly impact protein binding in vitro93 and in vivo94, it has not been 
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explored to which degree more subtle changes in substrate ground state free energies 

contribute to binding specificity. The potential impact of even transient RNA structures on 

substrate specificity emphasizes the role of the RNA sequence surrounding the binding site 

for RNA–protein interactions.

Specific vs. non-specific interactions

As noted above, affinity distributions of RBPs measured in vitro and RNA bindings patterns 

of numerous RBPs measured in cells have raised questions regarding the widely used 

classification of RBPs as specific vs. non-specific. However, a more nuanced, quantitative 

view on specificity and non-specificity is emerging, based on the recent technical advances 

(Box 1), and the conceptual approaches discussed above: affinity distributions, binding 

models, and free energy landscapes

“Specific” vs. “non-specific” RBPs

The vast majority of studies on RNA–protein interactions have focused on “specific” RBPs, 

even though non-specific proteins are numerous and perform many important biological 

functions. A recent study determined the affinity distribution for a non-specific E. coli 

protein, the C5 subunit of RNase P 67. C5 binds, in conjunction with the catalytic RNA unit 

of RNaseP, to all cellular tRNA precursors at a completely degenerate binding site 67,95,96. 

Despite the lack of a consensus binding motif in its physiological substrates, the affinity 

distribution for C5 was highly similar to those seen for highly specific proteins 67. Similarly 

to specific RBPs, the high-affinity region of the distribution for C5 showed a consensus 

sequence, indicating that C5 is inherently specific towards certain sequences. In contrast to 

specific RBPs, the physiological substrates for C5 do not fall in the high affinity region of 

the distribution, but are found in the median range of the distribution, which does not have a 

consensus, and where large differences in sequence have only small effects on affinity (Fig. 

2). Notably, defined binding models could be readily derived from the C5 affinity 

distribution 67. The data suggest that the differences between specific and non-specific RBPs 

are not inherent features of proteins. Rather, specific and non-specific binding modes 

represent different parts of the affinity distribution (Fig. 2b).

Intrinsic specificity even for “non-specific” RBPs is perhaps not surprising, given that 

protein and RNA surfaces on the binding interface have irregular features. Some RNA 

species are thus more likely to form favorable interactions with a protein than others. This 

notion probably applies to the vast majority of RNA–protein interactions. A possible 

exception are proteins that bind exclusively to the backbone of an A-form RNA helix, 

because the backbone of an A-form RNA helix is thought to be structurally similar for 

diverse sequences97,98. Yet, helices dynamically open and close locally in a sequence-

dependent manner97,99, and may be distorted upon protein binding, as seen for dsRDB–

RNA complexes100.

The kinetic context for RNA–protein interactions

The RNA binding study of C5 also highlighted the significance of the context in which a 

binding reaction occurs. One critical and perhaps obvious aspect for this context is the 
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availability of substrates in the transcriptome. For C5, most of the tightest binding sequence 

variants are not present in the expressed substrates. RNA structure also plays an important 

role for the context of a binding reaction, as discussed above. Even transient sequestration of 

a protein binding site affects thermodynamic stability of the RNA-protein complex (Box 2, 

part b), and thus RNA sequences outside the immediate protein binding site can impact 

protein binding.

A third, potentially highly significant factor is the kinetic context — the kinetics of the 

reactions that precede and follow the binding step (Box 2, part c). This kinetic context is 

dictated by the concentration of the protein, by the concentration of the RNA, by the rate 

constants for substrate binding and dissociation, and how these rate constants compare to 

rate constants of the steps that precede and follow the binding step (Box 2, part c). The 

intrinsic specificity of the protein for any given RNA substrate variant is given by the ratio 

of rate constants for substrate binding and dissociation(Box 2, part a). However, intrinsic 

specificity translates only into near maximal specificity if the step preceding the binding is 

fast compared to the binding step, and the step following the binding step is slow compared 

to both binding and dissociation. All other scenarios neutralize intrinsic specificity to 

various degrees (Box 2, part c). Therefore, an inherently highly specific protein can be 

readily operated under an entirely non-specific regime, or a protein can be toggled between 

non-specific to specific modes, solely through changes in rate constants of steps unrelated to 

binding, or through changes in RNA or protein concentrations. The kinetic context is likely 

to be affected, dictated, and modulated by proteins that may or may not directly interact with 

the RBP in question. While we are not aware of studies that have explicitly tested kinetic 

context for RBPs, this context is likely to contribute to the sometimes wide range of binding 

sites seen during the transcriptome-wide mapping of RNA binding sites for many proteins.

Given the significance of kinetic context for substrate preference in processes with many 

steps, we believe it is useful to distinguish between the observed, biological specificity, and 

the intrinsic specificity of a protein towards substrate variants. The biological specificity is 

the preference of a protein for sequence variants in vivo, revealed by techniques like CLIP. 

The intrinsic specificity is the preference of a protein for sequence variants when only the 

binding reaction is examined in vitro and is reflected in the affinity distribution. Intrinsic 

specificity is equivalent to the classic definition of “specificity” for enzymatic reactions: 

FSpecificity = (kcat/Km)Substrate1/(kcat/Km)Substrate2 (REF101). An obvious challenge is to 

quantitatively define the connection between intrinsic specificity and biological specificity 

for RBPs. The first attempts in this direction have been reported, integrating in vivo and in 

vitro specificity measurements102,103. Even without advanced quantitative models to bridge 

intrinsic and biological specificity, the combination of measurements on both levels 

enhances the accuracy of predictions of protein binding sites in the cell.

Strategies to increase or decrease intrinsic specificity of RBPs

For many proteins the intrinsic specificity of their individual RBDs appears to be 

insufficient to accomplish the biologically required binding accuracy for RBPs 3,22,23,104. 

Strategies have therefore evolved to enhance the intrinsic specificity of many proteins in 

order to better discriminate between cognate and non-cognate binding sites. On the other 
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hand, proteins that need to interact with diverse RNA sites in an indiscriminate fashion must 

employ strategies to compensate for unavoidable intrinsic specificities of their RBDs.

Intrinsic specificity can be enhanced by increasing the RNA binding site-size of the RBD, in 

order to recognize more nucleotides (Fig. 4a,b). However, there can be a trade-off between 

increase in binding free energy and the number of alternative binding sites with similar free 

energies. A larger binding site is expected to bind the target variant tighter than a small site, 

but a larger binding site can also bind non-target variants tighter, and discrimination 

between target and non-target sites does not neccessarily increase (Fig. 4a)105. However, 

discrimination between target and non-target sites depends on whether or not additional 

nucleotides contribute independently to overall affinity. Independent contributions of 

nucleotides result in only modest increases of discrimination with increasing bind site size 

(Fig. 4a). In contrast, energetic coupling between certain nucleotides can result in large 

effects with binding site size increase (Fig. 4b). An increase in binding site size that is 

thought to lead to enhanced specificity is seen for the RRM24,106, although so far no 

comprehensive binding analysis (affinity distribution) was reported for an RRM. However, 

it was clearly demonstrated that changes in binding site size are accomplished through 

alternative RNA binding modes on the core RRM fold and by involvement of loops in the 

RRM–RNA interaction 24.

A widely observed strategy to affect intrinsic specificity of RBPs is the inclusion of multiple 

RBDs in a single protein (Fig. 4c). As noted, a large fraction of the proteins that interact 

with RNA contain multiple, often different RBDs 1,22,23. This modular architecture results 

in proteins with affinity distributions that are combination of the affinity distributions of 

their individual RBDs (Fig. 4). These combinations can enhance binding specificity (i) if the 

affinity distributions of the different RBDs favor similar sequence variants, or (ii) if they 

favor different sequence variants in a non-compensatory fashion (Fig. 4). A modular protein 

architecture can also enable proteins to recognize non-contiguous sequences 23 and thus 

intervening RNA sequences can become important contributors to specificity107–109. In 

addition, protein regions that link different RDBs can further modulate the contribution of 

each RBD to the protein’s overall RNA binding and specificity, and even promote 

cooperativity between RBDs 110. Multiple RBDs with different inherent affinity 

distributions can also compensate for each other in a given protein and lead to uniform 

binding of an RBP to a wide range of diverse substrates (Fig. 4). This is seen for the 

translation elongation factor Tu (EF-Tu), which binds to all charged tRNAs with similar 

affinity 111. EF-Tu contains a binding site for the tRNA and one for recognizing the amino 

acid 112. The binding energies for tRNAs and amino acids at each site differ, but compensate 

for their respective differences, thereby resulting in nearly uniform binding for all correctly 

charged tRNAs111.

Multiple RBDs do not necessarily need to be part of the same protein, but can be encoded by 

different yet interacting proteins (Fig. 4c). This is widely seen in RNA-protein 

complexes 113–115, including in large RNA–protein assemblies such as the 

spliceosome116–120 or the eukaryotic translation initiation machinery 121–123. Moreover, 

multiple modular RBDs can assemble on the same RNA substrate, further increasing 

selectivity 23. An advantage of combining different proteins for binding to given RNA site is 
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the possibility of regulating their interactions through variations in concentration and post-

translational modifications of the individual proteins46. Different proteins can bind 

cooperatively or anti-cooperatively, and these modes of protein–protein interactions can 

further amplify intrinsic specificity, or provide compensation for the intrinsic specificity of 

individual RBDs. Multiple identical RBDs can also assemble in homo-oligomers of RNA-

interacting proteins 69, and can thereby enhance selectivity for longer target sites 109,124.

Future perspective

High throughput sequencing methods have opened new possibilities to measure and 

understand specificity and non-specificity in RNA–protein interactions, both in vitro and in 

vivo. It is now possible to directly determine affinities for all, or at least for a large number 

of possible binding site-sequence variants for most RBDs in vitro, and to derive 

comprehensive binding models. These new tools have already provided important insight 

into principles that underlie binding specificity and non-specificity. Although not all of these 

techniques can yet be readily applied in every laboratory, it is likely that binding models will 

emerge for many more RBDs and RBPs over the next years.

Future challenges include the integration of quantitative binding models with structural data. 

To date, most structures of RBPs are solved with only a single RNA substrate, usually 

representing a high affinity target; only in very few cases structures exist for low affinity 

targets 69 or alternative substrates 125. Yet these data, combined with comprehensive binding 

models will be most instructive for linking structure and intrinsic specificity 125. It will be 

equally important to determine binding models for proteins with mutated RBDs and, if 

possible, to integrate structural and binding models for such mutant proteins. Comparisons 

of binding models for wild type and mutated proteins might also be an inroad to dissect the 

virtually unexplored impact of transient RNA structure and kinetic context on RNA–protein 

interactions in the cell.

Ultimately, we wish to devise models that accurately describe and possibly predict the RNA 

binding patterns for proteins in vivo. This will require quantitative models that integrate 

RNA binding in vitro and in vivo with other aspects of RNA biology. An important step 

towards such models has been recently made using techniques that assess RNA secondary 

structures in vivo 126–128. A critical, yet unconquered barrier for the development of 

quantitative models of RNA–protein interactions is the lack of methods to determine 

kinetics of RNA–protein binding in vivo for individual RNA sites.
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Figure 1. The major classes of eukaryotic RNAs
For each class of RNA, the approximate length, number of different species and abundance 

are indicated. For more detailed information see REF. 133. (i) The length of mRNAs reflects 

mature, processed mRNAs; the number of mRNA species refers to putative mRNA coding 

genes. (ii) long non coding RNAs (lncRNA) include all RNAs that do not explicitly belong 

to another RNA class, and exceed 200 nt in length. (iii) 7SLRNA refers to the RNA 

component of the signal recognition particle (SRP). (iv) piRNAs are expressed only at 

specific stages of germ cell development, and are not included in calculations of cellular 

RNA abundances.
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Figure 2. RBP affinity distributions
(a) Ranked affinities for an RBP with a binding site of 6 nucleotides (C5 from E. coli) to all 

RNA variants 67. The numbers on the left indicate the nucleotide position in the binding site. 

(b) Histogram of relative affinities (log scale) for the sequence variants shown in panel (a). 

Relative affinities are calculated in relation to a standard variant, which can be chosen 

freely 67. “Specific” RNA variants are marked by the asterisk and cluster in the high affinity 

region of the distribution and produce a binding consensus sequence (motif), shown as a 

logo underneath the plot. The remainder of the distribution consists of “non-specific” RNA 

variants, which do not produce a consensus motif.
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Figure 3. RBP binding models
(a) Position Weight Matrix (PWM). The structure denotes a hypothetical RNA binding site 

with six nucleotides. The plot (colored dots) depicts the score (linear coefficient) for each 

base at each position. The score is calculated from affinity distribution such as this shown in 

Figure 2(b). The score for each base corresponds to the contribution of the indicated 

nucleotide at each position to the overall binding free energy. (b) Binding model considering 

interactions between two bases (Pairwise Interaction Matrix - PIM, or Dinucleotide Weight 

Matrix - DWM). The structure denotes a hypothetical RNA binding site with six 

nucleotides, lines show the possible pairwise (energetic) couplings between two nucleotides. 

Colored fields correspond to the score for each of the 16 pairwise nucleotide permutation at 

each two positions. Scores are calculated from affinity distribution such as this shown in 

Figure 2(b). A yellow field (denoting a high score) indicates that a given nucleotide 

combination promotes binding (that is, increases the overall PWM score). A blue field (low 

score) indicates inhibition of binding by a given nucleotide combination. A black field 

indicates no significant contribution either way.
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Figure 4. Strategies to increase or decrease intrinsic specificity of RBPs
(a) Change in binding site size with additive contributions by added nucleotides to binding 

energy. For a hypothetical RBP, additional nucleotides in a binding site would shift the 

affinity distribution towards higher affinities, but would not necessarily broaden the affinity 

distribution and thus not increase inherent specificity. (b) Change in binding site size with 

contributions of pairwise energetic couplings by added nucleotides. For a hypothetical RBP, 

hypothetical pairwise couplings by additional nucleotides in the binding site could strongly 

favor a small number of nucleotide combinations, thereby broaden the affinity distribution 

and thus greatly increase inherent specificity. (c) Increase or decrease in intrinsic specificity 

through multiple RBDs. Multiple RBDs (RBD1 and RBD2) can be part of the same protein 

or of separate proteins (left). The panels on the right show ranked affinity distributions 

(according to the same sequences for both RBDs) for each RDB. The panels in row three 

show the ranked affinity distribution upon combination of both RBDs, and the 

corresponding histogram of this ranked affinity distribution, color coded as indicated. 

Inherent protein specificity can be increased by additive specificities of the RBDs or 

decreased by compensatory specificities. Intrinsic specificities for individual RBDs can 

vary. Note, however, that binding preferences of individual RBDs do not need to be strictly 

additive, but can be synergistic, either through interactions between the RBDs or through 

cooperative binding of multiple several proteins.
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Table 1
Classification of common protein domains that interact with RNA

The classification of ribonuclease domains is based on Anantharaman and Koonin17, of helicase domains on 

Fairman et al.25, and of methyltransferase domains on Motorin and Helm 134. The compilation of the RNA-

binding protein domains is based on Gerstberger et. al. 1.

Domain Class Subclass (Superfamily) Family

Nucleotidyl transferase

Poly(A) polymerases
Canonical PAPs

Non-canonical PAPs

Terminal UridylateTransferases

CCA-adding enzyme

Guanylyltransferase

RNA ligase

2′5′ poly(A) polymerase (OAS)

RNA-dependent RNA polymerase

Ribonuclease

α/β

RNase A

RNase H

3 → 5 exo

RNase II/R

RNase E

RNase PH

Metallolactamase

α + β
RNase T2

XRN1

α RNase III

Decapping enzyme

RNA modifying enzymes

tRNAsynthetases
Class I

Class II

Deaminases

ADAR

APOBEC

TadA

CDA

Pseudouridine Synthases

Methyltransferases

RMFTase

SPOUT

Radical SAMTase

FAD/NAD(p)

Helicase

SF1 Upf1-like

SF2
Ski2-like

RIG-I-like
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Domain Class Subclass (Superfamily) Family

DEAD-box

DEAH/RHA

Viral SF2

Cas3

SF3

SF4

SF5

GTPase
EF-Tu/EF-G

BMS1/SNU114

RNA-binding domains

RRM

KH

S1

OB-fold

PUF

dsRBD

Zn-fingers

PAZ

PIWI

LSM

KOW

MIF4G

NTF2

GAR (RGG)

HEAT repeat

Homeodomain

CSD
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