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Abstract

Successful speech perception requires that listeners map the acoustic signal to linguistic 

categories. These mappings are not only probabilistic, but change depending on the situation. For 

example, one talker’s /p/ might be physically indistinguishable from another talker’s /b/ (cf. lack 

of invariance). We characterize the computational problem posed by such a subjectively non-

stationary world and propose that the speech perception system overcomes this challenge by (1) 

recognizing previously encountered situations, (2) generalizing to other situations based on 

previous similar experience, and (3) adapting to novel situations. We formalize this proposal in the 

ideal adapter framework: (1) to (3) can be understood as inference under uncertainty about the 

appropriate generative model for the current talker, thereby facilitating robust speech perception 

despite the lack of invariance. We focus on two critical aspects of the ideal adapter. First, in 

situations that clearly deviate from previous experience, listeners need to adapt. We develop a 

distributional (belief-updating) learning model of incremental adaptation. The model provides a 

good fit against known and novel phonetic adaptation data, including perceptual recalibration and 

selective adaptation. Second, robust speech recognition requires listeners learn to represent the 

structured component of cross-situation variability in the speech signal. We discuss how these two 

aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and 

generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter 

provides a guiding framework for future investigations into speech perception and adaptation, and 

more broadly language comprehension.
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In order to understand speech, listeners have to map a continuous, transient signal onto 

discrete meanings. This process is widely assumed to involve the recognition of discrete 

linguistic units, such as phonetic categories, words, and sentences. The relative stability with 

which we usually seem to recognize these units belies the formidable computational 
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challenge that is posed by even the recognition of the smallest meaning distinguishing sound 

units (such as a /b/ or /p/). In this paper, we characterize this computational problem and 

propose how our speech processing system overcomes one of its most challenging aspects, 

the variability of the signal across different situations (e.g., talkers). This problem is not 

unique to speech recognition, but is a general property of inferring underlying categories and 

intentions in a changing (i.e., subjectively non-stationary) world (see references in Qian, 

Jaeger, & Aslin, 2012). The framework that we propose here thus has broad relevance for 

understanding how people manage changes in the statistical properties of stimuli across 

different perceptual and cognitive tasks.

The recognition of phonetic categories is broadly assumed to involve the extraction and 

combination of acoustic and, if present, visual cues. This is a complex task for several 

reasons. The speech signal is both transient and typically unfolds at speeds not under the 

listener’s control. Additionally, perceptual cues to phonetic categories are often 

asynchronously distributed across the speech signal. That means that some cues to a 

phonetic category contrast are detectable several syllables in advance of the phonetic 

segment, while at the same time cues following a segment can still be informative (e.g., 

rhoticity, Heid & Hawkins, 2000; Tunley, 1999). Beyond the extraction of acoustic cues 

from the speech signal, there are two problems which have puzzled researchers for decades. 

First, the mapping from cues to phonetic features or phonetic categories is non-

deterministic: from the perspective of a listener, phonetic categories form distributions over 

multiple cue dimensions, and these distribution overlap with those of other categories. 

Notably, even multiple instances of the same phonetic category produced by the same talker 

in the same phonetic context will have different physical properties (Allen, Miller, & 

DeSteno, 2003; Newman, Clouse, & Burnham, 2001). One cause for these distributions is 

noise in the biological systems underlying linguistic production (e.g., motor noise in the 

articulators). Similarly, the perceptual system itself is noisy: neurons that respond to certain 

acoustic features do not deterministically fire when that feature is present (Ma, Beck, 

Latham, & Pouget, 2006). Additionally, the acoustic properties of the environment like 

background noise can further alter the linguistic signal.

However, arguably the biggest challenge to speech perception is that the mapping from 

acoustic cues to phonetic categories can vary across situations. A ‘situation’ could be 

characterized in terms of an individual talker or a group of talkers with a similar way of 

speaking, or other aspects of the environment which lead to systematic changes in speaking 

style (like a noisy bar). For example, different talkers sometimes realize even the same 

phonetic categories, in the same phonetic context, with dramatically differently cue 

distributions (e.g., Allen et al., 2003; McMurray & Jongman, 2011; Newman et al., 2001). 

These differences might arise from fixed, physical differences in, for instance, vocal tract 

size, but they also arise from variable or stylistic factors like language, dialect, or sociolect 

(e.g., Babel & Munson, 2014; Johnson, 2006; Labov, 1972; Pierrehumbert, 2003). These 

differences in the cue-to-category mapping can be substantial. Figure 1 shows the 

distributions of one of the primary cues distinguishing between /s/ and /ʃ/ as produced by 

two different talkers. Such between-talker variability means that one talker’s “ship” is 

physically more like another’s “sip”. This problem is known as the lack of invariance and is 
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one of the oldest problems in speech perception (Liberman, Cooper, Shankweiler, & 

Studdert-Kennedy, 1967). The focus of this article is how listeners manage to accommodate 

such systematic variability and achieve robust speech recognition.

Overcoming the lack of invariance: The proposal

In the face of the sort of variability between situations—talkers, in this case—seen in Figure 

1, it is natural to wonder how we can understand each other at all. We propose that the 

answer to this question is three-fold:

1. recognize the familiar,

generalize to the similar, and

adapt to the novel

As we discuss below, at least the first and the last of these have been more or less explicitly 

assumed in previous work, and there is at least preliminary evidence for the second. In a 

familiar situation, the speech recognition system has a great deal of previous experience to 

draw on, and by recognizing a familiar situation it can take advantage of this previous 

experience. Recognition of the familiar underlies, for example, talker-specific interpretation 

of the acoustic signal (Creel, Aslin, & Tanenhaus, 2008; Eisner & McQueen, 2005; 

Goldinger, 1998; Kraljic & Samuel, 2007; Nygaard & Pisoni, 1998). Similarly, generalizing 

to a novel situation based on similar previous experience means the speech recognition 

system doesn’t have to start from scratch each time a new situation is encountered. For 

example, such generalization allows us to recognize an accent and adjust our interpretations 

based on previous experience with similar talkers (Baese-berk, Bradlow, & Wright, 2013; 

Bradlow & Bent, 2008; Sidaras, Alexander, & Nygaard, 2009). At the same time, novel 

situations might require adaptation beyond what is expected based on previous experience. 

For example, when encountering a talker with a novel dialect or accent, the speech 

recognition system must be prepared to adapt rapidly and flexibly.

We propose that all three of these strategies arise from the function that the speech 

recognition system fulfills (i.e., the typical goals of speech recognition), and that the basic 

design of this system reflects the fact that it must function efficiently under normal 

circumstances. Specifically, we propose that the three strategies emerge from the 

organizational constraints on the speech recognition system imposed by the presence of 

variability both within a single situation and between situations. These constraints lead 

naturally to a few conceptual components for the proposed framework. First, because there 

is variability within a situation, the mapping between cues and categories is inevitably 

probabilistic. This makes speech recognition a problem of inference under uncertainty and 

implies that a robust speech recognition system must use distributional (statistical) 

knowledge (Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Feldman, Griffiths, & Morgan, 

2009; Norris & McQueen, 2008).

Second, because cue distributions themselves vary—sometimes unpredictably—across 

situations, the system must be prepared, when necessary, to engage in distributional/

statistical learning. This is closely related to the notion of life-long implicit learning 
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(Botvinick & Plaut, 2004; Elman, 1990; Chang, Dell, & Bock, 2006), as well as statistical 

learning theories of language acquisition (Feldman, Griffiths, Goldwater, & Morgan, 2013; 

McMurray, Aslin, & Toscano, 2009; Vallabha, McClelland, Pons, Werker, & Amano, 

2007), a connection we return to below.

Third, cue distributions do not vary arbitrarily across situations. Rather, the world is 

structured. For instance, a listener is likely to encounter a particular familiar talker’s cue 

distributions again, relative to any arbitrary cue distributions, and likewise they are more 

likely to encounter cue distributions that are similar to those encountered in the past, because 

of regularities in how talkers vary within a language or more specific grouping like gender, 

dialect, accent, etc. We propose that in order to take advantage of such structured variability, 

the speech perception system does not only engage in distributional learning. In its most 

basic sense, this is demonstrated by our ability to recognize previously encountered talkers, 

and use talker-specific experience to guide speech perception. Going beyond talker-

specificity, we will discuss evidence that argues for sensitivity to structure over groups of 

talkers or situations. In a world where speech statistics vary in structured ways, life-long 

adaptation alone is not sufficient for robust speech perception. A robust speech perception 

system should take advantage of structure in the world that allows previous experience to 

inform current processing (for similar reasoning applied to other cognitive domains, cf. Qian 

et al., 2012). It is, we propose, sensitivity to this structure in the world that underlies 

recognition of familiar situations and generalization to similar ones.

In this paper, we elaborate on this proposal, review the relevant literature, and develop a 

framework in the tradition of ideal observer models and normative/Bayesian inference 

(Anderson, 1990) that, we hope, will help guide future work on speech perception. As we 

detail below, the proposed framework, which we dub the ideal adapter, understands all of 

(1) to (3) above (i.e., recognition, generalization, and distributional learning) as the result of 

selecting and adapting the appropriate generative model for the current situation based on 

the integration of prior and present experience (hence, the name for the proposed 

framework). This brings a unifying and—at least in parts—formalized computational 

framework to a set of ideas that have been assumed—more or less explicitly—by others 

before us. For example, it is widely assumed that speech perception is talker-specific (e.g., 

Creel & Bregman, 2011; Pardo & Remez, 2006; Pisoni & Levi, 2007) and recent work has 

begun to investigate our ability to generalize across talkers (e.g., Bradlow & Bent, 2008; 

Eisner & McQueen, 2005; Kraljic & Samuel, 2007; Sidaras et al., 2009). The ideal adapter 

framework ties together these different lines of work, emphasizing the crucial roles of both 

the structure of listeners’ prior knowledge and their ability to learn the statistics of novel 

situations. It has so far not been fully recognized, we submit, just how far-reaching the 

consequences of these two aspects of speech recognition are. Laying out the consequences 

of these two aspects of the framework thus forms the core of this article.

We begin our exposition in Part I with adaptation to the novel. For this, we focus on 

situations in which listeners have high certainty (i.e., ‘know’) that they need to adapt. We 

formalize the problem of adaptation and test the predictions of the ideal adapter framework 

through an implemented model. We focus on two well-studied phonetic adaptation 

phenomena: the first where listeners recalibrate one phonetic category in response to 
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auditorily ambiguous stimuli labeled as one category (perceptual recalibration or phonetic 

adaptation, Bertelson, Vroomen, & de Gelder, 2003; Kraljic & Samuel, 2005; Norris, 

McQueen, & Cutler, 2003), and the second where listeners change their classification 

behavior after repeated exposure to the same prototypical stimulus (selective adaptation, 

Eimas & Corbit, 1973; Samuel, 1986). This leads us to develop and test novel predictions of 

the proposed framework. In this part of the paper, we spend a substantial amount of time 

developing intuitions about the mechanics of how—in the ideal adapter framework—

listeners can update their beliefs about the cue distributions in the current situation based on 

direct experience. In doing so, we illustrate how the proposed perspective relates to and 

diverges from standard accounts of speech recognition.

In Part II, we turn to situations where previous knowledge is crucial for robust speech 

perception: recognition of familiar situations and generalization to similar novel situations. 

In contrast to the flexibility demanded by novel situations, in familiar situations listeners can 

benefit from stable representations of past experience. The ideal adapter framework 

provides a natural link between the distribution of speech statistics in the world—at the level 

of individual talkers and groups (e.g., dialect, gender, language)—and different strategies for 

how listeners can achieve robust speech perception in the face of the lack of invariance. In 

Part II we will discuss what structure there is in the world that listeners can take advantage 

of and review the evidence that they do take advantage of it. In doing so, we identify 

directions for future research and isolate a number of specific questions that we consider 

particularly critical for our understanding of the human speech recognition system.

Finally, we close in Part III by putting the framework we have developed into broader 

perspective. In particular, we will address how our approach relates to other approaches to 

the problem of the lack of invariance. Following that, we will discuss how our framework 

might inform broader issues in speech perception, language comprehension, and more 

domain-general learning and adaptation. Our approach is a computational-level one and as 

such compares only indirectly to mechanistic- or algorithmic-level approaches (Marr, 1982), 

but it nevertheless provides a set of tools for reasoning about speech perception (and 

language comprehension more generally) which can help sharpen questions for research at 

other levels. For example, the questions raised by the ideal adapter framework also speak to 

the debate between episodic, exemplar-based or more abstract phonetic representations 

(Johnson, 1997a; Goldinger, 1998; McClelland & Elman, 1986; Norris & McQueen, 2008; 

Pierrehumbert, 2003). They also relate to the acquisition of phonetic categories, which can 

be seen as another type of distributional learning problem (Maye, Werker, & Gerken, 2002; 

McMurray et al., 2009; Vallabha et al., 2007), and to language processing at higher levels 

(e.g., Fine, Jaeger, Farmer, & Qian, 2013; Grodner & Sedivy, 2011; Kamide, 2012; 

Kurumada, Brown, & Tanenhaus, 2012; Kurumada, Brown, Bibyk, Pontillo, & Tanenhaus, 

2014). We also discuss recent research that has found adaptive behavior in language 

processing above the level of speech perception. At its most basic, the ideal adapter 

framework also contributes to the burgeoning literature on learning in a variable world (e.g., 

change detection, Gallistel, Mark, King, & Latham, 2001; hierarchical reinforcement 

learning, Botvinick, 2012; motor learning, Körding, Tenenbaum, & Shadmehr, 2007). Along 

with other recent approaches, the ideal adapter stresses that the cross-situational statistics of 
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the world—though being variable—are structured, and that our cognitive systems have 

evolved to take advantage of this structure.

Part I

The ideal adapter framework

Adaptation in speech perception has received a great deal of attention recently. For example, 

when listeners initially encounter accented speech, they process it more slowly and less 

accurately, but this disadvantage dissipates within a matter of minutes (Bradlow & Bent, 

2008; Clarke & Garrett, 2004 and references therein). Similarly, listeners rapidly adapt to 

synthesized and otherwise distorted speech (e.g., Davis, Johnsrude, Hervais-Adelman, 

Taylor, & McGettigan, 2005). Adaptation is not limited to cases of highly unusual 

pronunciation, such as foreign accents. Even relatively subtle divergences from standard cue 

distributions can lead to adaptation. For example, listeners adapt to a talker who produces 

cue distributions with a typical mean value but less variability than normal (Clayards et al., 

2008). This suggests that continuous and implicit adaptation to subtle deviations from 

auditory expectations is a pivotal component of the human speech perception systems.

What is lacking thus far, however, is a better understanding of how and when we adapt. 

Specifically, how do listeners detect that their current linguistic representations are 

inadequate for the current situation, and how is evidence from the currently processed 

speech stream integrated with previous experience in order to achieve adaptation? Despite 

the central importance of the lack of invariance problem to speech perception and language 

understanding (Liberman et al., 1967; Pardo & Remez, 2006), to date there are few 

cognitive models of adaptation, and as we discuss below, those that do exist do not link it to 

other strategies for dealing with the lack of invariance. State of the art models of speech 

perception have begun to address the non-determinism inherent in the mapping from cues to 

categories, but ignore or abstract away from the specific contributions of the lack of 

invariance (Feldman et al., 2009; Feldman, Griffiths, et al., 2013; Norris & McQueen, 

2008).1

We propose that the first important step is to ask why phonetic adaptation occurs at all, or 

rather why one would expect speech perception to exhibit adaptive properties. To that end it 

is helpful to understand speech perception as a problem of inference under uncertainty. The 

acoustic cues that provide information about the talker’s intended message are variable and 

ambiguous, and thus each individual cue is only partially informative. In order to effectively 

infer the underlying message, information must be integrated from many sources, and as we 

will discuss below, this must be guided by knowledge of the distribution of cues associated 

with each linguistic unit. However, because of the lack of invariance, these distributions 

differ across situations (e.g., talkers).

1In work on automatic speech recognition, however, the interest in talker-independent speech recognition has led to a range of 
proposals that are similar in varying degrees to what we propose here for human speech recognition (e.g., Gauvain & Lee, 1994; 
Leggetter & Woodland, 1995; Shinoda & Lee, 2001).
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Adaptation through belief updating—Our central proposal is twofold. First, listeners 

do not have direct access to the true distribution but rather uncertain beliefs about them 

based on a limited number of observations. Second, inaccurate beliefs about the underlying 

distributions can lead to slowed or inaccurate phonetic categorization, and in order to 

achieve robust speech perception across situations, listeners must adapt. In this view, 

adaptation reflects a sort of incremental distributional learning, and such distributional 

learning can be computationally characterized as belief updating. This incremental 

distributional learning has to integrate recent experience with a novel situation with prior 

knowledge and assumptions about the language. In this sense, the proposed account builds 

on and expands on the general idea of life-long implicit learning (Botvinick & Plaut, 2004; 

Chang et al., 2006; Elman, 1990) and that the processing of language input is inevitably tied 

to implicit learning (e.g., Clark, 2013; Dell & Chang, 2014; Jaeger & Snider, 2013). Unlike 

much of this work, however, we will argue that the implicit beliefs listeners hold based on 

previous experience are not unstructured. Rather, they reflect higher-level knowledge 

(beliefs) about different talkers, groups of talkers, dialect and accents, and so on. We return 

to this in the second part of the paper.

The first proposition of our framework is that human speech perception relies on a 

generative model, or the listener’s knowledge of how linguistic units (words, syllables, 

biphones, phonetic categories, etc.) are realized by different distributions of acoustic cues. 

Such knowledge allows for speech perception to proceed by comparing how well each 

possible explanation—higher-level linguistic unit—predicts the currently observed signal. 

The proposal that language comprehension proceeds via prediction of the signal accounts for 

a variety of properties of language understanding beyond the ones discussed here (cf. Dell & 

Chang, 2014; Farmer, Brown, & Tanenhaus, 2013; Jaeger & Snider, 2013; MacDonald, 

2013; Pickering & Garrod, 2013) and is closely related to similar proposals from visual 

perception and other domains (Clark, 2013; Friston, 2005; Hinton, 2007; Y. Huang & Rao, 

2011; Rao & Ballard, 1999).

Our second proposition is that the cue values predicted from a given linguistic unit depend 

not only on what is being said (the phonetic category, biphone, word, etc.) but also on who is 

saying it, and good speech perception depends on using an appropriate generative model for 

the current talker, register, dialect, etc.. The listener never has access to the true generative 

model, but rather only their uncertain beliefs about that generative model. Thus, adaptation 

can be thought of as an update in the listener’s talker- or situation-specific beliefs about the 

linguistic generative model. The idea that speech adaptation reflects learning about the 

linguistic generative model is not in and of itself novel, but it has largely been implicit in the 

empirical literature thus far and our proposal provides an explicit framework and 

formalization for understanding the link between learning and processing in speech 

perception.

Our goal is to provide a framework for understanding, on the one hand, how listeners might 

best represent past experience with different situations, and on the other hand how listeners 

can integrate that previous experience with evidence from the currently processed speech 

signal in order to infer an appropriate generative model for each situation. As we discuss 

below, the listener needs to bring their beliefs about the distribution of cue values for each 
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category into alignment with the actual distribution that the talker is producing. Because the 

speech signal unfolds over time, and because the fine-grained acoustic information fades 

rapidly, this belief updating must be done incrementally. However, this is difficult because 

each individual speech sound is corrupted by the intrinsic variability of the speech 

production, transmission, and perception process, and hence not an unambiguous cue to the 

underlying distribution. That is, when a listener hears a cue value that they do not expect, it 

could be due either to a change in the underlying distributions, or because deviations from 

prototypical cue values happen for a variety of other reasons (muscle fatigue, coarticulation, 

background noise, etc.). The question is thus how the listener should incorporate each new 

piece of evidence into their beliefs. We address this question by developing an ideal adapter 

framework, which, in the tradition of computational-level/rational analysis (Anderson, 1990; 

Marr, 1982), sets out the statistically optimal way to do this integration. By this, we mean 

that adaptation reflects an inference process which combines prior beliefs and recent 

experience proportional to the degree of confidence in each.2,

The ideal listener or phonetic categorizer—Our ideal adapter framework builds on a 

foundation of ideal listener models, which describe the problem of speech perception as 

statistical inference of the talker’s intentions (Clayards et al., 2008; Feldman et al., 2009; 

Norris & McQueen, 2008; Sonderegger & Yu, 2010). Such inference includes inferring 

intermediate linguistic units, like phonetic categories, either as a means to another end or as 

an end in itself, as in the case of explicit experimental phonetic categorization tasks. 

Because we focus specifically on the problem of inferring phonetic categories, for our 

purposes an ideal listener model is better characterized as an ideal phonetic categorizer 

model. For the broader goal of understanding speech perception, it should, however, be kept 

in mind that the human listener is not just a phonetic categorization machine, and phonetic 

categorization typically serves other ends (such as lexical access, Norris & McQueen, 2008, 

or even the successful inference of communicative intentions, Jaeger & Ferreira, 2013).

Because of the inherent variability of how a phonetic category is realized acoustically, any 

particular cue value is in principle ambiguous, and thus phonetic categorization is a problem 

of inference under uncertainty. Such inference can be formally expressed in the language of 

Bayesian statistics. In the general case, the posterior probability of each category C = ci after 

observing cue value x is related to the prior probability of ci, p(C = ci) and the likelihood of 

x under category ci, p(x|C = ci), according to Bayes rule:

2This is not intended as a claim that such inference is resource-free or that there is unlimited memory. Importantly, there are many 
cognitively plausible algorithms which provably approximate—in principled ways—the type of rational inference assumed here for 
simplicity’s sake, and do so with limited resources (e.g., Sanborn, Griffiths, & Navarro, 2010). Many of these algorithms are closely 
related to mechanistic models like exemplar models (see Gibson, Rogers & Zhu, 2013; Shi, Griffiths, Feldman, & Sanborn, 2010). We 
return to this point in the final part of this article.
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Because the denominator of the fraction does not depend on the specific category ci and only 

serves to ensure that all of the posterior probabilities p(C = ci|x) sum up to one, it is often 

omitted and the relationship is written as proportionality:

In this paper, we will begin by addressing a very simplified phonetic categorization problem, 

in which the listener is trying to decide whether a given cue value is a /b/ or /d/, and later 

discuss how the approach we develop applies in general. One important cue to this phonetic 

contrast is the F2 locus, or “target” of the second formant transition (Delattre, Liberman, & 

Cooper, 1955). Figure 2 shows the spectrograms corresponding to synthesized /aba/ and /

ada/ tokens (synthesized by Vroomen, van Linden, Keetels, de Gelder, & Bertelson, 2004). 

Figure 3 (left panel) shows schematically how the distributions of F2 loci differ for /b/ and /

d/: /b/ typically has a lower F2 locus, but there is some variability for both /b/ and /d/. There 

is thus a continuum from /b/-like to /d/-like F2 locus values.

Let’s assume for simplicity’s sake that the listener is only considering F2 locus as a cue to 

the /b/-/d/ contrast. Given an observed F2 locus value, the listener must infer how likely it is 

that the talker intended to produce the phonetic category C =/b/. That is, what is the 

posterior probability p(C = b | F2 locus)?3 This quantity is found via Bayes rule:

(1)

(2)

(3)

Bayes rule captures the fact that the posterior probability depends on three things. First, it 

depends on the prior probability of the hypothesis, p(b), which could be higher if /b/ is more 

frequent in the language than /d/, or if there are other contextually available sources of 

information that make /b/ more likely, like lexical, visual, or coarticulatory cues. Second, it 

depends on the likelihood p(F2 locus | b), which is the probability of the observed F2 locus 

value given that /b/ was intended by the talker. Finally, it also depends on how credible 

other hypotheses are, which is really a consequence of requiring that the posterior 

probabilities of all hypotheses add up to one. This is equivalent to the overall probability of 

the observed F2 locus value, regardless of which hypothesis is true, and since this quantity is 

the same for all potential hypotheses it is frequently omitted, as in (3).

For an ideal listener, the probability of recognizing a /b/ should be the estimate of the 

posterior probability of /b/ (and likewise for /d/) (Clayards et al., 2008; Feldman et al., 

3Here and elsewhere, we write “b” for “/b/” in equations, for the sake of brevity. We also write p(b) to indicate p(C = b).
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2009). This assumes that the result of speech recognition is not a single category but rather 

uncertain (or variable) estimates of which categories are more or less likely. This is not a 

trivial assumption. For example, one might imagine that a listener would improve its 

categorization accuracy by always ‘guessing’ the category with the highest probability. 

However, for speech perception more broadly, there is a benefit to maintaining uncertainty 

about the category, since additional information often becomes available later in the speech 

signal (e.g., because of the asynchronous nature of acoustic cues). Indeed, human listeners 

seem to maintain uncertainty about the speech signal for at least a limited amount of time 

(cf., right-context effects in word recognition, Bard, Shillcock, & Altmann, 1988; Connine, 

Blasko, & Hall, 1991; Dahan, 2010; Grosjean, 1985)

Treating speech perception as inference under uncertainty provides substantial insight. Much 

of this comes from the fact that in such a framework, recognition is accomplished not 

through purely bottom-up template matching but rather by comparing how well each 

possible higher-level explanation can predict the input signal. This framework provides 

accounts of effects such as the perceptual magnet effect (Feldman et al., 2009), 

compensation for coarticulation (Sonderegger & Yu, 2010), and integration of auditory and 

visual cues (Bejjanki, Clayards, Knill, & Aslin, 2011). It also describes speech and language 

processing at other levels, including lexical access (Norris & McQueen, 2008), the 

incremental integration of words into a syntactic parse (Hale, 2001; Levy, 2008a, 2008b), 

and pragmatic reasoning (M. C. Frank & Goodman, 2012; Goodman & Stuhlmüller, 2013) 

Moreover, Bayesian inference has been shown to provide a powerful and general 

computational framework for describing statistically optimal inference under uncertainty, 

via the integration of prior beliefs and recently observed data. This perspective thus extends 

to other perceptual and cognitive domains (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 

2010; Kersten, Mamassian, & Yuille, 2004; Tenenbaum & Griffiths, 2001), including 

sensory adaptation in non-language domains (Fairhall, Lewen, Bialek, & de Ruyter Van 

Steveninck, 2001; Körding, Tenenbaum, & Shadmehr, 2007; Stocker & Simoncelli, 2006).

One specific advantage of this framework for understanding phonetic adaptation is that it 

links speech perception behavior with the distribution of cues associated with each category. 

For an ideal listener, the classification curve for /b/ and /d/ responses is derived directly 

from the respective posterior probabilities (Figure 3, left panel), which in turn are computed 

in part from the corresponding likelihood, or distribution, function for each category:

(4)

Indeed, listeners do appear to use distributional information in speech perception. Clayards 

et al. (2008) found that listeners adapt to specific distributions of auditory cues to /b/ and /p/. 

Listeners in this experiment performed a spoken-word picture identification task, where 

some of the stimuli were /b/-/p/ minimal pairs like “beach” and “peach”. Listeners were 

randomly assigned to two conditions. In both conditions, the /b/ and /p/ percepts were drawn 

from normal distributions over the primary acoustic cue to the /b/-/p/ contrast (voice onset 

timing, VOT, Lisker & Abramson, 1964). In the high-variance condition, the variance 

around the VOT category means for /b/ and /p/ was large; in the low-variance condition, it 

was small. Listeners’ classification boundaries reflected the distribution of cues that they 
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experienced: for low-variance exposure, the classification boundaries were steep, while for 

high-variance exposure the boundaries were shallower, reflecting the greater uncertainty 

about the intended category that comes with more variable productions of each category. 

Moreover, the difference in boundary slopes was quantitatively predicted by the difference 

in the category variances in each case.

This result demonstrates two points. First, by showing that listeners’ categorization 

boundaries reflect the variance of the talker’s VOT distributions as predicted by the ideal 

listener model, they show that listeners are using probabilistic cues in a nearly optimal way. 

Second, and more importantly for our purposes, they show that listeners are adapting to a 

change in the statistics of these cues. Because they have no experience with the experimental 

talker before beginning the experiment, any differences in their classification function after 

exposure reflects something that they have learned about the talker’s VOT distributions over 

the course of the experiment.

The natural question to ask is: how do listeners get to the point where distributional 

information is reflected in their behavior? Intuitively, we might say that coming into a new 

situation—like an experiment—listeners have some beliefs about the distributions of cues 

for each phonetic category, and that these beliefs change as the listener gains more 

experience in that situation. These changes in beliefs about how cues are distributed leads to 

changes in how any given cue is interpreted, resulting in possibly better comprehension or 

changes in classification behavior. In the next section we show how—like phonetic 

categorization—this intuitive idea formally corresponds to statistical inference, but at a 

different level.

The ideal adapter—Our ideal adapter framework builds on the ideal listener framework 

described in the last section. The ideal listener depends on distributional information about 

each category, in the form of the likelihood function p(x |C). We can think of the likelihood 

function for each category as the listener’s prediction about what cue values are likely to 

occur given that category is produced, and this prediction is used during speech perception 

to evaluate how well each hypothesized category explains the particular cue value currently 

being classified. However, we can also think of the likelihood functions as explanations of 

(and predictions about) the statistics of cues for each category. Crucially, these explanations 

come from the listener’s subjective knowledge of cue distributions, and likely are not 

exactly identical to the true statistics of cues in the world, because a listener only has finite 

observations to work with and thus incomplete information about the true distributions. The 

consequence of this is that the listener has uncertain knowledge of cue distributions.

If the statistics of cues associated with each category were identical or at least similar from 

one situation to the next, information could be accumulated from all observed values to 

obtain sufficiently accurate—and certain—estimates of the likelihood function. But as 

discussed above, this is not always the case: talkers can differ dramatically in the acoustic 

cues they use to realize phonetic categories, and thus the true likelihood function differs 

across situations (Allen et al., 2003; Labov, 1972; Hillenbrand, Getty, Clark, & Wheeler, 

1995; McMurray & Jongman, 2011; Pierrehumbert, 2003).
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In order to make good use of bottom-up information from acoustic cues, listeners require the 

appropriate likelihood function for the current situation. Consider again the case of making 

a /b/-/d/ decision on the basis of the F2 locus cue, but suppose that we have encountered a 

new talker—call him Sherman—who produces a different distribution of F2 locus values 

for /b/, a distribution which is shifted to the right (Figure 3, middle). If the listener continues 

to use the likelihood function which matches the ‘normal’ talker Norman’s /b/ distribution, 

comprehension of Sherman’s speech will suffer: cue values which were ambiguous for 

Norman are now more likely to be generated from /b/ (middle bottom; the ideal 

classification function for Sherman, the solid line, is above the dashed line). Conversely, cue 

values that are perfectly ambiguous for Sherman (where the solid line crosses p(b | F2 locus) 

= 0.5) would be much more likely to be /d/ when produced by Norman. That is, a 

mismatched likelihood function can result in slowed or inaccurate comprehension: 

inaccurate because the ideal category boundary depends on the likelihood function, and 

slower because /b/ cue values which are nearly prototypical and highly likely for the new 

talker would be ambiguous for the standard talker (the resulting uncertainty slows 

processing in this sort of task; Clayards et al., 2008; McMurray, Tanenhaus, & Aslin, 2002).

Similarly, consider the third talker in Figure 3 (right), Priscilla, whose /b/ productions are 

substantially more precise than Norman’s, resulting in a low-variance cue distribution 

for /b/, but whose /d/ productions show normal variability. Using Norman’s likelihood 

function to classify Priscilla’s productions has similar consequences in this situation: cue 

values that would have been ambiguous for Norman are now quite a bit more likely to have 

come from the /d/ distribution because Priscilla’s /b/s are so precise.

In both of these situations, comprehension difficulties could be avoided if the listener could 

use the right likelihood function. If the talker is familiar, this might be as simple as 

retrieving the right likelihood function based on prior experience with the talker (cf. 

Goldinger, 1998).4 But what if the talker has never been encountered before? This is a 

distributional learning problem: in order to achieve efficient and accurate comprehension of 

a novel talker, the listener must learn the cue distributions corresponding to the new talker’s 

phonetic categories. This is similar to the problem faced by an infant acquiring their first 

language, although the adult listener starts with a substantial amount of prior knowledge. 

Most notably, they know that there are different phonetic categories for /b/ and /d/, and that 

these categories are generally distinguished by the F2 locus cue. As we discuss in the second 

half of this article, adult listeners also may have experience with similar talkers, providing 

them with more or less useful previous experience.

Still, inferring the distributions of F2 locus values corresponding to these categories is a 

difficult task, because the inherent variability in these distributions makes each observed cue 

value ambiguous as evidence for the underlying distribution: if the observed cue value 

deviates from the listener’s predictions, is it due to inherent within-category variance (which 

4There is the additional problem of detecting that the distributions have changed. Change detection in a probabilistic task is a difficult 
problem that has so far received little attention in research on speech perception and language processing, but has been investigated 
for other cognitive domains (for a review of the literature, see Qian et al., 2012) and in research on automatic speech recognition (e.g., 
Ajmera, McCowan, & Bourlard, 2004; Chen & Gopalakrishnan, 1998). As we outline in the second half of this article, the framework 
we propose holds the potential of a unified solution to both adaptation and change detection.
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will produce some outliers), or is it evidence that the predictions themselves—the likelihood 

functions—are wrong and need to be updated?

Thus, determining the talker’s category distributions is a problem of inference under 

uncertainty, just like the problem inferring the talker’s intended category based on an 

observed cue value, but at another level. That is, in the same way that the listener can use 

their knowledge of how well each possible category predicts an observed cue value to infer 

which category is most likely, they can also use knowledge about how well each possible 

category distribution predicts the observed statistics of their recent experience in order to 

infer which underlying distributions are more or less likely in the current situation. The 

statistically optimal solution to this inference problem can again be described using Bayes 

Rule. For simplicity’s sake, the cue distribution5 for a category c can be represented by its 

mean μc and variance . Thus the listener’s uncertain beliefs about this cue distribution can 

be represented by a probability distribution over means and variances.

An ideal adapter must infer both the category label c and and the means and variances of the 

different underlying categories  (where for our example, c = /b/, /d/). 

Formally, this is expressed by the joint posterior distribution over category labels and means 

and variances, which combines prior beliefs with the likelihood of the observed evidence:6

(5)

This captures the fact that after observing a cue value x, the listener’s joint beliefs about the 

intended category C = c and the parameters of all categories μ, σ2 depend on two things. 

First, the updated beliefs depend on the likelihood, how well each possible combination of 

categorization and category parameters can predict the observation x, 

. Second, they depend on the listener’s prior beliefs, both about 

which categories are most likely to be encountered, p(c), and which combinations of 

category means and variances are most probable, p(μ, σ2). Both aspects of the prior are 

based on prior experience. The prior over category probabilities depends on the base rate for 

each category, as well as its probability in context (based on the surrounding sounds or 

word, or other acoustic cues besides x),7 while the prior over category means and variance 

depends on the sorts of cue distributions the listener has encountered before and expects to 

encounter again. The nature of the prior over category means and variances is the focus of 

Part II below. For now all that matters is that the listener thinks some category means and 

variances are more likely than others.

5Here we are representing categories as Gaussian (normal) distributions, because they are both mathematically and intuitively 
tractable. This assumption is not critical for our purposes. The same logic—of belief updating as inferring distributional properties—
applies for any parametric or even non-parametric way of representing the distributions.
6Using the shorthand notation of p(c) to indicate the probability that the random variable C has value c, or p(C = c).
7The usefulness of context in providing prior information about phonetic categorization is not limited to situations where the 
categorization of nearby sounds is known with certainty. Simply knowing that sequences of categories which correspond to actual 
words are more likely than arbitrary strings provides prior information about how each sound is categorized through the joint 
distribution of categorizations p(…, ci−2, ci−1, ci, ci+1, …).
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The specific way that an ideal adapter updates their beliefs after observing cue value x 

depends on how they categorize it, and this is captured by the joint posterior distribution p(c, 

μ, σ2 | x). In general, an observation from category c provides the most evidence about the 

underlying mean and variance of that category. In the case where the prior beliefs about the 

parameters of each category are independent of each other, , the 

beliefs about category ci are only updated if the observation is classified as C = ci.

(6)

In cases where there is uncertainty about how the observation x should be categorized, an 

ideal adapter should update the beliefs about category ci as a mixture of the updated beliefs 

under each possible categorization, weighted by how likely that categorization is overall 

(averaging or marginalizing over current category parameter beliefs):

(7)

Again, if we assume that the beliefs about different categories are independent, this mixture 

consists of two components: one where x is categorized as C = ci and beliefs about category 

ci are updated, and one where it is not and no belief updating occurs:8

To return to the example above of classifying a token as either /b/ or /d/ based on F2 locus, 

the posterior distribution over the mean and variance of /b/ after observing a particular F2 

locus value is thus

In conversational speech, acoustic observations are often labeled with high certainty, and so 

p(C = ci | x) ≈ 1 for some category ci. Such label information can come both from top-down 

linguistic context (like phonotactics or lexical disambiguation), or from other bottom-up 

cues. For example, when distinguishing /b/ from /d/, the closure of the lips during /b/ 

provides a very informative visual cue, effectively labeling the auditory percept (Vroomen et 

al., 2004).

In such cases where there is some other source of information that labels the observed F2 

locus value as a /b/, the resulting conditional posterior distribution over the mean and 

variance of /b/ simplifies to:

8In the general case where the prior beliefs about different categories’ parameters are not independent, the posterior is still a mixture, 
but is a mixture of beliefs, updated in different ways and to different extents, rather than just updated and non-updated beliefs.
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(8)

Here, the relevant prior distribution is just the listener’s prior beliefs about the mean and 

variance of the F2 locus cue for the /b/ category. Likewise, the likelihood considers only 

how well each combination of /b/ mean and variance account for the observed cue value. 

Below, we model incremental adaptation for cases where the category labels are known with 

high certainty (and thus (8) holds). We also assume that the prior beliefs about /b/ and /d/ are 

independent. We make these assumptions for the sake of simplicity and tractability in 

modeling, and it is important to keep in mind that they do not represent assumptions of the 

framework, which makes qualitatively the same predictions whether or not these 

assumptions turn out to be true.

In sum, the ideal adapter framework predicts that optimal phonetic adaptation depends on 

three things: the statistics of the observed percepts (e.g. their mean and variance), the 

listener’s prior beliefs about the statistics of the relevant categories, and the listener’s belief 

that there is a need to adapt (including their beliefs about the amount of variation in the 

relevant category across talkers and situations). In the next five sections, we illustrate the 

role of the first two factors in phonetic adaptation experiments where the third factor is a 

given (i.e., where there is a clear need to adapt and for which previous work has shown that 

listeners indeed adapt, Bertelson et al., 2003; Kraljic & Samuel, 2005; Norris et al., 2003). 

In order to do this we specify a basic belief updating model in the ideal adapter framework 

which quantifies how the exposure statistics and the listener’s prior beliefs about those 

statistics interact.

With this model in hand, we do five things. First, as a basic evaluation we address the 

phenomenon of phonetic recalibration or perceptual learning. Such perceptual learning is 

typically thought to be due to changes in the underlying representations of the adapted 

categories which generally serves the purpose of robust speech perception, and is naturally 

accounted for by the ideal adapter framework. In particular, we show that the incremental 

build-up of recalibration is accounted for by our basic belief updating model.

Second, we illustrate how the way in which the model accounts for the build-up of 

recalibration potentially sheds light on the underlying processes. Specifically, the model 

captures the fact that recalibration is often ambiguous between a change in the underlying 

mean of the category versus a relaxation of the criterion for what counts as an acceptable 

exemplar, or a change in the variance of the category.

Third, we examine the predictions of this framework for the selective adaptation paradigm, a 

paradigm which is typically not considered to be due to the perceptual learning which serves 

robust speech perception. However, we show that the belief updating model accounts for the 

incremental build-up of this phenomenon as well, using very similar parameters as for 

recalibration.

Fourth, we explore a little studied property of phonetic recalibration that, prima facie, would 

seem to stand in conflict with our hypothesis that adaptation serves robust speech 
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perception: prolonged, repeated exposure to the exact same stimulus can eventually undo the 

recalibration effect (Vroomen, van Linden, de Gelder, & Bertelson, 2007). However, we 

show that not only is this predicted by the ideal adapter framework under a range of 

conditions, the belief updating model which accounts for the build-up of selective adaptation 

and recalibration also accounts for the effect of prolonged repeated exposure in each, and 

does so simultaneously with a single set of parameters.

Fifth, motivated by the potential link between selective adaptation and recalibration 

suggested by the proposed framework, we present novel data from a web-based perception 

experiment which tests the predictive power of our model. Specifically, we test adaptation 

conditions that are intermediate between recalibration and selective adaptation, for which 

the model predicts a continuum between classic recalibration and selective adaptation 

responses.

Basic evaluation of the ideal adapter framework: phonetic recalibration

We begin with an illustration of the basic mechanics of the ideal adapter framework. For this 

we focus on experiments in which listeners are exposed to a novel talker with an unusual 

realization of a phonetic contrast. There is a great deal of evidence about the results of 

incremental adaptation. Much of it comes from studies of “phonetic recalibration”, or 

“perceptual learning” (Bertelson et al., 2003; Kraljic & Samuel, 2005; Norris et al., 2003). 

These studies use a continuum between two sounds, generally constructed by interpolating 

between prototypical endpoint tokens (e.g. Kraljic & Samuel, 2005; Norris et al., 2003) or 

by parametrically manipulating a critical acoustic cue which distinguishes between the two 

categories. For instance, a /b/-/d/ continuum might be constructed by manipulating F2 locus, 

as described above (Bertelson et al., 2003; Vroomen et al., 2004). During an exposure phase, 

listeners hear the item from this continuum which is most ambiguous between /b/ and /d/. 

This auditorily ambiguous segment is paired with information which consistently “labels” or 

disambiguates it as a /b/. This labeling is achieved via, for example, lexical disambiguation 

(e.g. replacing the /b/ in club with the ambiguous segment, Kraljic & Samuel, 2005; Norris 

et al., 2003 etc.) or visual disambiguation (pairing the auditorily ambiguous sound with a 

video of a person articulating a /b/, which results in a visible labial closure unlike 

articulation of /d/). After exposure, changes to the listener’s classification function are 

assessed, for example, by means of a classification test over unlabeled sounds drawn from 

the continuum (e.g. classifying a continuum of sounds from a prototypical /aba/ to a 

prototypical /ada/ without either lexical or visual disambiguation).

In what follows, we use the notation xc1c2 to refer to a sound that is auditorily ambiguous 

between categories c1 and c2, and use superscripts to refer to labeled sounds. So, for 

example,  is a sound auditorily ambiguous between /b/ and /d/ which is labeled 

(disambiguated) as /b/.

Perceptual recalibration rapidly results in shifted category boundaries. For example, after as 

few as 10 exposures to , the /b/ category has ‘grown’: more of the continuum is now 

classified as /b/, when tested without the labeling information (Vroomen et al., 2007). The 

opposite shift is observed for exposure to . This is illustrated schematically in Figure 4 

Kleinschmidt and Jaeger Page 16

Psychol Rev. Author manuscript; available in PMC 2016 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A). Similarly rapid perceptual recalibration has been observed along a variety of phonetic 

contrasts, including vowels (Maye, Aslin, & Tanenhaus, 2008), fricative place of 

articulation and manner (Kraljic & Samuel, 2005; Norris et al., 2003), and stop consonant 

place (Bertelson et al., 2003) and voicing (Kraljic & Samuel, 2006). Perceptual recalibration 

is typically investigated under the assumption that it reflects the same processes that support 

general accent adaptation. This assumption is not trivial but there is some support that 

perceptual recalibration is not simply an artifact of the stimuli being presented in isolation 

(Eisner & McQueen, 2006) or there only being one unusual pronunciation (Reinisch & Holt, 

2014). We return to these issues in the next section.

Qualitatively, perceptual recalibration exhibits several properties that are expected under the 

ideal adapter framework. First, recalibration seems to reflect implicit learning over phonetic 

contrasts, rather than strategic effects such as response bias (Clarke-Davidson, Luce, & 

Sawusch, 2008), or weakening of the criterion for what counts as an acceptable example of a 

category (Maye et al., 2008; but see next section). Recalibration also appears to affect 

speech perception through changes in sublexical phonetic category representations since 

perceptual recalibration effects generalize to novel words by the same talker containing the 

recalibrated segment (McQueen, Cutler, & Norris, 2006).

Second, perceptual recalibration seems to last: when listeners classify tokens from the same 

talker 12 hours after initial testing, the magnitude of adaptation is the same as right after 

initial exposure (Eisner & McQueen, 2006). As we discuss in more detail in the second part 

of this article, longevity of changes in category boundaries (for a particular situation) is 

expected under our proposal that adaptation serves to make speech perception robust to 

changes in situation.

More specifically, the qualitative changes in classification boundaries observed during 

perceptual recalibration is naturally predicted by the ideal adapter framework (Figure 4, B). 

Take, for example, the case where the listener is exposed to  (Figure 4, left). As the 

listener updates their beliefs about the shifted distribution of cues for /b/, shifting the mean 

towards the observed cue values, stimuli in the middle of the /b/-/d/ continuum which 

previously had roughly equal likelihood under either category (and thus are sometimes 

perceived as /b/ and sometimes as /d/) are now more likely to have resulted from /b/, 

resulting in more /b/ responses to unlabeled test stimuli, especially in the previously-

ambiguous region of the continuum.

Incremental recalibration—It is encouraging that the ideal adapter framework provides 

a qualitative account of the results of recalibration. But can this framework account for 

incremental changes in behavior? Belief updating is an incremental process, where the 

listener accumulates information about the talker’s cue distributions one observation at a 

time. The ideal adapter framework thus not only predicts asymptotic classification behavior

—after the listener has fully adapted to the talker’s cue distributions—but also how their 

classification behavior changes with each additional piece of evidence. Unfortunately, few 

studies have investigated the incremental effects of exposure to a novel distribution of 

sounds, such as would be typical for a new talkers.

Kleinschmidt and Jaeger Page 17

Psychol Rev. Author manuscript; available in PMC 2016 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A notable exception is Vroomen et al. (2007). Listeners in their study were exposed to 

repetitions of an audio-visual adaptor, which was composed of a video recording of a talker 

articulating either /aba/ or /ada/, dubbed with an audio item from a 9-item, synthetic /aba/ (xb 

= 1) to /ada/(xd = 9) continuum. The audio component for each participant was the 

continuum item that was most ambiguous, xbd. The most ambiguous item was determined 

during a pre-test block of 98 trials where the entire /aba/-/ada/ continuum was classified.9

Instead of the typical recalibration procedure, where exposure and test are separated, 

Vroomen et al. (2007) measured the degree and direction of adaptation by interspersing 

audio-only test blocks throughout each exposure block, after 1, 2, 4, 8, 16, 32, 64, 128, and 

256 cumulative exposures to the audio-visual adaptor. Specifically, they measured the 

average proportion of /b/ responses to six-trial test blocks (the three most ambiguous items 

{xbd − 1, xbd, xbd + 1} each repeated twice).

Each participant completed sixteen exposure blocks of 256 exposures. Half of the exposure 

blocks used a /b/ audio-visual stimulus for exposure, and the other half used a /d/. Of the /b/-

exposure blocks, half of these used the auditorily ambiguous stimulus as described above, 

while the other half used the prototypical /b/ endpoint of the acoustic continuum (x = 1), and 

likewise for the /d/-exposure blocks.10 Because our goal is to illustrate the workings of the 

ideal adapter framework when the listener has little prior experience that might be relevant 

for the current situation, we focus on the first 64 exposures of the first block from each 

participant (we return to the issue of extended exposure below).

Figure 5 shows the results of Vroomen et al. (2007) demonstrating the build-up of 

recalibration in the first 64 critical exposures in the first exposure block. The top panel 

shows the proportion /b/ responses for  and  adaptors separately; more /b/ responses 

after /b/ exposure (solid line) indicates recalibration, and vice-versa for /d/ exposure (dashed 

line). A natural measure of the degree of recalibration is thus the aftereffect difference score 

between /b/ and /d/ exposure. A positive aftereffect indicates that /b/ exposure increased /b/ 

responses, and /d/ exposure decreased /b/ responses (and increased /d/ responses), which 

corresponds to recalibration (Figure 5, bottom).

Recalibration builds up rapidly but incrementally over the first 64 exposures. As discussed 

above, this build up follows naturally from the ideal adapter framework, as each exposure to 

the auditorily ambiguous adaptor contributes to a shift in the listener’s estimate of the 

category mean. Next, we quantify and test this prediction.

Modeling build-up of recalibration—In order to evaluate the ability of the ideal adapter 

framework to account for the results of Vroomen et al. (2007) on the incremental build-up of 

recalibration, we implemented a basic Bayesian belief updating model based on the 

principles of the ideal adapter framework.

9There were 14 repetitions of each stimulus, except for the two endpoints x = 1 and x = 9 which were repeated only 6 times and the 
next most prototypical items x = 2 and x = 8 which were repeated 8 times each
10The prototypical exposure blocks are discussed later.
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Bayesian belief updating model: We used a mixture of Gaussians as the underlying model 

of phonetic categories, where each phonetic category c ∈ {b, d} corresponds to a normal 

distribution over cue values x with mean μc and variance  (e.g. Figure 3, top). Thus, the 

likelihood of observation x under category c is

(9)

The listener’s uncertain beliefs about phonetic categories are captured by additionally 

assigning probability distributions to the means μc and variances  of each phonetic 

category. The prior distribution  represents the listener’s beliefs about category c 

before exposure to the experimental stimuli, and the posterior  captures the 

listener’s beliefs after exposure to stimuli X = (x1, x2, …, xN) which are known to come from 

category c(which means that the category labels C = c are known). These two distributions 

are related via Bayes’ Rule:

(10)

We used a conjugate prior for the Normal distribution with unknown mean and variance 

(Appendix A), and this prior distribution has two types of hyperparameters.11 The first set 

of hyperparameters captures the prior expected values of the means and variances. The 

second set of hyperparameters captures the degree of confidence, or, conversely, uncertainty 

associated with the prior beliefs. Put differently, they determine how much current 

observations are weighted against previous experience in determining beliefs about the 

category distributions. In this model, there are two different degrees of confidence: one for 

the category means, denoted κ0, and the other for the category variances, denoted ν0 (see the 

Appendix for details). An intuitive interpretation of these hyperparameters is as the effective 

sample size of the prior beliefs. For instance, if the category mean confidence parameter is 

κ0 = 10, then after ten new observations the listener’s beliefs about the category mean to 

equally reflect previous and current experience. With fewer than ten new observations, the 

listener’s beliefs about the category mean will be dominated by the mean expected based on 

previous experience; with more than ten new observations the beliefs about the mean will be 

increasingly dominated by the mean of the new observations. These hyperparameters thus 

capture the gradient trade-off between prior experience and current experience in 

determining the listener’s beliefs about phonetic categories. They can be thought of as 

pseudocounts or the number of prior experiences that are relevant for the current situation.12

Finally, it is not a priori obvious whether adaptation occurs at the level of auditory cues 

individually or at some higher level where information is integrated from multiple auditory 

and/or visual cues. Thus the model includes a third hyperparameter, w which determines the 

11We use the term hyperparameters for terminological clarity to distinguish the model parameters from the category distribution 
parameters—means and variances—whose prior and posterior distributions are defined by the model parameters, the hyperparameters.
12Even though comparable fits can be obtained using a single, overall effective prior sample sizes (e.g. κ0 = ν0), the two were fit as 
separate in order to evaluate the extent to which recalibration was primarily driven by a shift in the category mean or a change in 
variance.
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weight given to the visual cue value in determining the percept. This hyperparameter ranges 

from w = 0 (perceived cue value is not influenced by the visual cue) and w = 1 (perceived 

cue value entirely determined by the visual cue). Adaptation over integrated cues might arise 

because the listener attempts to infer the talker’s intended production based on multiple 

partially informative cues (including top-down category distribution information, Feldman 

et al., 2009). For more discussion, refer to the Appendix.

Model fitting: The hyperparameters were fit in a two-step process, which is described in 

detail in the Appendix. The first step is to fix the expected prior means and variances based 

on the classification curves measured during pre-test, before exposure to the audiovisual 

adaptor. These hyperparameters are thus not free parameters of the model, in that they are 

not adjusted to improve the fit to the actual adaptation test data.

The second step is to estimate the three free hyperparameters (i.e., the effective prior sample 

sizes ν0 and κ0 and the visual cue weight w) based on the actual adaptation data. The 

posterior distribution of the free hyperparameters was obtained using MCMC sampling with 

a weakly informative prior (to ensure a proper posterior, Gelman, Carlin, Stern, & Rubin, 

2003). For further details, we refer to Appendix A. Because of the limited amount of data 

from each participant (only six trials per test block), we chose to fit the model to the 

aggregate data from all participants (see Appendix A for motivation).

Results and discussion—The model’s fit against the data is shown in Figure 6. The 

predicted responses are plotted on the aftereffect scale for better comparison to Vroomen et 

al. (2007). The model effectively captures the qualitative fact that recalibration leads to 

positive aftereffects which build up incrementally, and provides a quantitatively good fit as 

well (r2 = 0.96). Specifically, the model captures the fact that recalibration starts off 

relatively weak and gradually becomes stronger, before eventually leveling off. Thus, not 

only is the qualitative result of recalibration—a positive aftereffect—predicted by the ideal 

adapter framework, the effect of cumulative exposure on the incremental build-up of the 

effect is also predicted well. This suggests that listeners incrementally integrate each 

observed cue value with their prior beliefs in a way that is predicted by the ideal adapter 

framework.

We can draw a number of conclusions from the values of the hyperparameters themselves. 

The best-fitting hyperparameter values are ν0 = 71, κ0 = 11, and w = 0.53. First, relative to 

the real overall sample size—the number of /b/s and /d/s encountered in the world by a 

typical English-speaking adult—the best-fitting effective prior sample sizes are extremely 

low. That is, listeners appear to put very little weight on their prior beliefs, adapting very 

quickly to the shifted cue distribution that they observe while taking slightly longer to adapt 

to the tight clustering (low variance). This may be surprising at first glance, but it is actually 

qualitatively predicted by the ideal adapter framework. In the ideal adapter framework, 

whether or not (and how much) a listener adapts depends on how relevant they think their 

previous experiences are for the current situation. Thus in situations like a recalibration 

experiment where listeners encounter odd-sounding, often synthesized speech in a 

laboratory setting, they may have little confidence, a priori, that any of their previous 

experiences are directly informative. We discuss this point in length in the second half of 
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this paper, where we elaborate on the crucial role of prior experiences for robust speech 

perception.

Second, the best-fitting value of the visual cue weight hyperparameter w places 

approximately equal weight on the audio and visual cue values. This means that, according 

to the best-fitting model, listeners perceive the cue value as not fully ambiguous. This makes 

an interesting prediction about the effects of extended exposure to the same stimulus that we 

return to below.

Third, the joint distribution—rather then just the point estimates—of the prior effective 

sample size hyperparameters (Figure 7) reveal that as long as one of these hyperparameters 

is low—on the same order of magnitude of the number of exposures to the adaptor stimulus

—the other confidence hyperparameter can become extremely large and not change the 

model’s predictions so much that the likelihood suffers. This is because there are two ways 

that the positive aftereffect observed here (and in other recalibration studies) might come 

about after exposure to an ambiguous adaptor stimulus. This is discussed in more detail 

next.

Recalibration by category shift or expansion?

One of the advantages of model-fitting using Bayesian methods is that it allows us to 

evaluate the range of model hyperparameters which provide a good fit to the data. For the 

build-up of recalibration modeled in the previous section, the full posterior distribution over 

model hyperparameters (effective prior sample sizes and visual cue weight) provides 

interesting insight into how a human learner might adapt. To illustrate this, we examine the 

posterior distribution of the prior effective sample sizes for the category means and 

variances given the behavioral data.

The joint distribution of the two confidence hyperparameters—the mean confidence κ0 and 

the variance confidence ν0—is shown in Figure 7. This distribution covers an extremely 

wide range of both hyperparameters, although this entire range still results in qualitatively 

consistent predictions about the aftereffect at each level of exposure (Figure 6). The wide 

range covered by the posterior distribution of hyperparameters is due to the limited amount 

of data available to the model in this particular case. Note that this is not a problem. It 

merely reflects that these data do not uniquely constrain the model. A human learner 

exposed to the same data would face the same problem. Indeed, we will see below that when 

the model is constrained by further data, the posterior distribution of the hyperparameters 

will become more narrow.

Of interest is that the posterior is bimodal: there are two ways that belief updating can 

account for the build-up of recalibration. The best-fitting (MAP-estimate) hyperparameters 

correspond to a shift in the mean of the adapted category: the prior effective sample size of 

the mean, κ0, is less than that of the variance, ν0, and as a result the prior beliefs about the 

mean are overcome more quickly than the variance. However, this pattern is only true for 

roughly half the samples from the joint posterior of the hyperparameters (pMCMC(ν0 > κ0) = 

0.55). In the other half of the samples, the prior effective sample size for the mean is on 
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average very high, meaning that the positive aftereffect observed in the data is modeled as a 

change in the variance of the adapted category, with a mean that is essentially fixed.

This combination of hyperparameters—flexible variance and fixed mean—can lead to a 

positive aftereffect after exposure to auditorily ambiguous but labeled tokens in the 

following way. If the listener has very high confidence in the mean of each category coming 

into a new situation, then repeated exposure to an ambiguous segment which is labeled as 

belonging to one category is best explained by the hypothesis that the talker is producing 

that category with a high degree of variability. Increasing the variance of the recalibrated 

category in this way means that more likelihood is assigned by that category to the 

previously-ambiguous part of the continuum to the recalibrated category, and thus leads to a 

positive aftereffect.

Thus, a positive aftereffect is qualitatively consistent with both a shift in mean and an 

increase in category variance. Moreover, the joint distribution of hyperparameters fit to the 

build-up of recalibration observed by Vroomen et al. (2007) show that in the ideal adapter 

framework, the quantitative effect of cumulative exposure on the build-up of recalibration is 

also ambiguous in the same way.

Maye et al. (2008) behaviorally investigated a similar question. Specifically, they wondered 

whether positive aftereffects typically observed in recalibration experiments were really due 

to a shift in the underlying category, or just a relaxation of the criterion for what counts as a 

good exemplar of the adapted category. They exposed listeners to vowels that were shifted 

in a particular direction (e.g. shifting the high vowel /ɪ/ in wicked down to the mid vowel /ɛ/ 

to make ‘wecked’). In a lexical decision task after exposure to such downward shifts, 

listeners accepted more nonwords that were downward-shifted versions of real words, but 

not nonwords that were upward-shifted words. This corresponds, in the ideal adapter 

framework, to a shift in the means of the adapted categories, without a substantial change in 

the variance.

It may be tempting to conclude based on these results that all recalibration effects result 

from shifting category means. However, the ideal adapter framework predicts that positive 

aftereffects due to changes in either means and variances are possible, in different situations, 

especially depending on whether the listener has greater confidence in their prior beliefs 

about category variances or means. This is, to the best of our knowledge, a novel prediction. 

Since one of our goals is to provide a guiding framework for future work on speech 

processing and adaptation, we elaborate on this prediction.

When might the listener have greater confidence in the mean of a category rather than its 

variance, and vice versa? In the ideal adapter framework, the listener’s prior beliefs about a 

category parameter constitute a prediction about the distribution of values they might expect 

that parameter to take on in the future. The level of confidence in prior beliefs is closely 

related to the level of variability of a particular category parameter that the listener expects 

across situations. For cues whose typical values vary across situations (e.g. formant 

frequencies), an ideal adapter should expect substantial variability in the underlying means, 
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in order to be prepared to shift their beliefs about category means on that cue when 

appropriate.

The variance of a particular cue for a particular category is closely related to how reliable 

that cue is at distinguishing one category from another (Allen & Miller, 2004; Clayards et 

al., 2008; Newman et al., 2001; Toscano & McMurray, 2010): for two categories with fixed 

means, increasing the variance of both categories means that their distributions will overlap 

more and, on average, observing that particular cue will be less informative about the 

intended category. Thus for a cue which varies in reliability from one situation to the next 

(with relatively stable category means), the ideal adapter should in general be more likely to 

adjust category variance than means.13

Thus, the ideal adapter framework predicts that there are range of strategies available to the 

listener for adapting to new talkers. In real-life accent adaptation, there are usually many 

categories and cue dimensions where an accent is unusual, and in some cases these 

differences can be due to both changes in the cue values typically used to realize a category 

(the mean) and changes in how reliable a given cue is at distinguishing a category (the 

variance). In real speech there are many partially informative cues to any given category, 

and it may be a completely reasonable strategy for the listener to simply decide that a 

particular cue is uninformative and ignore it (or at least downweight it).

This points to a critical empirical gap in our understanding of speech perception. Most 

existing work on phonetic adaptation follows one of two approaches. The first approach 

emphasizes relatively natural conditions and accent variability, where language occurs in 

context (e.g. sentences) and listeners must adapt to accents that vary along many categories 

and cue dimensions (Baese-berk et al., 2013; Bradlow & Bent, 2008; Clarke & Garrett, 

2004; Sidaras et al., 2009). The second approach is that of perceptual recalibration/learning, 

which typically presents speech as isolated words or syllables and emphasizes acoustic 

manipulation of a single category or auditory cue. While perceptual recalibration has been 

observed when these unusual pronunciations were presented as part of running speech in a 

story (Eisner & McQueen, 2006) or as words spoken by a talker who has a real foreign 

accent (Reinisch & Holt, 2014), it is an open question under what conditions listeners 

downweight cues and when they track changes in mean cue values during naturalistic accent 

adaptation.

In order to address listeners’ ability to adapt to novel talkers based on the statistical 

properties of their speech as predicted by the ideal adapter framework, we see two 

potentially fruitful directions. First, we think that perceptual recalibration paradigms should 

be scaled up to explore the role of natural levels of within-category, within-talker variability 

and the role of controlled deviation in multiple categories and cue dimensions in 

recalibration. Second, we think that naturalistic accent adaptation paradigms might be 

refined to specifically investigate how accent difficulty is driven by deviations—from 

unaccented speech—in the average value of a cue versus unusual variability in that cue. 

13This is not to say that an ideal adapter would not adapt to changes in category distributions for cues whose means or variances do 
not vary much across situations. Rather, the amount of variability in a particular category’s statistics over situations combines with the 
listener’s overall level of confidence that their prior experience is relevant for the current situation.
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Given that, across talkers, the average value of some cues varies quite a bit (Newman et al., 

2001), while for others it is relatively consistent (Allen et al., 2003), it might be expected 

that listeners will have a harder time adapting to accented speech which is characterized by 

deviant values of cues that are typically stable across talkers (like VOT Sumner, 2011).

We have discussed how phonetic recalibration is qualitatively predicted by the ideal adapter 

framework, and presented a model in this framework which captures the incremental build-

up of recalibration quantitatively. In the next three sections we show how this framework 

provides a potentially unifying perspective on phonetic adaptation more broadly.

Beyond recalibration: selective adaptation

Next we apply the ideal adapter framework to a phenomenon known as selective adaptation 

(Eimas & Corbit, 1973; Samuel, 1986). Traditionally, selective adaptation is thought to be 

due to mechanisms that are distinct from those underlying perceptual recalibration. We will 

show, however, that the cumulative build-up of selective adaptation is captured by the same 

belief-updating model introduced in the previous sections.

Selective adaptation occurs after repeated exposure to a single phonetic category, and is 

characterized by a negative aftereffect, where fewer items on a phonetic continuum are 

classified as the adapted category. For instance, and as we will discuss in more detail below, 

Vroomen et al. (2007) found that repeated exposure to a prototypical /b/ audio-visual 

adaptor constructed from the /b/ endpoint of their /b/-/d/ continuum (rather than the 

ambiguous midpoint) resulted in fewer /b/ responses during test trials (and vice-versa for /

d/).

Selective adaptation is broadly considered to be the result of either habituation of “feature 

detectors” which are sensitive to linguistically-relevant features of the acoustic speech 

signal, or contrast effects at a categorical level (Samuel, 1986). It is also generally 

acknowledged that selective adaptation operates at a range of different levels. On the one 

hand, non-speech phonetic analogues (like isolated F2 and F3 formant transitions) can 

selectively adapt a place of articulation contrast, which suggests that selective adaptation 

operates on relatively low-level auditory processing (Samuel & Kat, 1996). On the other 

hand, selective adaptation has also been shown to generalize between acoustically different 

but phonetically similar continua, suggesting that it does not depend solely on acoustic 

overlap (Samuel & Kat, 1996; Sawusch, 1977).

Incremental selective adaptation—As is the case with recalibration, there is little work 

on how selective adaptation builds up incrementally. Again, one notable exception is 

Vroomen et al. (2007), who also investigated the build-up of selective adaptation at varying 

levels of exposure. Selective adaptation was induced by repeated exposure to a prototypical 

audio-visual adaptor, made using the same video as the ambiguous audio visual stimuli from 

the recalibration conditions paired with the corresponding category endpoint (x = 1 for /b/ 

and x = 9 for /d/). Other than this, the design and procedure was exactly the same as the 

recalibration condition described above: listeners heard a total of 256 repetitions of one of 

these adaptors, and were tested on the same audio-only classification test after 1, 2, 4, 8, 16, 

32, 64, 128, and 256 cumulative adaptor exposures.
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Figure 8 shows the results for the first 64 cumulative exposures in the first exposure block 

for selective adaptation from Vroomen et al. (2007). Like with the recalibration conditions, 

selective adaptation builds up incrementally over the first 64 exposures (although there is 

quite a bit of noise due to the small number of observations). Can a belief updating model 

account for this data?

Qualitatively, the answer is yes, as shown schematically in Figure 9. Just like the 

recalibration condition, the distribution of cues that listeners encounter in the selective 

adaptation condition is unusual: the exact same cue value is repeated over and over again.14 

In natural speech there is inevitable variability in the cue values used to realize a single 

phonetic category, and thus the level of consistency in this experiment is highly unusual. A 

belief updating model predicts that listeners will adjust their beliefs about the variance of the 

adapted category as a result of these unusual statistics. The results of adapting to low-

variance exposure to, e.g., a prototypical /b/ is that the /b/ category ‘shrinks’, and cues 

values that were previously ambiguous become less likely under /b/ and thus more likely to 

be classified as /d/ (Figure 9, top). This is the negative aftereffect that characterizes selective 

adaptation.

While few studies have investigated the effect of unusual category variance on subsequent 

perception, one notable exception is Clayards et al. (2008). They showed that listeners who 

are exposed to /b/ and /p/ sounds whose VOTs have low variance show a sharper category 

boundary than listeners exposed to high variance distributions. Moreover, the difference in 

category boundary slopes is exactly as predicted by the category variances, via an ideal 

listener model. This suggests that listeners adjust their categorization behavior based on 

recently experienced within-category variance of acoustic cues, exactly as the ideal adapter 

framework predicts.

Modeling the build-up of selective adaptation—The ideal adapter framework—and 

the model introduced above—makes further predictions about how classification behavior 

depends on the amount of exposure, as well as its statistical properties. In order to evaluate 

the ability of belief updating to quantitatively account for the build up of selective 

adaptation, we fit the same model that was fit to the recalibration data above to the first 64 

exposures of the selective adaptation data from the first block of each participant in 

Vroomen et al. (2007).

Results—The model also fits the selective adaptation data well (r2 = 0.83), as shown in 

Figure 10. As the model predicts, selective adaptation starts very weakly, gradually 

becoming stronger with further exposure. The build-up of selective adaptation also appears 

to accelerate, unlike recalibration, with further exposure producing even larger increases in 

the strength of the selective adaptation effect, which is also captured by the model. Thus, 

while selective adaptation is not usually considered the result of belief updating or 

distributional learning, the same belief updating model which describes well how listeners 

14There is of course additional perceptual uncertainty or noise variance (Feldman et al., 2009), but the combined variance from 
sensory uncertainty and actual stimulus variance across trials is still less for an identical repeated stimulus than would be expected 
with normal levels of variability.
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integrate each observation with their prior beliefs during recalibration also describes the 

build-up of selective adaptation.

The best-fitting (MAP estimate) hyperparameters for the selective adaptation data are also 

nearly identical to the recalibration estimates: the effective prior sample size for the 

variances is ν0 = 64 (vs. 71), and for the means, κ0 = 13 (vs. 11). The visual cue weight is w 

= 0.51 (vs. 0.53). This demonstrates two points. First, as with recalibration, these values 

correspond to very small effective prior sample sizes, which suggests that listeners do not 

believe that their vast amount of prior experience with /b/s and /d/s is very relevant in this 

situation.

Second, even though these parameter values correspond to higher prior confidence in the 

variance than the mean, the model nevertheless accounts for selective adaptation via 

shrinking category variance. This is because, unlike the ambiguous adaptor, for the 

prototypical adaptor there is no difference between the observed and expected category 

means. In this case, the updated estimate of the variance is simply an average of the prior 

expected and the observed variance, weighted by the effective prior sample size and actual 

sample size, respectively (see Appendix A, Equation (32)). For the best-fitting estimate of 

the effective prior sample size ν0 = 64 and an observed variance of zero, this means that the 

model believes the category variance to have halved after 64 exposures.

Discussion

These results suggest that, at least for the classification results of Vroomen et al. (2007), it is 

not necessary to invoke a qualitatively distinct process to explain selective adaptation. The 

ideal adapter also makes the correct qualitative predictions for a variety of other selective 

adaptation experiments (e.g., Eimas & Corbit, 1973; Miller, Connine, Schermer, & 

Kluender, 1983). It might thus be tempting to assume that all selective adaptation effects can 

be reduced to distributional learning of the type proposed here. Such an account will face 

several serious challenges. This includes the need to account for complex reaction time 

effects induced by different types of selective adaptation (Samuel, 1986; Samuel & Kat, 

1996), about which our ideal adapter framework does not yet have anything principled to 

say. Rather than discuss this and other challenges to an ideal adapter account of selective 

adaptation here, we merely note that much work remains to be done in fleshing out the 

predictions of the ideal adapter framework for selective adaptation more generally.

In particular, three directions for future work stand out. First, in order to link the ideal 

adapter framework to reaction time data, process models have to be developed. Second, our 

account of selective adaptation depends on the listener’s perceived variance of each 

distribution, which may not be the same as the measured variance of some physical cue. We 

have made the simplifying assumption here that the perceived variance is the same as the 

actual variance. For extreme cases, like the case of selective adaptation studied here, where 

there is no(or minimal) variance in the physical signal, this assumption leads to implausible 

asymptotic behavior: with more and more exposure, the category should shrink to nothing, 

leading to an asymptotic aftereffect of −1. Of course, between 128 and 256 exposures, the 

negative aftereffect induced by selective adaptation appears to continue to grow stronger 

(Figure 8), suggesting that it has not yet reached its actual asymptote, but we do not know 
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what that is for this paradigm. The distinction between perceived and actual variance 

becomes even more important when making quantitative predictions about different levels 

of variance. If the sensory uncertainty (or noisiness in the perceptual system) contributes 

substantially to the perceived variance (for preliminary evidence, see Clayards et al., 2008; 

Feldman et al., 2009; Kronrod, Coppess, & Feldman, 2012), this is expected to reduce or 

eliminate predicted effects of variation in physical variance.

Third, our account opens the door to alternative interpretations of particularly challenging 

aspects of listeners’ classification behavior after selective adaptation (Kleinschmidt & 

Jaeger, 2013). More generally, recent work on non-linguistic sensory adaptation (mostly in 

low-level vision and audition) has revealed that many negative aftereffects which were 

originally attributed to the fatigue of neuronal feature detectors are better explained by 

neural populations adjusting their processing to maximize the transmission of information 

about the current stimulus ensemble (Brenner, Bialek, & de Ruyter Van Steveninck, 2000; 

Fairhall et al., 2001; Gutfreund, 2012; Kohn, 2007; Sharpee et al., 2006; Webster, Werner, 

& Field, 2005), which parallels recent developments in the understanding of perceptual 

learning in low-level perceptual tasks (Bejjanki, Beck, Lu, & Pouget, 2011; Harris, 

Gliksberg, & Sagi, 2012). Maximizing information transmission depends on the statistics of 

the environment at many different levels.

For speech perception, sometimes the relevant statistics are at the level of the phonetic 

generative model—the cue distributions for each category—but sometimes they are at a 

different level, such as the distributions of categories themselves or the spectral 

characteristics of background noise which must be ignored. For instance, J. Huang and Holt 

(2012) found that the classification boundary between “bet” and “but” could be manipulated 

simply by preceding exposure to a pure tone: when the frequency was near the second 

formant frequency of “bet”, listeners made fewer “bet” responses. This seems incompatible 

with the idea that selective adaptation is due to the listener updating their beliefs about the 

distribution of cues associated with a particular category, but it is entirely consistent with a 

more general view that adaptation reflects changes in the listener’s beliefs about which cues 

are more likely to occur—or be behaviorally relevant—across different levels of processing. 

That is, even though selective adaptation may not always represent updating beliefs about 

the talker’s generative model, it may still serve the same purpose: efficient processing of 

linguistically-relevant acoustic signals in a world where the statistical properties of those 

signals vary across situations (Kleinschmidt & Jaeger, 2013). However, straightforward 

application of a model like the one presented here to perceptual inference at lower levels has 

not been successful (Stocker & Simoncelli, 2006) and more work remains to flesh out this 

connection.

For the current purpose, it is sufficient to conclude that not everything that looks like 

selective adaptation requires an explanation in terms of a separate computation. Despite the 

fact that recalibration and selective adaptation are typically considered to be qualitatively 

distinct phenomena, we have shown that a single belief updating model can account for the 

early, incremental build-up of both of these effects. This is achieved under essentially 

identical assumptions about prior effective sample sizes and the audio-visual cue weight (the 

hyperparameters in our model). We have also shown that the process of the listener updating 
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their beliefs about category variance provides a likely explanation for at least some adaptive 

behaviors during speech processing (see also Clayards et al., 2008). In the next section, we 

explore the consequences of this shrinking category variance in response to a repeated 

adaptor stimulus for prolonged exposure to a repeated stimulus.

Effects of prolonged repeated exposure to the same stimulus

The ideal adapter framework predicts that when presented with a single, repeated stimulus, 

the listener should shrink the variance of the repeated category. This leads to predictions 

about the incremental effects of selective adaptation by a prototypical sound (discussed in 

the previous section), but it also makes an interesting prediction about repeated exposure to 

an ambiguous sound. Even though listeners typically do not encounter a physically identical 

sound repeatedly in real life, the use of repeated sounds is common in perceptual 

recalibration experiments, which often use a single repeated token (e.g., Bertelson et al., 

2003; Vroomen et al., 2004) or multiple words where the critical segment is replaced with 

the same ambiguous sound (e.g., Norris et al., 2003; Samuel, 2001; but see Kraljic & 

Samuel, 2005; Reinisch & Holt, 2014).

Recall that according to the belief-updating model presented above, in the recalibration 

condition of Vroomen et al. (2007) listeners do not perceive the adaptor cue value as fully 

ambiguous. Rather, their perceived cue value combines the ambiguous acoustic cue value 

and the prototypical visual cue value with roughly equal weight (visual cue weight 

parameter w = 0.53). The belief-updating model predicts that with repeated exposure to this 

not-quite-ambiguous adaptor, after the shift in the mean to the observed cue value, the low 

observed variance will eventually lead to the category shrinking and pulling back from the 

middle of the continuum. This prediction is illustrated in Figure 11.

This results in an eventual decrease in the likelihood that the adapted category assigns to the 

auditorily ambiguous test stimuli in the middle of the continuum and predicts that the 

positive after-effect associated with recalibration will eventually weaken and possibly even 

reverse if the category pulls back far enough. We have seen a hint that this may in fact 

occur: recalibration seems to effectively level off by 64 cumulative exposures in the data 

from Vroomen et al. (2007). In this section, we further test this prediction by looking at the 

additional data that Vroomen et al. (2007) collected for up to 256 cumulative exposures.

Data

As discussed above, Vroomen et al. (2007) exposed listeners to a total of 256 repetitions of 

the audiovisual adaptor. Figure 12 shows the results from both conditions, including the test 

trials at 128 and 256 cumulative exposures. As qualitatively predicted, the negative 

aftereffect associated with selective adaptation grows stronger with further exposure, while 

the positive aftereffect associated with recalibration plateaus and even begin to decline after 

256 exposures.15

15While the decline in recalibration appears to be relatively modest in the figure here, Vroomen et al. (2007) actually found much 
stronger declines in recalibration in their full data set, where recalibration essentially disappears by 256 exposures. Our replication 
presented in the next section establishes that such a decline can occur in the first block (Figure 15), suggesting that the failure to 
observe it strongly in the first block of Vroomen et al. (2007) is due to individual differences, which are substantial.
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Results and discussion

To quantify these predictions and test whether the belief updating model can account for the 

decrease in recalibration, we fit it to the data from all 256 exposures to the ambiguous and 

prototypical adaptors. The model fits well when fit to either the ambiguous or prototypical 

conditions individually (r2 = 0.86 in both cases). To further test the model’s ability to 

provide a unified explanation of recalibration and selective adaptation, we fit the model to 

both conditions simultaneously.

Figure 13 shows that the model simultaneously fits the behavioral data in both conditions 

quite well (r2 = 0.93 overall, and r2 = 0.86 and 0.85 for the ambiguous and prototypical 

subsets, respectively). There is no loss of goodness-of-fit from fitting both conditions 

simultaneously. The best fitting hyperparameters were ν0 = 100, κ0 = 17, and w = 0.47. 

These hyperparameters are very similar to the best-fitting hyperparameters for the first 64 

exposures only, as well as the estimates when each condition is fit separately.

In particular, the best fitting models for the initial build-up (first 64 exposures) and 

prolonged exposure (256 exposures) place roughly the same weight on the visual cue (w = 

0.53 vs. w = 0.47, respectively, where w could range from 0 to 1), even though the decay in 

recalibration is virtually absent during the first 64 exposures. That is, just based on the rate 

at which recalibration initially accumulates, the model predicts the later decay without 

further assumptions.

Exploring the predictive power of the ideal adapter

One of the benefits of a model like we present here is that it makes quantitative predictions 

which go beyond existing data. In this section, we explore the ideal adapter framework’s 

predictive power. The fact that the ambiguous and prototypical conditions from Vroomen et 

al. (2007) can be accounted for by a single set of belief updating model hyperparameters 

suggests that the recalibration and selective adaptation effects in this experiment are not 

qualitatively distinct but rather endpoints on a continuum of adaptation effects. The ideal 

adapter framework predicts that for observed cues which are less ambiguous, the low 

variance of the adaptor distribution will be detectable with fewer observations, causing an 

earlier (and lower) peak in the positive aftereffect detected in the recalibration condition.

In order to test this prediction, we replicate and extend the design of Vroomen et al. (2007), 

adding intermediate conditions where the acoustic component of the audio-visual adaptor is 

neither fully ambiguous nor fully prototypical, but somewhere in between. As a strong test 

of the predictive power of the model, we ask whether hyperparameters fit to the ambiguous/

recalibration and prototypical/selective adaptation conditions in our replication can be used 

to predict adaptation behavior in new situations which have not been studied before.

Methods

We developed a novel web-based paradigm to efficiently collect phonetic categorization 

data from a large number of participants, adhering as closely as possible to the methods of 

Vroomen et al. (2007). In addition to the ambiguous and prototypical conditions of Vroomen 
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et al. (2007), we added two intermediate conditions: intermediate-ambiguous, and 

intermediate-prototypical.

Stimuli—Stimuli were identical to those used by Vroomen et al. (2007), who generously 

shared their materials. The audio stimuli were items from a nine-item synthetic /aba/-/ada/ 

continuum, created by shifting F2 locus in equal mel steps from a prototypical /aba/ value to 

a prototypical /ada/ value, holding other parameters constant (Vroomen et al., 2004). The 

visual stimuli were natural videos of a male talker articulating /aba/ and /ada/.

Audio-visual adaptors for the ambiguous and prototypical conditions were constructed as in 

Vroomen et al. (2007), by matching the video with the participant’s most ambiguous 

continuum item xbd or the corresponding continuum endpoint, respectively. For the two 

intermediate conditions, the audio component was offset by one (intermediate-ambiguous) 

or two (intermediate-prototypical) positions towards the video category endpoint (Figure 

14).

Procedure—Participants first performed the same pre-test /b/-/d/ classification task as in 

Vroomen et al. (2007) (described above). After the calibration phase, participants were split 

into four exposure conditions (Figure 14): ambiguous and prototypical conditions as in 

Vroomen et al. (2007), plus two intermediate conditions. For the intermediate-ambiguous 

condition, the adaptors were constructed from the continuum item one position over from 

the most ambiguous position, in the direction of the endpoint corresponding to the video 

category. The intermediate-prototypical adaptors were constructed from the continuum item 

two positions over from the most ambiguous item. Each participant did two exposure blocks, 

one /b/ and one /d/.

Each block consisted of a total of 128 audio-visual exposure trials. Audio-only /b/-/d/ test 

trials were interspersed after 1, 2, 4, 8, 16, 32, 64, 96, and 128 cumulative exposures, in 

blocks of 6 or 12 trials (2 or 4 repetitions of each participant’s 3 most ambiguous stimuli). 

Following the first exposure block, participants took a short break and completed the second 

block, with an audio-visual exposure stimulus from the opposite category but same 

condition.

The experiment was conducted over the web, via Amazon’s Mechanical Turk crowd-

sourcing service using a custom Javascript application.16 Response keys and block order 

were counter-balanced across participants. The experiment took no longer than 45 minutes 

to complete.

Participants—A total of 280 participants were recruited. Since participants were being run 

remotely, using a variety of audio equipment to complete the experiment, a number of 

quality checks were required. First, our task was only made available to workers whose 

location was listed as the US and had more than 95% of their previous work accepted for 

payment (an automatic quality control measure offered by Amazon). Second, based on the 

calibration task, participants with unusual category boundaries (most ambiguous stimulus 

16This source code and a working demo are available from http://hlplab.wordpress.com/2013/09/22/phonetics-online/
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not one of the middle three positions 4, 5, or 6 found by Vroomen et al., 2007) were 

automatically excluded from the remainder of the experiment. 60 participants were excluded 

for this reason. Third, participants who classified the two endpoint stimuli and their nearest 

neighbors (x = 1, 2, 8, or 9) with less than 70% accuracy were also excluded. 25 additional 

participants were excluded for this reason.

Fourth, in order to ensure that participants were actually watching the videos during the 

exposure phase, catch trials were interspersed throughout exposure (as in Vroomen et al., 

2007). These trials were identical to normal audio-visual exposure trials, except for a small 

white dot which flashed for one frame above the talker’s lip. On these trials, participants 

were instructed to press the space bar to indicate they saw the dot. Participants who missed 

more than a total of 20% or more than 50% on any one block were excluded from analysis 

and replaced (13 participants). After this exclusion, the overall catch trial accuracy rate was 

96% (compared to 93% reported by Vroomen et al., 2007).

Following good statistical procedure (Simmons, Nelson, & Simonsohn, 2011), these 

exclusion criteria were fixed before beginning data collection and automatically executed by 

our experiment software. Data from a total of 182 participants remained for analysis.

Modeling—We fit the belief updating model introduced above against only the ambiguous 

and prototypical conditions. We chose to fit these conditions for two reasons. First, we want 

to replicate the model fits to the data from Vroomen et al. (2007) on a novel language (and 

in our novel paradigm). Second, we want to test the ability of the model predict the effect of 

cumulative exposure in the two novel, intermediate conditions, based on conditions which 

have already been investigated. The posterior distribution of model hyperparameters (ν0, κ0, 

and w) given the ambiguous and prototypical conditions can be used to generate predictions 

for the intermediate conditions (by plugging in the adaptor values, offsets of one and two 

from the most ambiguous stimulus, xbd ± 1 and xbd ± 2, for the intermediate-ambiguous and 

intermediate-prototypical conditions, respectively, with the sign determined by the visual 

component).

Results

Here we focus on the evaluation of the incremental belief updating model developed in the 

previous sections. Additional data analyses confirmed that our web-based design replicates 

the results of Vroomen et al. (2007) and further supports our interpretation of the data. These 

analyses can be found in the Supplementary Material to this article.17 Figure 15 shows the 

results from the four conditions, along with the predictions from the model fit to the 

ambiguous and prototypical conditions. First, our results replicate those of Vroomen et al. 

(2007). Exposure to the prototypical adaptor leads to negative aftereffects which build up 

gradually and become stronger throughout exposure, while the exposure to the ambiguous 

adaptor leads to positive aftereffects which peak and eventually fade, becoming negative 

after 128 exposures (see Supplementary Material). In fact, the recalibration decline that we 

find is even stronger than that found by Vroomen et al. (2007), with 128 exposures being 

17The Supplementary Material are available from http://www.bcs.rochester.edu/people/dkleinschmidt/pubs/KleinschmidtJaeger-
SupplementaryMaterial.pdf
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enough to almost completely erase any positive aftereffect. Vroomen et al. (2007) observed 

such a reversal after 256 exposures in their full data set, but only a slight dip in the strength 

of the recalibration effect by the end of the first block of exposure (Figure 12). Our belief 

updating model fits the data from the ambiguous and prototypical conditions quite well (r2 = 

0.91 overall, vs. r2 = 0.93 when fit to Vroomen et al., 2007).

Second, these results validate the predictions of the belief updating model for intermediate 

conditions, both qualitatively and quantitatively. Qualitatively, as predicted, the two 

intermediate conditions reveal that the ambiguous and prototypical conditions are endpoints 

of a continuum of adaptation effects. This is visually clear from Figure 15 and also borne out 

by statistical analysis (see Supplementary Material). Quantitatively, the belief updating 

model hyperparameters that were fit only to the ambiguous and prototypical conditions 

accurately predict the adaptation build-up in the two intermediate conditions. In fact, the fit 

to the intermediate conditions is as good as the fit to the conditions the model was trained on 

(r2 = 0.96 for the two intermediate conditions vs. r2 = 0.91 for the ambiguous and 

prototypical). This is encouraging given that individual participants show substantial 

variability in their adaptation behavior and each condition consisted of an entirely different 

group of participants.

We can further compare the model predictions and the data by looking at the point at which 

the aftereffect crosses over from being positive (recalibration-like) to negative (selective-

adaptation-like). In Figure 15, these cross-over points are indicated by arrows—black for the 

model predictions and colored for the data—and Figure 16 shows that the observed and 

model-predicted cross-over points are strongly correlated, even though the cross-over point 

itself was not explicitly fit to the data. Thus, the belief updating model very effectively 

predicts the point at which behavior switches from recalibration-like to selective-adaptation-

like for intermediate adaptors of varying ambiguity, based solely on the fit to ambiguous and 

prototypical adaptor data.

The best-fitting (MAP estimate) effective prior sample sizes for the category variances and 

means were small: ν0 = 88 and κ0 = 2.9, respectively. This again closely resembles what we 

found for the Vroomen et al. (2007) data. It also corroborates the conclusion that 

participants in these studies consider their previous experiences with /b/ and /d/ to be not 

particularly relevant in these situations, and moreover replicates the finding that, for these 

stimuli and this experimental paradigm, listeners seem to place more confidence in their 

prior beliefs about the category variances than the means (ν0 > κ0 both here and in all 

previous model fits). Finally, as with the data from Vroomen et al. (2007), the best-fitting 

cue combination weight had audio and visual cues weighted roughly equally, placing in this 

case slightly more weight on the visual component (w = 0.63).18

Discussion

These results demonstrate two points. First, by replicating the results of Vroomen et al. 

(2007), they show that web-based platforms are a viable way to investigate phonetic effects 

18The slightly higher weight for visual cues in our data might be a consequence of using stimuli derived from a Dutch /b/-/d/ 
continuum, which are similar but presumably not identical to those typically experienced in American English.
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such as recalibration and selective adaptation which depend on the particular acoustic 

parameters of the stimuli. Most participants were enthusiastic and engaged in the study, and 

using sensible exclusion (based on pre-test performance or catch trials during exposure) 

those who are not fully attentive or who cannot hear the stimuli properly can be excluded.

Second, the ideal adapter framework for understanding phonetic adaptation presented above 

can explain both the phonetic recalibration and selective adaptation data from Vroomen et 

al. (2007) based on the mean (ambiguous vs. prototypical) and variance (none) of the 

adaptor distributions. This framework predicts that intermediate adaptors should produce 

intermediate adaptation effects, and moreover, the formal, quantitative model based on these 

principles makes specific, quantitative predictions about the effect of cumulative exposure to 

these intermediate adaptors. Both these qualitative and quantitative predictions were borne 

out in the data presented here.

Concluding Part I: Adaptation as inference under uncertainty about the 

statistics of the generative model

In this first part of this article, we have formulated the ideal adaptor framework, building on 

previous work on speech perception within the ideal listener framework (Clayards et al., 

2008; Feldman et al., 2009; Norris & McQueen, 2008; Sonderegger & Yu, 2010). We have 

applied the ideal adaptor framework to two phonetic adaptation phenomena commonly 

considered to be due to distinct mechanisms, perceptual recalibration and selective 

adaptation. To do so, we derived a Bayesian belief updating model from the ideal adaptor. 

This framework allowed us to formalize the intuition that perceptual recalibration is a form 

of distributional (statistical) learning that changes the underlying representations of phonetic 

categories (e.g., Norris et al., 2003; Kraljic & Samuel, 2005; Maye et al., 2008; Bertelson et 

al., 2003). The Bayesian belief updating model provides a good quantitative fit to perceptual 

recalibration data (r2s > .8). The model also qualitatively captures the cumulative effect of 

exposure in perceptual recalibration experiments, including the previously observed reversal 

of initial effects after prolonged exposure to the same stimulus (Vroomen et al., 2007).

Going beyond perceptual recalibration, the model suggests selective adaptation, too, is at 

least in part due to distributional learning similar or identical to that observed during 

perceptual recalibration. In addition to good quantitative and qualitative fits to selective 

adaptation data, our Bayesian belief updating model predicted a continuum from selective 

adaptation to perceptual recalibration, which was indeed observed. This serves as a 

demonstration of the ability of the ideal adapter framework to make quantitative predictions 

that go beyond existing data.

It is worth mentioning that the model which is used to generate those predictions in this case 

makes many assumptions that are not intrinsic to the framework but rather are made for 

convenience, tractability, or to better illustrate the basic mechanics of belief updating (for 

discussion, see the Appendix). These assumptions are largely justified for this particular 

experimental paradigm (see Table A1 in the appendix). They must, however, be considered 

carefully when thinking about how this particular model might generalize to other 

paradigms. Support for the ideal adaptor framework as a general framework of adaptation 
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beyond the type of experimental paradigms considered here comes from research finding 

qualitatively similar patterns of speech adaptation in situations that more closely resemble 

the complexity of every day speech perception (Eisner & McQueen, 2006; Reinisch & Holt, 

2014).

Novelty of the ideal adapter: Putting learning front and center

Many of the ideas we have discussed so far are anticipated in more or less explicit form in 

previous work on speech perception. Our approach to speech perception is novel in two 

ways. First, the ideal adapter puts learning front and center in speech perception, as an 

unavoidable consequence of the combination of the task of the speech perception system—

mapping cues to categories—and the world where that task is carried out—where the cue-

category mapping varies from one situation to the next. In this way of looking at the speech 

perception system, learning or adaptation is a necessary part of normal speech perception. 

Existing models of speech perception—Bayesian and otherwise—for the most part do not 

learn or adapt (Clayards et al., 2008; Feldman et al., 2009; McClelland & Elman, 1986; 

Norris, 1994; Norris, McQueen, & Cutler, 2000). This is, in general, not an in-principle 

limitation of these modeling frameworks, but rather reflects simplifying assumptions made 

for the sake of tractability in previous work.

There are only a few models of speech perception that learn,19 all of which have been 

proposed in recent years based on findings that speech perception is highly flexible (Lancia 

& Winter, 2013; Mirman, McClelland, & Holt, 2006). These models are connectionist 

models that adjust feedforward weights from acoustic cues to phonetic categories using 

Hebbian mechanisms. We postpone further discussion of these models until Part III below, 

except to say that they have only been applied qualitatively to the asymptotic effects of 

phonetic recalibration (if they have been directly applied to phonetic recalibration at all). As 

such, it is not clear whether they can, like the belief updating model we present here, 

simultaneously account for selective adaptation as well, or the detailed effects of cumulative 

exposure on the size and direction of phonetic adaptation. Another class of models that are 

broadly compatible with the ideal adapter is episodic or exemplar models (e.g., Johnson, 

1997b; Goldinger, 1998; Pierrehumbert, 2003), which learn the distribution of sounds 

corresponding to linguistic units implicitly by storing raw acoustic traces. However, as we 

will discuss at length in Part II, despite similar motivations, the ideal adapter framework 

differs in an important way, because it abstracts away from individual episodes, both at the 

level of phonetic categories (or some other sublexical level of representation) and at the 

level of individual talkers and groups of talkers.

A deeper problem with existing models—even those that learn—is that they don’t address 

how listeners manage to balance stability and plasticity in speech perception. Rather, 

learning rate is treated as a free parameter which is tuned such that the model behaves in a 

reasonable way. A model of the speech perception system ultimately has to address how 

stability and plasticity are balanced, because there is a wealth of evidence that people 

manage to do this very well. While the belief updating model we have presented above has 

19Leaving aside for the moment models of acquisition, which we will discuss below.
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free parameters that control the learning rate (the prior confidence parameters) and which 

were fit to the data, the ideal adapter framework provides a more principled way to approach 

the stability-plasticity trade-off, which we turn to in the second, more speculative and 

forward-looking part of this paper.

Part II

Human speech perception is characterized by both extreme flexibility and stability. Listeners 

can rapidly adapt to a novel pronunciation while not losing the ability to efficiently 

comprehend standard pronunciations. Part II of this paper focuses on the balance between 

stability and flexibility, and in particular how—in the ideal adapter framework—it is related 

to the structure of the world that the speech perception system has to operate in. There are 

two main aspects to this structure.

First, the generative model—the statistical properties of speech sounds for each phonetic 

category—can be different from one situation to the next. If the listener’s beliefs about these 

statistics are substantially different from the current situation’s actual generative model, then 

comprehension can be slowed or even incorrect. Situation-by-situation differences in the 

generative model require that listeners continuously infer the appropriate generative model, 

combining their prior expectations with current observations. In Part I we illustrated how 

phonetic adaptation can be understood as incremental belief updating, focusing intentionally 

on novel situations where listeners’ prior experience was not likely to be very informative, 

allowing the influence of each additional observation to be seen more clearly.

However, there is a second relevant aspect to the speech perception system: generative 

models do not vary arbitrarily across situations, but are rather tied to, for example, who is 

talking. This means that listeners can expect to encounter the same—or similar—generative 

models again and again (and some more than others). In Part II of this paper, we focus on 

these similarities across situations that a listener encounters in the world, and discuss how 

the ideal adapter framework links this structure—with both predictable and unpredictable 

variation in generative models—with the stability and flexibility of the speech perception 

system. While a lot of future work is required to flesh out a computational cognitive model, 

we will present a tentative outline of how the ideal adapter framework formalizes the link 

between the distribution of generative models in the world, listeners’ prior expectations, and 

their behavior. The ideal adapter framework’s basic predictions are qualitatively supported 

by the available behavioral evidence. At the same time, the ideal adapter framework 

identifies a number of questions that we consider particularly critical for future research.

Recognize the familiar

While we have assumed that adaptation to a novel talker does not start from scratch, but 

rather from some form of prior beliefs about phonetic distributions (literally, the prior in the 

Bayesian belief-updating model introduced in Part I), we have so far paid little attention to 

the properties of this prior knowledge. For the examples entertained in Part I, such as the 

speech a listener is exposed to in a perceptual learning experiment, the specific prior beliefs 

that the listener brings to the situation are of little consequence because they will quickly be 

overwhelmed by the input listeners receive from the novel talker. In everyday life, however, 

Kleinschmidt and Jaeger Page 35

Psychol Rev. Author manuscript; available in PMC 2016 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



listeners will not only encounter talkers that differ starkly from previously experienced 

talkers. Instead, some talkers will have been encountered before and others will resemble 

previously experienced talkers to varying degrees. This means that different aspects of 

previous experience bear more or less strongly on the current situation. How listeners 

determine which previous experiences are the most relevant in a given situation is one of the 

goals of the second part of this article.

Consider, for example, what happens when you walk into a room where your best friend is 

talking. You can recognize them based on a variety of things, perhaps including their face, 

distinctive clothes they happen to be wearing, the fact that they are standing in a room in 

their own house, or the timbre of their voice. Because every individual speaks slightly 

differently, your best friend sounds different from other talkers, and it would be beneficial to 

be able to just “swap in” their particular cue statistics based on your vast experience with 

their speech in the past. Anecdotally, this is what happens when we encounter a highly 

familiar talker, and indeed it is broadly accepted and empirically supported that we have 

such talker-specific representations, and use them online in speech perception (Creel et al., 

2008; Creel & Bregman, 2011; Goldinger, 1996; Nygaard & Pisoni, 1998; Palmeri, 

Goldinger, & Pisoni, 1993; Remez, Fellowes, & Rubin, 1997), although questions remain 

about the limits of this ability (Magnuson & Nusbaum, 2007; Pardo & Remez, 2006).

Talker-specificity in speech perception reveals an important insight: knowledge about the 

statistics of speech cues needs to be structured to provide the full benefit to the listener. This 

has long been recognized by, for example, exemplar-based theories of speech perception, 

where storage of rich acoustic details of each episode leads naturally to persistent, talker-

specific representations of the variability of speech sounds, either implicitly or explicitly 

(Goldinger, 1996, 1998; Johnson, 1997a, 2006; Pierrehumbert, 2003). In the language of the 

ideal adapter framework, the presence of talker-specificity means that, far from simply being 

engaged in continuous statistical learning, listeners are in fact using their previous 

experience to at the very least determine where to start such statistical learning in each 

situation. It is this second type of inference—inferences about what aspect of previous 

experience are most relevant to the current situation—that prevents listeners from having to 

re-adapt from scratch every time they encounter a talker (whether it is a novel talker or a 

previously encountered one). Although the existence of talker-specific knowledge is now 

broadly accepted, the consequences that the existence of such knowledge has for 

understanding speech perception is perhaps still under-appreciated. Specifically, most 

previously proposed models of speech perception, with the exception of certain exemplar-

based approaches (Goldinger, 1998; Johnson, 1997a; Pierrehumbert, 2003), either do not 

learn (Clayards et al., 2008; Feldman et al., 2009; Norris & McQueen, 2008) or are what we 

will call ‘flat’ learners, without the ability to induce structure over talkers (Feldman, 

Griffiths, et al., 2013; Lancia & Winter, 2013; McMurray et al., 2009; Mirman et al., 2006; 

Vallabha et al., 2007). These models are insufficient to account for talker-specificity and 

related phenomena discussed below. Even looking beyond speech perception into the 

burgeoning literature on learning in the face of (latently) non-stationary statistics (e.g., Cho 

et al., 2002; Gallistel et al., 2001), most existing models cannot account for some of the 
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basic properties of speech perception discussed here.20 We return to this point below, as it 

motivates the proposal we lay out in this second part of the article.

Generalize to the similar

There is also evidence that the structure of listeners’ previous knowledge extends beyond the 

level of particular individual talkers. To take a somewhat extreme example, one of our 

colleagues moved from New York to Northern England, where a very different dialect of 

English is spoken. Initially, he had a great deal of difficulty understanding what anyone was 

saying, but after some number of months he found that it became easier to comprehend this 

accented speech, even when it was spoken by particular individuals he had never met before 

(Farmer, personal communication). In the language of the ideal adapter, we might say that 

our colleague learned something about how the cue statistics—or generative models—vary 

across individual talkers who share this accent, and that this gave him a head start in 

adapting to a new, but similarly-accented talker. Although somewhat less well-studied than 

talker-specificity, there is some evidence that people are broadly capable of such 

generalization, using their experience with groups of talkers to guide speech perception 

(Bradlow & Bent, 2008; Baese-berk et al., 2013; Creel & Bregman, 2011; Johnson, Strand, 

& D’Imperio, 1999; Johnson, 2006; Niedzielski, 1999; Sidaras et al., 2009). There are, in the 

world, a range of structures that group talkers, from common language community (leading 

to dialect and accent groups) to factors like gender or sexual orientation (B. Munson, 2007). 

The ideal adapter predicts that listeners should pick up on, and take advantage of, these 

groupings, to the extent that they are informative about the generative models of the 

corresponding talkers.

In order to take advantage of the structure of how generative models vary in the world, 

listeners need to learn this structure through experience. Listeners do not directly know how 

generative models are distributed in the world, just like they do not have direct access to the 

generative model behind each utterance they observe. This makes the problem of how to 

take advantage of any structure that might be there in the world another problem of 

inference under uncertainty. It is clear that listeners need to learn in order to group talkers 

together, since meeting two talkers with similar generative models could just be a 

coincidence, but meeting twenty such talkers likely indicates some underlying dialect group. 

However, this kind of higher-level learning is also required for talker-specificity. That is, in 

order to benefit from experience with a new talker in future occasions, listeners cannot just 

adapt to that talker’s generative model for the current situation, but rather must, after 

sufficient exposure, remember what they have inferred about that particular talker’s speech 

statistics so that they can deploy that knowledge on future encounters. The need for listeners 

to induce structure over their previous experiences with different generative models suggests 

that despite being rapid, adaptation—like that discussed in Part I—should persist because it 

reflects the listener’s attempt to build a model of the current situation which can be useful in 

the future. This is another way of saying that phonetic adaptation is not just priming but a 

20This also makes speech perception a potentially productive test domain for further development of general models of learning in a 
non-stationary world.
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form of learning about the situation and/or talker (Eisner & McQueen, 2006; Kraljic & 

Samuel, 2005; Kraljic, Samuel, & Brennan, 2008, among others).

Outline for Part II

We will expand on these intuitions about how listeners can benefit from picking up on the 

structure of their experience with different cue statistics, and review the relevant literature. 

Our first goal is to argue that the ideal adapter framework provides a unifying view that ties 

together a range of previously stated intuitions and proposals about talker-specificity, 

generalization, and adaptation in speech perception. Our second goal is to lay out a 

preliminary formalization of the ideal adapter framework as it relates to how a listener could 

take advantage of structure in their prior experience. While we will not present any 

implemented, quantitative model simulations like in Part I, we believe that formalizing the 

framework has a number of advantages. First, it will highlight the computational parallelism 

between recognizing familiar talkers, generalizing to similar talkers, and what we’ve called 

adaptation to novel talkers in Part I, all of which reflect listeners’ attempts to infer the 

appropriate generative model for the current situation. Second, having a formalization of a 

theory can sometimes help when our theoretical intuitions break down, such as when, for 

instance, speech perception is not talker-specific (e.g. Kraljic & Samuel, 2007). Third, 

formalizing can help guide future research. As will become clear below, the ideal adapter 

framework puts a major emphasis on statistics of the speech signal, and how those statistics 

differ across talkers and groups of talkers in the world. Relatively little research has looked 

at this, and the ideal adapter framework provides a potentially productive link between this 

kind of data and human behavior.

Part II is organized into four main sections, each of which addresses a different aspect of 

how the listener’s need to infer the appropriate generative model in each situation results in 

different strategies based on the information available to them from structure in the world 

(via prior experience) and the speech they observe in that situation. First, we focus on how 

listeners can benefit from familiarity with a particular talker. Maintaining and using talker-

specific beliefs about generative models allows listeners to forgo adaptation altogether when 

they encounter a familiar talker again. Second, we ask how listeners get to the point of 

having such talker-specific beliefs. Every familiar talker was once novel, and became 

familiar through experience. Combining the belief-updating logic that was the focus of Part I 

with talker-specific beliefs leads to the ideal adapter’s prediction of talker-specific 

adaptation. Third, we turn to the question of where a listener starts when adapting to an 

unfamiliar talker. Even if a particular individual is unfamiliar, the listener often has 

experience with other similar talkers that can be informative. We will discuss evidence that 

listeners are indeed sensitive to this information, and how it can be formalized in the ideal 

adapter framework. Fourth, and finally, we tie all three strategies together, and discuss how 

connections between adaptation, recognition, and generalization are demonstrated by how 

listeners behave when they are not entirely sure what prior experience is more relevant.

Recognizing the familiar: Talker-specificity

We begin with situations in which stable beliefs about the generative model are maximally 

beneficial: particular familiar talkers. Listeners can benefit from experience with a familiar 
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talker to the extent that they consistently use a particular generative model—producing 

certain cue distributions—that is different from other talkers. By maintaining stable 

representations of that talker’s particular generative model, the listener would be able to 

deploy those representations when the talker is encountered again in the future, removing 

the need to adapt to them again. If, as the ideal adapter predicts, listeners are taking 

advantage of this structure—that talkers tend to use the same generative model consistently

—then listeners should generally process speech in a talker-specific way, and specifically 

should process speech from familiar talkers faster, more accurately, and more robustly.

What do we know about talker-specificity?

Talker-specificity is one of the best-studied and uncontroversial features of human speech 

perception. Talker-specificity is observed both in the form of the ability of listeners to 

explicitly identify particular individual talkers based on their speech, even when it is highly 

degraded (Bricker & Pruzansky, 1966; Palmeri et al., 1993; Remez et al., 1997; Sheffert, 

Pisoni, Fellowes, & Remez, 2002). Offline measures of speech processing also show talker-

specificity. For instance, words are better remembered when they’re spoken by the same 

talker at study and test (Goldinger, 1996; Palmeri et al., 1993). However listeners also use 

talker-specific information to benefit processing. Listeners are faster and more accurate at 

comprehending speech in noise when it was produced by familiar talkers, both for 

unaccented (Nygaard & Pisoni, 1998) and accented (Clarke & Garrett, 2004) talkers. These 

effects seem to operate at a low level in speech perception, with online measures like eye-

tracking suggesting that listeners use experience with talker-specific productions as early as 

it is possible to detect (Creel et al., 2008; Mitterer & Reinisch, 2013).

How does the ideal adapter formalize talker-specificity?

We can formalize the intuition that listeners use talker-specific information to guide speech 

perception within a Bayesian inference framework in the following way (visualized in 

Figure 17). Speech perception is treated as an inference process, where the listener is trying 

to infer the talker’s intended category c(or message, more generally), given some acoustic 

observation x. As discussed in Part I, this relationship is probabilistic, due to unavoidable 

variability in production and sensory uncertainty, and we can express the cue-to-category 

inference using Bayes’ rule, as in Equation (1), as a combination of how likely a category is 

a priori(the prior), and how well it predicts the observation (the likelihood). Talker-specific 

information can come into play in both the prior and the likelihood. If a talker is more likely 

to produce /s/ (overall or because of lexical preferences), this should be taken into account in 

the prior probability assigned to /s/. More importantly, given that each talker might produce 

a different distribution of cues for /s/, the likelihood of any given observation also depends 

on the talker.21 Treating both the likelihood and prior as conditional on the talker (denoted t) 

results, after applying Bayes rule, in a talker-specific posterior over possible intended 

categories:

(11)

21The belief-updating model implemented in Part I only models changes in the likelihood.
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This is shown schematically for classifying a VOT value as /s/ or /ʃ/ in Figure 17: different 

talker-specific cue distributions (middle) result in different category boundaries (left).

However, this way of formalizing talker-specificity doesn’t exactly capture the fact that the 

likelihood p(x | c, t)—the distribution of cues for each category—depends on the talker’s 

generative model, rather than the talker’s identity per se. We can represent a particular 

generative model with a vector of its parameters—things like the mean VOT for /b/, the 

variance of the frication frequency for /s/, etc.—jointly denoted as θ.22 If the listener knew, 

exactly, the talker’s actual generative model, then we could write the talker-conditional 

likelihood as directly conditional on that actual generative model:

(12)

Of course, we have argued above that listeners in general do not have direct access to the 

exact generative model, but rather some uncertain beliefs about it. That is, the listener’s 

knowledge about the talker t ’s generative model is better described as a probability 

distribution, p(θ | t), rather than a single value, θt(Figure 17, right). One consequence of this 

is that the talker-specific likelihood should, ideally, take into account this uncertainty by 

averaging the likelihood assigned by each possible generative model p(x | c, θ), weighted by 

how likely the listener thinks that particular generative model is for talker t, p(θ|t):23

(13)

Making beliefs about the generative model parameters explicitly conditioned on talker 

identity introduces another level of structure above and beyond the belief-updating model in 

Part I. That model simply sought to infer the appropriate generative model parameters based 

on some, overall beliefs about what parameters were likely overall—the prior p(θ)—and 

how well the current speech was explained by each possible generative model—the 

likelihood p(x | θ). The belief-updating model from Part I (implicitly) thus assumes that the 

same prior beliefs would be relevant, no matter the situation, and all that it can do to adapt 

to the current situation is to update its beliefs through distributional learning. This makes the 

incremental belief updating model and other flat learning models—such as simple recurrent 

networks, Chang et al., 2006; Elman, 1990, other connectionist models without further 

assumptions, Mirman et al., 2006; Lancia & Winter, 2013, non-hierarchical reinforcement 

learning, Gallistel et al., 2001, etc.—insufficient to account for some of the most basic 

properties of speech perception.

However, if listeners have prior beliefs that are specific to—conditioned on—a particular 

familiar talker, then they do not need to bring exactly the same beliefs to every situation. 

22We represent the generative model via a list of its parameters as a notational convenience, and not to make any claims about 
whether or not the listener’s actual generative model is a parametric model, where each category is, for instance, a normal distribution 
over its cues. Formally, we simply mean the parameters θ to be a description of the generative model, which might be as compressed 
as a vector listing the mean and variance of each category on each cue dimension, or as fine-grained as an infinitely long vector which 
just lists the actual likelihood assigned by each category to each possible sound.
23This further assumes that the listener recognizes talker t with complete certainty. In many cases, this is a reasonable simplifying 
assumption, but in many others it is not, and we will address the consequences of this in a later section.
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Rather, by recognizing a familiar talker they can deploy the corresponding talker-specific 

prior beliefs to “adapt” to the current situation without needing to actually go through the 

process of distributional learning. In the next section, we will explore the question of how 

listeners get to the point of having beliefs about a particular talker’s generative model, but 

first we discuss what we see as some of the most pressing issues for future work that this 

raises.

Open questions: talker-specificity

One of the consequences of thinking about talker-specific beliefs as distributions over 

generative models is that the inevitable uncertainty of these beliefs might lead to further 

uncertainty in how speech is classified, above and beyond the inherent uncertainty from the 

probabilistic nature of speech perception itself. As a result of having only uncertain beliefs 

about a talker’s generative model, a truly ideal adapter would have more uncertainty about 

how to categorize a particular cue value when they are less certain about the talker’s 

generative model. This could result in, for instance, shallower category boundaries than 

predicted by a true ideal listener with perfect knowledge of the generative model. We should 

stress here that maintaining uncertainty is not per se a bad thing. To the contrary, properly 

accounting for uncertainty about the talker’s intended message is a strength of this approach, 

and it would be far worse to be overly-confident about a classification that turns out to be 

wrong. Under this view, because listeners should have less uncertainty about highly familiar 

talkers, classification behavior should be closer to what is predicted by the actual cue 

distributions. Alternatively, listeners might not take into account their full uncertainty in the 

generative model, and go with their best guess rather than averaging over the full 

distribution. Other intermediate approximations are possible, with the listener considering 

only a finite number of different possibilities. While processing of familiar talkers is overall 

faster and more accurate, we do not know how this is reflected in the detailed patterns of 

categorization behavior, which is required to effectively evaluate how much uncertainty 

listeners are maintaining about the current generative model. Working out the implications 

of these various ways of dealing with uncertainty is thus in our view a pressing topic for 

future work, both computational and behavioral.

Another question is whether talker-specific beliefs about the generative model are something 

that is unique to speech perception, or instead reflects more general perceptual strategies. 

That is, here we have focused on talker-specificity. However, the ideal adapter framework in 

principle predicts that listeners might form beliefs about any type of re-encountered 

situation/context, if these context/situations are reliably associated with systematically 

different speech statistics (generative models) and encountered sufficiently frequently. This 

could include beliefs about being in certain types of spaces (an echoey cathedral, a wide 

open field, a room with a light that buzzes at particular frequency, etc.). Of course, many of 

these properties are relevant to many other sorts of auditory processing, like sound source 

localization, and the use and deployment of context-specific beliefs about cue statistics 

might not be something that is unique to speech processing. Rather, they may reflect a 

general property of both higher- and lower-level sensory processing, so that the relevant 

inference might occur below the levels we have so far considered.
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Learning talker-specificity through adaptation

So far, we’ve discussed the benefits of talker-specific knowledge (and how it can be 

formalized in the ideal adapter framework) assuming that the listener is familiar with some 

talkers and their particular cue statistics (generative models). But of course listeners start off 

knowing very little about a particular talker’s generative model, and so in order to be able to 

make use of talker-specific cue statistics, listeners need to learn about those statistics from 

experience. In Part I, we discussed evidence that listeners rapidly adapt to cue statistics in a 

novel situation, as predicted by the ideal adapter faced with the lack of invariance. However, 

if a listener only adapted, then they would never be able to develop the sort of talker-specific 

representations that are now generally accepted to be a basic feature of the speech 

perception system. The ideal adapter framework thus also predicts that, when faced with the 

need to learn such talker-specific representations, listeners do not just adapt in the short 

term, but hold onto their updated beliefs about the generative model for whatever talker (or 

kind of situation, more generally) that they have adapted to.

What do we know about talker-specific adaptation?

Despite being very rapid, phonetic adaptation has been found to lead to stable, persistent 

representations. This suggests that rapid phonetic adaptation is, in many cases, better 

thought of as the result of listeners learning something about the talker they encounter in the 

experiment. A prime piece of evidence for this is that the effects of phonetic adaptation can 

remain strong even after intervening exposure to speech from another talker (Kraljic & 

Samuel, 2005, 2007), even after leaving the laboratory and returning 12 hours later (Eisner 

& McQueen, 2006).24 Moreover, there’s also some evidence that listeners can learn separate 

generative models for two different talkers in the same situation, even when utterances from 

the two talkers are mixed together (C. M. Munson, 2011). This would not be possible if 

listeners were simply tracking the short-run statistics of particular acoustic cues like VOT.

How does the ideal adapter formalize talker-specific adaptation?

In the ideal adapter framework, this sort of talker-specific adaptation follows naturally from 

the idea, introduced in the last section, that listeners are using talker-specific beliefs about 

the generative model. Talker-specific beliefs about the generative model are updated in a 

similar way as in the “flat” belief-updating model introduced in Part I: by bringing the cue 

statistics predicted by the generative model into better alignment with the observed cue 

statistics. The only difference is that instead of considering the statistics of all observations 

(as the belief-updating model of Part I implicitly does), the listener should consider only the 

statistics of observations produced by a particular talker in updating their beliefs about that 

talker’s generative model.

Such talker-specific belief-updating is formalized in generally the same way as it was in the 

belief-updating model in Part I. For each observation x from talker t, the listener updates 

their uncertain beliefs about talker t ’s generative model, p(θ| t), by combining them with 

24While there are some situations in which intervening speech from another talker does disrupt adaptation (e.g. the /d/-/t/ condition in 
Kraljic & Samuel, 2007), this is broadly consistent with the more general prediction of the ideal adapter that listeners are tracking the 
overall distribution of generative models across situations, which we discuss below.
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information about which generative models are more or less compatible with the observation 

x :25

(14)

Note that, as in Equation (13), the dependence on the talker is entirely driven by the talker-

specific beliefs about the generative model; given a particular value of the generative model 

parameters, the talker’s identity doesn’t change the likelihood of an observation x. These 

updated beliefs can then be further updated with other observations, with the updated beliefs 

after the first observation x1 from talker t serving as the starting point for updating beliefs 

after hearing another observation from talker t, x2:

(15)

In this way, the ideal adapter can combine information from multiple encounters with talker 

t, even if they are separated by intervening speech from other talkers (Figure 18). 

Combining information from different encounters with a single talker is important for 

inferring accurate beliefs about that talker’s generative model because these generative 

models are extremely complex, with many different phonetic categories, each of which is 

cued by multiple acoustic features whose statistics have to be tracked. Each observation thus 

only provides a little bit of information about the talker’s whole generative model, and 

arriving at accurate beliefs with low uncertainty requires, in principle, quite a bit of 

evidence. While this point might explain why listeners continue to update talker-specific 

beliefs over multiple encounters (preliminary evidence for which is provided by C. M. 

Munson, 2011), it raises the question of how listeners achieve reasonably robust speech 

perception even for relatively unfamiliar talkers. Besides the speech they directly observe, 

listeners have another powerful source of information: the range of different generative 

models they have encountered in their past experience with other talkers. As we will discuss 

in the next section, this information—which we can formalize as the prior or base 

distribution over generative models—can narrow down the range of generative models that 

the listener needs to consider, and serve as a head start to belief updating.

Open questions: talker-specific adaptation

One question that talker-specific belief-updating raises is what the limits on talker-

specificity in adaptation are, both in the short term and over the long term. In the short term, 

how many sets of beliefs can a listener simultaneously maintain and update? There is fairly 

good evidence that listeners can maintain at least two distinct sets of beliefs for novel talkers 

in the same context (C. M. Munson, 2011; Kraljic & Samuel, 2007). Talker-specificity has 

been observed in recognition memory for words for up to 10 talkers at a delay of one day 

(Goldinger, 1996). But for more subtle effects like sublexical recalibration—changes in 

category boundaries that generalize to words not already heard—it’s not known how many 

25Really, the listener’s inference about the intended category depends on their inference about the generative model parameters, and 
vice versa; see Equation (5). Here we average over (marginalize out) possible category interpretations of x for simplicity’s sake, as in 
Equation (7).
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talkers can be tracked. We hope that future work will address how the number of talkers, 

and the overall similarity of their cue distributions, affects talker-specific adaptation.

It’s also not known what the limits on talker-specific adaptation are in the long term. Do 

listeners always create a distinct, persistent set of beliefs for each new talker? If the listener 

has good reason to think that they will not meet the talker again, then it may make sense to 

adapt and then forget. But this would be difficult to measure in a laboratory experiment, 

because re-testing listeners after any appreciable delay requires a degree of logistical 

coordination that provides pretty good evidence that persistent representations will be 

useful. Moreover, it may in some cases be more efficient to group multiple, highly similar 

talker together, which is addressed in the following section.

Generalizing across talkers

An obvious question is where this belief updating process starts for a novel talker. In the 

language of the ideal adapter, what are the listener’s prior beliefs when first encountering an 

unfamiliar talker? Before hearing any of a novel talker’s speech, the only thing that the 

listener has to go on is their previous experience with other talkers. To the extent that there’s 

structure to this experience that can benefit adaptation to a novel talker, it behooves the 

listener to take advantage of it, by generalizing their experience with similar talkers. At the 

highest level, all talkers of the same language are by definition similar, and thus one way in 

which experience with different talkers can help listeners is that it provides some 

information about the overall range, or distribution, of generative models that exist in the 

world, and hence that the listener should be prepared to expect from new talkers in the 

future. By picking up on the structure of previous experience in this way, listeners can get a 

head start in adapting to a new talker, because their previous experience can tell them that 

some types of generative models are overall more likely than others. For instance, across 

talkers of American English, a particular talker’s mean /s/ frication frequency centroid (an 

important cue in distinguishing fricatives) generally falls in the range of 5 kHz to 7 kHz, and 

the mean /ʃ/ frication centroid typically falls in the range of 4 kHz to 6 kHz (Newman et al., 

2001). This means that a listener can (probabilistically) rule out generative models where /s/ 

or /ʃ/ have mean frication centroid outside these ranges, which substantially narrows down 

the range of generative models that they have to initially consider, providing a head start to 

adaptation (Figure 19). There are further regularities at more specific ways of grouping 

talkers. For instance, female talkers tend to produce both /s/ and /ʃ/ with relatively high 

frication frequencies, while males tend to produce them with relatively low frequencies. 

Thus, knowing something about indexical variables—who is talking, and what kind of 

person they are—makes some of the variability in generative models predictable.

Moreover, there are regularities across talkers in the relationships between generative model 

parameters that a listener can take advantage of to give a further head start to adaptation. For 

instance, even though the range of mean centroids for /s/ and /ʃ/ overlap across talkers, 

within a talker the mean centroid frequency for /s/ is almost always higher than for /ʃ/ 

(Newman et al., 2001). Based on this information listeners can also (again probabilistically) 

rule out generative models where the relative mean centroid of /s/ and /ʃ/ is reversed from 
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the typical pattern. This sort of structure essentially cuts in half the number of generative 

models that need to be considered, a priori (Figure 19).

Constraints like these make the problem of adapting to a new talker, in principle, vastly 

easier than learning the language in the first place. The overall space of generative models 

that are likely to occur for a particular language or group of talkers is much more restricted 

than the space of generative models that occur across all talkers of all languages. Some of 

these constraints might be innate (and common, at least probabilistically, to the world’s 

languages), but other obviously have to be learned for each particular language (like the 

range of mean VOTs allowed for each category Lisker & Abramson, 1964).

What do we know about how listeners generalize across talkers?

Generalizing across all talkers—First, there is some tentative evidence that listeners 

are sensitive to the overall range of generative model they have encountered. If listeners are 

sensitive to this range, then listeners who have experience with a broader range of generative 

models should, on average, be better prepared to adapt to unusual speech. Baese-berk et al. 

(2013) found that, as predicted, listeners who had to transcribe sentences from four talkers 

with four different foreign accents were more accurate on a fifth talker, with a fifth accent, 

relative to listeners who only heard a single accent (distinct from the test talker’s).

Conversely, listeners also use the range of generative models they have previously 

encountered to narrow down the hypotheses they consider for a new talker. It follows that it 

should be harder to adapt to talkers whose generative models fall outside the typical range. 

This prediction is borne out in recent work. For instance, Idemaru and Holt (2011) exposed 

listeners to various combinations of two cues to a voicing contrast (e.g. /b/ vs. /p/), VOT and 

fundamental frequency (f0). Canonically, these two cues are positively correlated within a 

talker: higher VOTs occur with higher f0s, and correspond to voiceless stops like /p/. While 

uncorrelated VOT and f0 are rarer, they are also observed. Crucially, anti-correlated VOT 

and f0 are generally not observed. If listeners have implicit beliefs that reflect these 

correlations, this should make it harder to adapt to unnatural talkers for which the two cues 

are anti-correlated. This is indeed what Idemaru and Holt (2011) found: listeners were able 

to adapt to a two-dimensional distribution of VOT and f0 where f0 was uncorrelated with 

VOT. However, listeners were not able to fully adapt to a distribution where VOT and f0 

were anti-correlated. Similarly, Sumner (2011) found that American English listeners were 

not able to adapt to a talker who always produced voiced stops (i.e. /b/, /d/, /g/) with 

substantial prevoicing (negative VOTs). Given that American English talkers typically 

produce these sounds with VOTs of 0 ms, this inability to adapt, too, might be a 

consequence of cross-talker generalizations based on prior beliefs.

Generalizing based on social group membership—Listeners often know (or can 

infer) more about a talker than that they are a speaker of English (or whichever language). 

To the extent that different a particular group of talkers systematically differs in their 

generative models from talkers in general, the listener can benefit by identifying whether a 

talker is a member of this group, and using their previous experience with this group to 

provide an even bigger head start to adaptation. For instance, there are dramatic differences 
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in how men and women produce many phonetic categories (e.g., Hillenbrand et al., 1995; 

Jongman, Wayland, & Wong, 2000; McMurray & Jongman, 2011; Newman et al., 2001), 

and thus the listener might (probabilistically) rule out a range possible generative models, 

further facilitating fast adaptation.26

One straightforward prediction of this is that in the absence of enough direct experience with 

a talker to directly converge on that talker’s generative model, the listener’s beliefs will be a 

combination of their (gender-specific) prior beliefs and whatever they manage to glean from 

what speech they have observed. For speech sounds that differ systematically between male 

and female talkers, such as fricatives, the listener’s best guess about the appropriate 

generative model for the current speech is expected to depend on whether the listener 

believes the signal to stem from a male or a female talker. If, as we have argued above, 

listeners use these beliefs about the generative model to guide interpretation of speech 

sounds, then changing the perceived gender of the talker should change categorization (e.g., 

by displaying a picture of a male vs. female face along with the audio stimulus).

This prediction is born out in a study by Strand and Johnson (1996, see also ; Strand, 1999; 

B. Munson, 2011). Listeners heard sounds on an /s/-/ʃ/ (“sod”-“shod”) continuum, made by 

varying the frication frequency from high (/s/-like) to low (/ʃ/-like), paired with either a 

male or a female face. Frication frequencies are typically lower overall for male talkers than 

for female talkers (Jongman et al., 2000; McMurray & Jongman, 2011; Newman et al., 

2001), If listeners take this information into account then they should place the /s/-/ʃ/ 

boundary at a higher frequency if they think the talker is female, resulting in fewer /s/ 

responses. This was exactly what Strand and Johnson (1996) found. Analogous results have 

been found using vowels (Johnson et al., 1999) and using different vocal sources as cues to 

gender (rather than faces Strand & Johnson, 1996; Strand, 1999; Johnson et al., 1999; B. 

Munson, 2011).

Beyond gender, there is evidence that listeners also use their experience with the speech of 

different social groups as a source of information about where to start adaptation. In a vowel 

matching task where they were told that the talker was from Canada, listeners from Detroit, 

MI chose tokens with more Canadian raising as matching than when they were told the 

talker was from Detroit (Niedzielski, 1999). This suggests that listeners’ perception of these 

vowels was biased towards what they expected to hear from a Canadian talker. There is, 

more generally, a growing literature on the extent to which perceived social group 

membership affects language comprehension (Drager, 2010; Hay, Warren, & Drager, 2006; 

Hay & Drager, 2010; Staum Casasanto, 2008; Sidaras and Nygaard, submitted).

How does the ideal adapter formalize generalization across talkers?

In the ideal adapter framework, the listener’s beliefs about generative models are formalized 

as distributions over generative models, which assign more or less probability to each 

possible generative model. This is true both for beliefs about a particular talker’s or 

26Of course, as above, if the talker’s generative model is actually outside the normal range for women, this would hurt adaptation. 
But, by definition, the distribution of the generative models for talkers in a particular group captures most of the talkers in that group, 
and so on average will be beneficial.
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situation’s generative model, like p(θ | Susan). We can also formalize beliefs about what 

generative models are likely for any talker of the language—p(θ | English)—or for a female 

talker—p(θ | female)—or a Canadian talker—p(θ | Canadian). When first encountering a 

novel talker, all the listener has to go on are these sort of beliefs about the distribution of 

generative models across individual talkers in some group.

Above, we have talked intuitively about how the listener’s experience with the generative 

models of different talkers from a novel talker’s language or social group can rule out a lot 

of generative models ahead of time and give a head start to adaptation. In the ideal adapter 

framework, this is a consequence of thinking about belief-updating as statistical inference, 

where the distributions over generative models corresponding to the listener’s prior beliefs 

and the information from the speech they observe are combined according to Bayes rule. In 

order to converge on the particular generative model for the current situation, the listener has 

to allocate more and more probability mass to it. Consequently, the more probability is 

allocated to it ahead of time, the less information is required from observations.

The reason that more specific (or constraining) prior beliefs provide more of a head start is 

that by definition, probability distributions have to add up to one, and so spreading 

probability mass over a larger range of generative models means that less probability mass is 

allocated to each particular possible generative model. Thus, conversely, the more 

generative models that the listener can exclude a priori, the more probability they can 

allocate to each remaining generative model. If the actual generative model for the situation 

lies within this range, then fewer consistent observations are required in order to reach a 

particular level of probability for the actual current generative model.

The price that is paid for this head start is that more specific prior beliefs are less flexible. 

That is, if the prior beliefs are wrong and the actual generative model lies outside the range 

that has non-trivial prior probability, then much more evidence will be required to reach the 

same level of belief in the actual generative model.27 This is why, in principle, the listener 

should only use specific beliefs when they are fairly certain that they are applicable. While 

this might seem like a problem for the ideal adapter framework, in the next section we will 

show that the ideal adapter framework also points towards a solution, which is to treat the 

problem of identifying which beliefs are applicable as another inference problem, which can 

be solved by combining top-down information (like visual recognition of a particular talker) 

with bottom-up information from the speech itself.

Open questions: Generalization across talkers

How do listeners know who to group together?—In order to make use of structure 

in the distribution of generative models at different levels—from talker-specific to groups of 

talkers to the overall base distribution—listeners have to somehow pick up on and learn this 

structure. There is some evidence that people can not only induce this sort of structure, but 

in some cases can do so surprisingly quickly. Bradlow and Bent (2008) had listeners 

transcribe sentences from accented talkers. In the same talker condition, the sentences were 

27This is really a consequence of Bayes rule assigning posterior probability as the product of prior probability and likelihood. That 
means that what “adds up” is actually log-probability, which goes to negative-infinity as probability goes to zero.
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all produced by a single accented talker, and listeners transcribed sentences from this same 

talker more accurately in a later test phase. In the multiple talker condition, listeners 

transcribed the same total amount of speech, but from four different talkers (distinct from 

the test talker). Despite the test talker being novel to them, listeners in the multiple talker 

condition showed the same benefit of experience as the same talker group. Listeners in a 

single other talker condition did not receive any benefit to exposure to a single accented 

talker when tested on the novel test talker, which suggests that listeners in the multiple talker 

condition have extracted some accent-level beliefs after a relatively small amount of 

exposure (on the order of an hour or two).

In the language of the ideal adapter framework, we might say that listeners need to impute 

structure to the variability in the generative models they have experienced. Much like 

Bayesian models of category learning during language acquisition (e.g. Feldman, Griffiths, 

et al., 2013; Perfors, Tenenbaum, & Regier, 2011), this structure induction can be thought of 

as another problem of inference under uncertainty. Each way of grouping previously 

encountered generative models is an imputation of some kind of structure, and each possible 

grouping may be more or less compatible with previous experience and a priori expectations 

about how likely particular sorts of groupings are. However, the ideal adapter framework, as 

articulated here, has very little specific to say about how this inference might work—even at 

a computational level—outside of very general predictions (e.g. simpler groupings are 

naturally preferred because of the Occam’s razor property of Bayesian inference; Perfors et 

al., 2011; MacKay, 2003, pp. 343–356).

How are multiple, overlapping groups represented?—Each individual talker can 

belong to many different groups of talkers, all of which may be informative about their 

generative model. There are many ways that such a structure might be represented formally. 

One of the simplest possibilities is that talkers are nested within groups (“Mandarin-

accented male talkers”), which are themselves nested within more general groups 

(“Mandarin-accented talkers”), and so on. This has the potentially problematic feature of not 

allowing generalization to a combination of groups that has not directly been observed. 

Another possibility is that groups might be represented, not as absolute generative model 

parameter distributions, but as offsets from the parameters predicted based on other factors 

(including other group memberships).28 This would make it possible to generalize based on 

arbitrary combinations of features, without needing direct experience with a particular 

combination, but at the price of requiring the same offset for, say, male vs. female talkers 

regardless of their other group memberships.

These possibilities lead to at least two open questions. First, do listeners, in fact, generalize 

from experience with a male talker with a particular accent or dialect to a female talker of 

the same accent or dialect (and vice-versa)? If listeners can generalize within a gender but 

not across, this would suggest that they have beliefs that are specific to a particular 

combination of gender, dialect/accent, and possibly other indexical variables. Of course, it is 

possible that for some dialects/accents listeners have gender-specific beliefs, while for others 

they do not. This leads to the second question: do males and females differ in the same way 

28For an analogous model applied to allophonic variation of phonetic categories, see Dillon, Dunbar, and Idsardi (2013)
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across all dialects/accents of a language? If the ways that the generative models depend on 

these different types of indexical variables are all independent of each other, then it makes 

sense to separate them out into orthogonal features. However, gender differences themselves 

vary quite a bit across languages (Johnson, 2006), so it is not implausible that within a 

language there might be dialectal variation in gender differences as well. Moreover, it is 

altogether possible that for some groups, gender has the same (independent effect) while for 

others it does not. If this is the case, then it is in those kinds of groups where gender has an 

independent effect that the ideal adapter predicts that listeners are most likely to generalize 

experience across genders. The advent of the widespread availability and use of speech 

recognition technology presents an exciting opportunity to gather speech from large samples 

of individuals, potentially allowing some of these questions about the distribution of 

generative models in the world to be addressed.

Balancing stability and flexibility: When to adapt, generalize, or recognize

Thus far, we’ve addressed three strategies that listeners have for dealing with the lack of 

invariance: rapid adaptation to totally novel talkers, recognition of familiar talkers (and the 

resulting talker-specificity), and generalization across groups of similar talkers. In the ideal 

adapter framework, all three of these strategies are the result of the listener trying to infer the 

appropriate generative model with differing degrees of relevant prior experience. In this way 

of thinking, whether speech perception is flexible—as in adaptation to novel situations—or 

stable—as in recognition of familiar situations—depends on how confident the listener is in 

their prior beliefs, which in turn depends on how much relevant prior experience they have. 

In order to introduce the relationship between these strategies and the type and amount of 

relevant prior experience the listener has, we have so far addressed these strategies 

separately, assuming in each case that the listener knows —based on non-linguistic cues—

what kind of prior experience is relevant to the current situation.

While such cues are often available, they are not always available, and sometimes they do 

not provide high certainty. Consider, for example, the case of running into someone that one 

remembers from somewhere but doesn’t quite remember who it is. Sometimes visual or 

other cues are absent, such as when picking up the phone in the absence of caller ID, or 

listening to a conference call with many different people. In these cases where there is some 

uncertainty about who is talking, there is also uncertainty about what prior experience will 

be most helpful in figuring out that talker’s generative model (and ultimately what they are 

trying to communicate). When top-down cues do not unambiguously identify the talker (or 

type of talker), the listener can still benefit from prior experience. Specifically, if the listener 

can identify a familiar talker (or the group that a talker belongs to) from their speech, 

listeners will have nearly the same benefits of prior experience as if they had known the 

talker’s identity ahead of time.

The ideal adapter treats the problem of whether to be flexible or stable as inference under 

uncertainty at yet a third level, where the listener tries to infer what type of situation they are 

in, and hence what prior experience will be relevant in figuring out the generative model.29 

29The other two levels being inferring the intended category, and inferring the situation’s particular generative model.
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There are, as always, two sources of information that can guide this inference: the listener’s 

top-down expectations about what type of situation they are in (like visually identifying a 

talker’s face), and bottom-up information from the speech signal (which may be more or less 

compatible with the speech predicted by their beliefs about each possible type of situation). 

The ideal adapter framework predicts that listeners use these two sources of evidence in 

order to balance stability and flexibility on the fly.

What do we know about how listeners balance stability and flexibility?—
Balancing stability and plasticity requires that listeners deploy the most informative prior 

experience that is relevant in each situation. This is true whether or not they know a priori 

what prior experience is relevant. Thus, we argue, balancing stability and plasticity in 

speech perception requires that the listener dynamically combine top-down information 

about what kind of situation they are in with bottom-up information from the speech signal. 

However, little is known about how listeners trade off these two sources of information. 

What little we know suggests that listener do, in fact, use both bottom-up and top-down 

information to infer the type of situation they are in and what prior experience is currently 

relevant. Based on these inferences, listeners can then determine how flexible to be in the 

current situation. Evidence for this view is of two types, which we discuss in turn. First, 

listeners can recognize talkers that they are familiar with based on just bottom-up speech 

input. Second, listeners generalize experience with one talker to adaptation to another talker 

based both on the bottom-up similarity in their generative models and top-down 

expectations that generalization is appropriate.

Recognizing familiar talkers based on their speech: Listeners use information from the 

speech signal itself to help infer the talker’s identity (and social group membership) in a way 

that shapes how they interpret that talker’s speech. The speech signal includes non-phonetic 

features like (in English) f0 range, jitter, and shimmer that distinguishes talkers (Creel & 

Bregman, 2011; Pardo & Remez, 2006). Listeners use this information not only to recognize 

familiar individuals but also to infer social group membership. For instance, we discussed 

above evidence that listeners change their classification of vowels and fricatives based on 

the gender of a visually presented face. These same studies found that synthesized vowels 

and fricatives—with exactly the same phonetic cue values—were also classified differently 

depending on the vocal source wave that was used, with stereotypically female and male 

vocal sources having a similar effect as a visually-presented female face (higher frequency 

category boundaries). Interestingly, this effect is gradient, with the effects of voices rated as 

non-stereotypically male or female falling in between stereotypically male or female voices 

(Johnson et al., 1999; B. Munson, 2011; Strand & Johnson, 1996; Strand, 1999).

Beyond non-phonetic aspects of the speech signal, the fact that different talkers use different 

phonetic generative models means that phonetic aspects of the speech signal can also, in 

principle, provide information about talker identity or group. That is, the same talker- or 

group-specific beliefs about the phonetic generative model which benefit speech perception 

once a particular talker is identified can also conversely aid in identifying a talker. To the 

extent that they vary across talkers—and hence benefit from talker- or group-specific 

representations—phonetic features like formant frequencies and VOT are by definition 
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diagnostic of talker identity. Thus, the listener’s knowledge about a familiar talker’s cue 

statistics provides a rich source of information for identifying that particular talker based on 

their speech, which can in turn can affect how that same speech signal is mapped onto 

phonetic categories. Listeners do, in fact, take advantage of such phonetic information for 

talker recognition (Creel & Bregman, 2011; Pardo & Remez, 2006), and can explicitly 

recognize talkers with very high accuracy based on sine-wave (Remez et al., 1997) or noise 

vocoded speech (Sheffert et al., 2002). Such processing of speech removes all of the fine 

spectral detail (and much if not all of the voice quality information) but preserves enough 

phonetic information to allow for reasonably good comprehension.

Generalizing experience with one talker to another, or not: When there is uncertainty 

about what prior experience is relevant, information from the speech signal helps processing 

of novel talkers in two ways. First, in this paper we have generally simplified our discussion 

by focusing on a few phonetic features. However, in everyday speech perception the 

generative model is highly complex, covering many categories, each cued by many acoustic 

features. Somewhat paradoxically, when we consider that the listener must also infer the 

kind of prior experience that is relevant, this makes their job easier: even from a small 

amount of speech from a novel talker, listeners can in all likelihood recognize that none of 

their talker-specific representations provide a good match to the current situation. Second, 

even a small amount of information about the generative model can help identify whether, 

and which, more informative group-specific beliefs might be relevant, meaning that listeners 

have to fall back on the least informative beliefs only as a last resort. This is important 

because on the one hand, even a little bit of experience with one or more similar talkers 

provides a big boost to adaptation, but on the other hand, mistakenly assigning a talker to a 

particular group actually makes it harder to adapt to their actual generative model, as 

discussed in the last section. If listeners are in fact continuously trying to identify what, if 

any, familiar group a novel talker belongs to based on the speech they produce, then they 

should flexibly generalize from experience with one talker to another when it’s warranted 

(by top-down expectations and bottom-up similarity) but adapt in a talker-specific way when 

it is not.

This is an important though comparatively understudied issue. A series of recent studies 

provides some tentative evidence for the predictions of the ideal adapter framework. These 

studies looked at how much listeners generalize perceptual learning for a male talker to a 

different, female talker (or vice versa; Eisner & McQueen, 2005; Kraljic & Samuel, 2005, 

2006, 2007). In one version of these experiments listeners hear a male talker’s production of 

a sound ambiguous between a /s/ and a /ʃ/, embedded in a word that indicates it was 

intended to be an /s/. After exposure, listeners are tested on two different /s/-/ʃ/ continua: 

one produced by the same male talker as exposure, and the other produced by a different 

(female) talker. In the case of /s/-/ʃ/ (and /s/-/f/), listeners show the expected recalibration 

effect—more /s/ responses after /s/ exposure—when tested on the same talker, but no effect 

when tested on the different, female talker (Eisner & McQueen, 2005; Kraljic & Samuel, 

2005). However, in another version of the experiment using a /d/-/t/ contrast, listeners show 

the same recalibration effect on both the same- and different-talker test continua (Kraljic & 

Samuel, 2006). In such experiments, the only information that the listener has about the 
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unfamiliar female test talker comes from the test stimuli themselves. In the case of a voicing 

contrast like /d/-/t/, the overall distribution of the critical cue—VOT—is generally similar 

between the familiar male and unfamiliar female talker, and so the test stimuli provide 

information that these two talkers’ generative models are overall quite similar, at least in 

terms of VOT and the voicing contrasts it cues. If listeners are using this information, then 

they should apply what they have learned about the male talker to the unfamiliar female 

talker, which would lead to the generalization observed by Kraljic and Samuel (2006). 

Conversely, the range of cues in the /s/-/ʃ/ male and female continua used by Kraljic and 

Samuel (2005) differ quite dramatically: the highest spectral centroid of the male talker’s /s/ 

is still lower than the lowest /ʃ/ end of the female talker’s continuum. Thus, the test stimuli 

from the female test talker provide evidence that these two talkers are quite different in how 

they produce this contrast, and thus it does not make sense to apply what has been learned 

about the male talker to the unfamiliar female test talker.

Kraljic and Samuel (2007) present evidence that listeners use both their top-down 

expectations about whether two talkers should be grouped and the bottom-up similarity of 

their cue statistics to guide not just processing of a totally unfamiliar test talker, but also to 

guide adaptation to multiple talkers. When exposed to both a male and female talker, whose 

ambiguous pronunciations are disambiguated in opposite ways (e.g. male as /d/ and female 

as /t/), listeners showed no overall learning effect between pre- and post-exposure 

classification of the two talker’s /d/-/t/ continua, suggesting that they have tracked the 

statistics of these categories in a talker-independent way. But for the analogous procedure 

with /s/-/ʃ/, classification of each talker’s continuum shifted in the typical way, suggesting 

that they have adapted talker-specific representations (Kraljic & Samuel, 2007).

This might be taken as evidence that listeners are simply unable or categorically unwilling to 

learn and maintain talker-specific beliefs about some phonetic categories. This broadly 

makes sense: for categories like /d/ versus /t/ which, in the listener’s experience, show some 

variability across talkers but are not systematically produced differently by male versus 

female talkers, it is a reasonable guess that a male and a female talker encountered in the 

same context will produce them similarly and can be grouped together. Likewise, as noted 

by Kraljic and Samuel (2007), for categories that are generally produced differently by male 

and female talkers who are otherwise similar, it is a good bet that a male and female talker 

should not be grouped together.

However, if listeners are actually trying to infer whether or not two talkers should be 

grouped together—rather than simply relying on fixed heuristics—then enough of the right 

kind of experience which contradicts these biases should be able to overcome them in 

specific cases. For instance, even though listeners tend to generalize experience with VOT 

distributions from a male to female talker, with sufficient experience with a male and a 

female talker who have different VOT distributions, listeners do in fact learn talker-specific 

representations (C. M. Munson, 2011). Conversely, even though listeners tend to learn 

talker-specific representations of fricatives, by using a modified test continuum Reinisch and 

Holt (2014) found that listeners can generalize experience with a female talker’s fricatives to 

a novel male talker.
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How does the ideal adapter formalize the stability/plasticity trade-off?

A mixture of prior beliefs: The available evidence suggests that listeners can, on the fly, 

infer which type of prior experience is relevant for the current situation based on a 

combination of bottom-up speech information and top-down expectations. In the language 

of the ideal adapter framework, this in turn suggests that in situations where the listener is 

unsure about what type of prior experience is relevant, their prior expectations about what 

generative models they will encounter are a mixture of expectations given different types of 

prior experience. Each particular sort of prior experience can be thought of as a cluster of 

possible generative models, with more specific prior experience—like experience with a 

particular familiar talker—corresponding to highly concentrated, peaked clusters and more 

general experience—like with the range of generative models across all talkers in the 

language—being more spread out. How much each cluster contributes to the overall beliefs 

depends on how likely the listener thinks it is to apply in the current situation. How much 

the listener expects to encounter any particular generative model is thus a combination of 

how much it is expected given a particular set of beliefs, and how likely the listener thinks 

those beliefs are to apply.

One way to formalize this notion is based on representing the beliefs about generative 

models for a particular type of prior experience as a probability distribution over generative 

models. Again, for the sake of brevity, we refer to the generative model by its parameters22 

θ, conditional on the type of prior experience t : p(θ | t). Here, we use t to denote a more 

general form of talker identity, that covers beliefs ranging from particular individual talkers, 

like p(θ | t = my father), to groups, like p(θ | t = Boston accent), all the way to language-level 

groupings like p(θ | t = English speaker). Above, we assumed that the listeners knows the 

type of prior experience which is relevant, and thus only a single conditional distribution p(θ 

| t) is relevant. When the listener is uncertain, though, multiple different conditional 

distributions might be relevant. The listener’s beliefs about which type of prior experience is 

relevant can be formalized as a probability distribution over the types t —p(t)—and hence 

their overall beliefs about the generative model parameters as a mixture of the conditional 

beliefs, weighted by p(t):

(16)

Top-down information: Let’s consider the case where the listener can recognize a familiar 

talker—call him Frank—with high certainty based on visual information. Then, the 

distribution over types of prior experience p(t | vis. info) is highly peaked:

(17)

As a result, the listeners’ beliefs about the generative model parameters, given the visual 

information that identifies the talker as Frank, is dominated by their beliefs about Frank’s 

generative model:
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(18)

(19)

(20)

(21)

That is, when the type of prior experience is known with reasonably high certainty from top-

down cues, this mixture model reduces to the talker- or group-specific beliefs described in 

earlier sections in Part II. This formalization thus generalizes the notion of talker- or group-

specific beliefs as conditional distributions. In this sort of mixture model, when top-down 

information about the type of situation is available, listeners can take advantage of it, which 

can in turn lead to effects of top-down information (like visually presented faces or other 

cues) changing the way that physically identical bottom-up acoustic signals are interpreted 

(Johnson et al., 1999; Hay & Drager, 2010; Staum Casasanto, 2008; Strand & Johnson, 

1996). However, having a weighted mixture of different prior beliefs means that the listener 

does not have to rely solely on such top-down information to tell them which prior 

experience is relevant, but rather can also use bottom-up information.

Bottom-up information: Formalizing the listener’s prior beliefs about generative models in 

this way provides a natural way of formalizing how bottom-up, phonetic information can 

help infer the type of prior experience that is relevant. Inferring the type of experience that is 

relevant comes down to inferring the type t, given some observations x and prior 

expectations p(t), which we can think of as Bayesian inference at yet another level:

(22)

As usual, the listener’s updated beliefs about the type of situation they are in, t, are a 

combination of their prior beliefs about the type of situation p(t), and how well their prior 

experience with each type predicts the observations x, p(x | t). In this formalization, 

observations and types are assumed to be only indirectly related, via the generative model 

parameters θ : each type predicts a range of generative models, p(θ | t), and each value of the 

generative model parameters predicts a range of observations, p(x | θ). In order to get the 

marginal likelihood of the signal x under situation t, p(x | t), the particular values of the 

generative model parameters have to be averaged out:

(23)
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The jargony term for this averaging is marginalization. And a natural consequence of 

marginalization is that it leads to a preference for the most specific prior experience which 

provides a reasonably good fit to the observed data. We can think of marginalization as 

essentially taking a weighted average of the likelihood of the observation x, p(x | θ), 

weighted by the type-specific probability of the generative model parameters p(θ | t). On the 

one hand, for a type of prior experience that leads to very specific beliefs—like a particular 

familiar talker—the predicted observations p(x | θ) are very similar over the range of 

generative models that are given reasonably high probability, and so will all either fit the 

data reasonably well or not. On the other hand, a type of prior experience that leads to less 

specific beliefs about generative models—like experience with all speakers of the language

—predicts a lot of different generative models. Some of these will probably provide a good 

account of the observation x —high likelihood p(x | θ)—but the vast majority will not, 

resulting in a low average (maringal) likelihood p(x | t).

This trade-off between specificity and accuracy goes both ways. A vague (e.g. language-

wide) prior over generative models will allocate some likelihood to nearly any observation, 

whereas a specific (e.g. familiar talker) prior predicts only a very limited range of 

observations, and so assigns very high marginal likelihood to things in that range and 

basically nothing outside of it. So for observations that fall outside the range predicted by 

previous experience with specific talkers, less specific, group-level experience provide the 

best marginal likelihood, even if it’s not (in absolute terms) very high.

Of course, inferring the type of prior experience that is relevant is only the first step to 

robust speech perception. Additionally, the listener also needs to infer the generative model 

that is best suited to the current situation. We can think of this as inference of the joint 

posterior distribution of generative model parameters and type of situation, p(θ, t | x). This 

combines inference about the type of situation—as discussed in this section—with situation-

specific belief-updating—discussed above:

(24)

Alternatively, we can think of just the overall updated beliefs about the generative model p(θ 

| x), which—like the prior beliefs p(θ)—are a mixture of updated situation-specific beliefs, 

weighted by how likely each situation is given the observation:

(25)

This brings us back to the central point of the second part of this paper: the ideal adapter 

framework reveals that we can look at recognition (and the resulting talker-specificity), 

adaptation, and generalization in speech perception as the natural consequence of a system 

that is trying to do the best that it can to comprehend speech in a variable—but structured—

world. Because of the variability (or subjective non-stationarity) of the statistics of the 

speech signal, the listener has to adjust the generative model they use. There are two sources 

of information that listeners have when trying to do this: the speech they are currently 
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processing, and their previous experience and prior expectations. Different strategies arise 

from the fact that in each situation, the prior experience that is relevant—if any—is 

sometimes more and sometimes less informative about the appropriate generative model 

than the current speech itself. When the listener has no relevant prior experience, the best 

they can do is to try to learn the generative model by adapting their beliefs to better match 

the recently observed speech statistics, leading to rapid adaptation. When they have prior 

experience that is directly relevant, like with a familiar individual talker, the best thing they 

can do is to rely on that prior experience, removing the need to adapt and leading to talker-

specific speech perception. When they have experience that is relevant, but not directly, then 

the best they can do is apply that experience to the current situation and then use the actual 

speech statistics to converge on an appropriate generative model.

For types of experience that correspond to very specific beliefs—like a highly familiar talker

—the situation-specific beliefs will change little with the addition of one more observation. 

If such a component for a familiar talker provides the best match to the observed speech, 

then the result of this process of belief updating with a clustered mixture prior is that the 

listener has recognized and deployed their talker-specific generative model. If, on the other 

hand, the best-fitting type is a very broad, general type like all speakers of English, then the 

updated beliefs are dominated much more by the actual observed data then the prior, just 

like when the listener knows ahead of time that they need to adapt rapidly. Similarly, if prior 

beliefs of intermediate specificity dominate, then the updated beliefs will reflect the 

observed data more than they would for a highly familiar talker, but the prior beliefs will 

contribute more than in the most flexible case. This is how the ideal adapter is able to 

flexibly deal with the lack of invariance, making the best use of different types of prior 

experience with different generative models. By learning about and representing the 

distribution of generative models in the world, the ideal adapter is better prepared to infer 

the appropriate generative model across many different types of situations.

Open questions—We have argued here that the ideal adapter predicts that listeners 

dynamically balance flexibility and stability by inferring what kind of prior experience is 

currently most relevant. If the listener decides that experience with a particular familiar 

talker is most relevant, they will show stable, talker-specific speech perception. If, on the 

other hand, they decide that the only relevant prior experience they have is with the full 

distribution of talkers of the language, then they will rapidly and flexibly adapt.

The biggest open question that this raises is how—and even whether—listeners combine 

top-down and bottom-up information about what kind of prior experience is relevant. There 

are, in our view, at least two sides to this question. The first side is what a truly ideal adapter 

would do. The ideal adapter framework as currently posed addresses this only in the most 

general sense, saying that listeners should combine top-down and bottom-up information to 

determine what prior beliefs to use. But much more work is required in order to make 

further testable predictions. The second side is empirical, and in the rest of this section we 

review two empirical questions we see as particularly pressing.

What role do expectations of generalizability play?: The studies by Kraljic and Samuel 

(2005, 2006, 2007) suggest that listeners group together talkers when the distributions of 
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cues they produce are similar. But in all these studies, the similarity of the cue distributions 

is confounded with the overall similarity between male and female talkers in general on the 

relevant phonetic dimensions: male and female talkers don’t systematically differ in their 

VOT distributions in American English (Allen et al., 2003), whereas they do differ in their 

frication frequency distributions (Newman et al., 2001). Thus listeners may have already 

made up their minds about whether to group the two talkers together before hearing 

anything. There’s some evidence that top-down expectations and bottom-up similarity can 

be dissociated (C. M. Munson, 2011; Reinisch & Holt, 2014), but it remains to be seen 

exactly how listeners balance these two sources of information, both in the short term (e.g. 

over the course of a single experimental session) and over the long term (over days, weeks, 

or longer).

When are two generative models similar enough to group?: Our discussion of how 

listeners might generalize experience from one talker to another on the basis of similarity of 

their generative models glosses over a very basic point: even if their VOT ranges are overall 

very similar, the whole generative model for a male talker is very different from that of a 

female talker. Thus, while it might make sense to lump together experience with a male and 

female talker for the purposes of inferring their VOT distributions, it definitely does not 

make sense to lump together beliefs about their vowels. One way that this dilemma could be 

resolved is if listeners have extracted some information about the variance of different 

parameters in groups that contain males and females (like the ad hoc grouping that might be 

inferred during an experiment). Properties that vary a lot across talkers within a group are 

not very informative about particular talkers, whereas properties that are consistent across 

talkers in a group can be used to constrain beliefs about individuals much more strongly. 

Because males and females—within most groups—vary a lot in their vowels, but not so 

much in their VOT, listeners can use information about the VOT distributions of individual 

talkers to (on average) reliably infer properties of the group, which in turn are (on average) 

highly informative about properties of other talkers in the same group.

An alternate possibility is that listeners have more or less separate beliefs about different 

“chunks” of the generative model, potentially grouping talkers differently when considering 

beliefs about their VOT distributions than they do when considering beliefs about vowel 

formants. It is not immediately obvious what—if any—divergent predictions these two 

accounts would make, and more work is required to understand both their computational 

implications and related human behaviors.

Part II conclusion

We have argued that a range of strategies that human listeners use to deal with the lack of 

invariance all correspond to the best that they can do in a world where generative models 

vary from one situation to the next, but do so in a structured way that is tied to indexical 

variables like talker identity and group membership. The ideal adapter framework 

formalizes this notion by representing situation-specific beliefs about the range (distribution) 

of generative models that are expected in different types of situations, from very specific (an 

individual talker) to very general (an entire language).Although it is beyond the scope of this 

paper to discuss in any detail, this perspective can be applied to second (and third, etc.) 
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language acquisition as well (Pajak, Fine, Kleinschmidt, and Jaeger, under review). This 

range allows the listener to balance stability and flexibility, relying on prior experience 

when it is available and relevant, falling back on less informative but more flexible group-

level beliefs. This system is not fail-safe. In order to achieve robust recognition of familiar 

talkers and guiding generalization across talkers, the speech perception system is forced to 

rely on prior experience. In highly atypical situations –which, fortunately, are bound to be 

rare– this very same property can slow down or prevent successful adaptation and 

perception (as also evident in second language learning).

Explicit structured beliefs are one way of achieving sensitivity to structured variability of 

cue-category mappings. However, the primary take-home message from Part II is that 

sensitivity to this structured variability is a critical feature of any model that seeks to explain 

the robustness of human speech perception. Formulating such a model and evaluating its 

predictions remains a task for future work.

Part III

We close our paper with a discussion of how the present work relates to other approaches 

and issues. We chose to take a computational-level approach to understanding how the 

speech perception system deals with the lack of invariance. Such an analysis focuses on the 

problem of robust speech perception. That is, our approach is guided by questions about the 

‘why’, or the purpose of the system, the goals it typically serves, and the world it has to 

function in. Focusing on the ‘why’ of speech perception does not directly address the actual 

cognitive processes (and neural mechanisms) that must carry it out (Marr, 1982), but it has 

allowed the development of models that provide a good fit to human behavior, both in 

speech perception (Clayards et al., 2008; Feldman et al., 2009; Norris & McQueen, 2008; 

Sonderegger & Yu, 2010) and in a range of phonetic adaptation phenomena (Part I of this 

paper). It also has allowed us to make novel predictions, some of which we have tested here 

and the rest of which we hope will guide future research and the development of cognitive 

and neural models. The ideal adapter framework is normative, in that it looks only at the in-

principle constraints on performance that come from the inherent difficulty of the task and 

the limited information that is available in the world, without considering resource 

limitations. The brain is obviously not unbounded in its resources, and considerations that 

come from processes, representations, and mechanisms are thus relevant to future 

development of the framework presented here.

However, this gulf is not as wide as it might first appear. Neurally plausible algorithms exist 

for the sort of inferences required by the ideal adapter framework (Beck, Pouget, & Heller, 

2012; Friston, 2005; Rao & Ballard, 1999), and resource limitations can be included in a 

normative framework. For instance, recent work has focused on developing “rational 

approximations” to rational (normative) models like the ideal adapter. These models ask 

what the best possible performance is under different types and levels of cognitive or neural 

resource constraints (Griffiths, Vul, & Sanborn, 2012; Sanborn et al., 2010; Shi et al., 2010). 

For instance, one notable constraint on normative, Bayesian inference is the amount of 

uncertainty—or the number of different hypotheses—that can be simultaneously maintained. 

Listeners can apparently maintain enough uncertainty about whether or not two talkers 
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should be grouped together to overcome initial biases about how to generalize phonetic 

recalibration (Kraljic & Samuel, 2005, 2006; C. M. Munson, 2011). However, listeners also 

seem to prefer to stick to “first impressions” more than a purely normative model would 

predict (Kraljic et al., 2008). This suggests limits on how much uncertainty listeners are 

willing or able to maintain (see also Tzeng, Alexander, Sidaras, & Nygaard, 2014 for related 

effects of presentation order when generalizing across talkers).

Likewise, process- and mechanistic-level theories do not exist in a vacuum, and 

computational-level considerations about the task they must perform can be relevant and 

informative. In this final part of the paper, we will expand on some particular ways that we 

think the ideal adapter framework relates to and potentially informs a range of other 

approaches and topics. First, a number of other approaches to the lack of invariance have 

been proposed, and we will briefly lay out where we think the ideal adapter framework 

differs from, conflicts with, and complementes these other approaches. Next, we turn to how 

the proposed framework, and the body of empirical literature it unites, might inform the 

debate about the underlying representations used by speech recognition, and the role of 

subphonetic detail in phonetic representations. Finally, we will discuss the possible 

implications for this work beyond speech perception by adult listeners to both higher-level 

language processing and the acquisition of phonetic categories during development.

How does the ideal adapter relate to other approaches to the lack of invariance?

Our approach is novel when compared to most models of speech perception—Bayesian and 

otherwise—that do not learn at all (Clayards et al., 2008; Feldman et al., 2009; McClelland 

& Elman, 1986; Norris, 1994; Norris et al., 2000). But we are hardly the first to consider the 

problem of the lack of invariance in speech perception, and a variety of other approaches 

exist that either directly address flexibility in phonetic categorization or address related 

problems. We review these in this section.

Existing models of speech perception and adaptation—The existing models that 

are most directly related to our approach deal with plasticity in phonetic categorization by 

adding slower learning (and habituation) dynamics to existing connectionist or dynamical 

systems models of phonetic categorization (Lancia & Winter, 2013; Mirman et al., 2006). In 

both of these models, learning is modeled with a Hebbian learning mechanism that increases 

the feedforward connection weight between acoustic/phonetic input units to categorical 

output units based on repeated co-activation. Such a learning mechanism is sufficient to 

qualitatively capture phonetic recalibration, but it is not clear whether the generally slow 

temporal dynamics of Hebbian learning can account for the very rapid recalibration effects 

that are typically observed (Guediche, Blumstein, Fiez, & Holt, 2014). Furthermore, without 

an additional habituation mechanism (which is present in Lancia & Winter, 2013) Hebbian 

learning may not be sufficient to capture selective adaptation.

At a deeper level, existing models of plasticity in speech perception are—in principle or in 

practice—generally “flat” learners, which (in the language of the ideal adapter framework) 

adapt a single set of beliefs about the generative model based on recent experience. This 

includes connectionist models of phonetic adaptation (Lancia & Winter, 2013; Mirman et 
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al., 2006) as well as distributional learning models of the acquisition of phonetic categories 

(e.g. Feldman, Griffiths, et al., 2013; McMurray et al., 2009; Vallabha et al., 2007). Because 

none of these models represent the fact that the distributions (or connection weights from 

input to output units in Lancia & Winter, 2013; Mirman et al., 2006) are not only situation-

specific but might be encountered again after an interruption, these models cannot account 

for the persistence of adaptation over intervening exposure (as in Eisner & McQueen, 2006; 

Kraljic & Samuel, 2005). These models also cannot explain when we do or do not generalize 

across talkers (Kraljic & Samuel, 2005, 2006, 2007).30 The belief-updating model presented 

in Part I falls into the same class of flat learner models. Thus, one of critical goals for future 

computational work on speech perception is to continue the development and test of the full 

ideal adapter framework, as we have begun to outline in Part II.

The remaining class of approaches to plasticity in speech perception is the class of episodic 

or exemplar models (e.g., Goldinger, 1998; Johnson, 1997b, 2006; Pierrehumbert, 2003). 

These models are arguably motivated by many of the same considerations that motivate the 

ideal adapter framework: the mapping between cues and categories is variable, in often 

idiosyncratic ways (Johnson, 2006), and so the speech perception system has to be sensitive 

to this variability. Exemplar models achieve this by storing raw acoustic traces for each 

exemplar that has been encountered, and categorize new inputs based on similarity to stored 

exemplars. By remembering every instance of a category, these models (implicitly) learn the 

corresponding distribution of sounds, and can achieve persistent talker-specific 

representations (Goldinger, 1998; Johnson, 2006). However, simply storing raw episodes 

alone is not sufficient to explain the ways that human listeners generalize learning on one 

phonetic category to unheard words (Cutler, Eisner, McQueen, & Norris, 2010; McQueen et 

al., 2006), other contrasts (Kraljic & Samuel, 2006), and other talkers (Kraljic & Samuel, 

2006, 2007; Reinisch & Holt, 2014). For such flexibility, some additional sensitivity to the 

underlying structure of the variation in cue mappings is required, both at the level of how the 

acoustic signal is analyzed into linguistic units (Cutler et al., 2010) and at the level of how 

different talkers can be grouped based on their generative models (Part II of this paper). To 

some extent this, too, has been recognized in recent work on episodic theories of language 

processing (e.g., Johnson, 2006, 2013; Pierrehumbert, 2003; van den Bosch & Daelemans, 

2013).

To illustrate this point further, we have argued (in Part II) that the speech perception system 

can benefit from structure in the world in how generative models vary across situations. This 

structure means that prior experience with the same or similar generative models can inform 

future adaptation and processing. We have discussed how, in the ideal adapter framework, 

sensitivity to this structure can be naturally formalized by structured representations, in the 

form of talker-and group-specific beliefs about (distributions over) generative models.

Memory-based or episodic theories provide an alternative approach which is superficially 

conflicting. In these approaches, prior experience is represented in an unstructured way, but 

30Mirman et al. (2006) accounts for the results of Kraljic and Samuel (2005, 2006) by using cue representations that encode the 
similarity or dissimilarity of the two talker’s test continua. But as far as we can tell, this approach fails to predict the opposite results 
(C. M. Munson, 2011; Reinisch & Holt, 2014)
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sensitivity to the structure of that experience might still arise through processes by which 

similarity to stored episodes is computed (e.g., analogical reasoning van den Bosch & 

Daelemans, 2013). This is an area of ongoing research, and it is an interesting question 

whether these two approaches—structure by representations or by processes—make 

substantively different predictions in principle. It is possible, for example, that analogical 

reasoning applied to unstructured memory traces can implement the sort of structure-

sensitive computations we have argued for.

What counts as a situation for adaptation?—In our discussion of how generative 

models vary from one situation to the next, we have focused on talkers (or other indexical 

variables) as the main driver of this variability. The reason for this emphasis on talkers is 

that differences between talkers are responsible for a large amount of variability in how 

phonetic categories are realized acoustically (Allen et al., 2003; Hillenbrand et al., 1995; 

McMurray & Jongman, 2011; Newman et al., 2001, among others). This lead us to 

hypothesize that listeners’ beliefs about the generative model of speech need to be thought 

of as conditioned on their beliefs about the talker (or type of talker) they think they are 

listening to.

However, talker differences are not the only source of the lack of invariance, and 

nonlinguistic factors like background noise or general acoustics can also change from 

situation to situation. Additionally, the realization of phonetic categories depends on the 

linguistic context that those sounds are produced in (Liberman et al., 1967), and a variety of 

models have been proposed to account for how categorization of one segment is affected by 

adjacent segments (Massaro, 1987; Nearey, 1997; Nearey & Assman, 1986; Oden & 

Massaro, 1978; Smits, 2001; Sonderegger & Yu, 2010).

This raises an important question: is what we have called a “situation” (understood as the 

non-linguistic aspects of the current situation like talker or setting) different from the notion 

of “context” in, for instance, models of coarticulation? The ideal adapter framework points 

towards a way of approaching this question. This is based on the underlying statistical 

properties of how the cue-category mappings represented by the generative model vary 

based on talker (and other indexical variables), linguistic context, and the combination of the 

two. If the effects of linguistic context are themselves sufficiently variable across talkers (as 

experienced by the listener), then the ideal adapter framework says that the speech 

perception system has a strong incentive to track category statistics as a joint function of 

both linguistic and non-linguistic context. If not, then they can be safely tracked separately. 

Even if the effects of linguistic context and indexical situation can be, computationally, 

treated as basically the same, it is a separate question of what the brain makes out of these 

two very different kinds of variability. The effects of linguistic context are relatively 

localized in time (only a couple of syllables), whereas indexical context is much more 

diffuse (an entire discourse, or even multiple separate encounters), and so each may impose 

very different demands on memory and other processing resources.
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What is the nature of representations underlying speech recognition?

Even though our work here is pitched at a computational level, it does have implications for 

existing linguistic theories of speech recognition. By relating the lack of invariance to the 

strategies that people use to achieve robust speech perception—adaptation, talker-

specificity, and generalization—the ideal adapter framework highlights shortcomings in the 

starting points for existing theories of how the speech recognition system maps cues onto 

linguistic categories. We will argue that the ideal adapter framework also helps to 

understand how recent moves away from these more extreme starting points are a step in the 

right direction, and—we hope—points to further productive directions for future research.

Abstractionist and episodic approaches to speech recognition—One of the 

persistently debated issues in speech recognition is the degree of abstraction in the 

representations which mediate cue-category mappings. At one extreme, abstractionist 

models posit that speech perception is mediated by prelexical representations that strip away 

subphonetic variation, discarding acoustic information which is not relevant for making 

(possibly probabilistic) categorical distinctions (McClelland & Elman, 1986; Norris, 1994; 

Norris et al., 2000; Norris & McQueen, 2008). At the other extreme, episodic models posit 

that speech perception is a direct mapping of detailed acoustic traces to linguistic units 

(often lexical items), preserving all of the fine-grained acoustic information (Goldinger, 

1998; Johnson, 1997b, 2006; Pierrehumbert, 2002). These two perspectives constitute 

dramatically different approaches to the lack of invariance, each of which is insightful but 

also falls short in different ways.

On the one hand, in the face of the lack of invariance abstractionist theories have historically 

relied on an explicit process of “talker normalization” where acoustic cues are normalized 

by pre-linguistic perceptual processes such that a single set of cue values or template can be 

used for each category, regardless of the talker. For instance, vowel formant frequencies, 

which vary systematically with talker gender (Hillenbrand et al., 1995; Peterson, 1952) 

might be normalized with respect to the values of other formants, or the fundamental 

frequency (Strange, 1989). More recent approaches include what we termed “flat learner” 

models above, where a single set of cue-category mappings is dynamically adjusted based 

on recent input via something like Hebbian associative learning (Lancia & Winter, 2013; 

Mirman et al., 2006).

On the other hand, episodic theories avoid the problem of talker normalization altogether, 

because the detailed acoustic traces of, for instance, individual word or vowel tokens are 

stored separately, and recognition proceeds on the basis of overall acoustic similarity. By 

storing large enough (e.g. word-sized) acoustic traces, each remembered episode encodes 

enough information to be useful in distinguishing individual talkers, supporting talker-

specific cue-category mapping (Goldinger, 1998; Johnson, 1997b; Pierrehumbert, 2002). For 

unfamiliar talkers, new episodes are recognized based on some measure of overall similarity 

to stored episodes from other talkers, allowing generalization across talkers.

Insights and problems of each approach—We can think of these as two extreme 

endpoints for how to map from acoustic cues to linguistic representations. Abstractionist 
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accounts seek a minimal(single) set of cue-category mappings (possibly to be tuned and re-

tuned based on experience), while episodic accounts use a maximal set of cue-category 

mappings, one for every observation ever made. Each approach is founded on useful 

insights. Abstractionist models are informationally efficient, collapsing all the variability 

across situations into a compact set of sublexical cue-category mappings which supports 

efficient generalization across lexical items. Episodic models are infinitely flexible, and can 

pick up on any informative set of cues simply by virtue of tracking all of them.

But each approach also comes at a cost. For abstractionist accounts, normalization is hard, if 

not impossible, given that much of the variability across talkers is not due to fixed (e.g. 

physiological) factors but rather stylistic and thus needs to be learned (Johnson, 2006; Pardo 

& Remez, 2006). The Hebbian learning mechanisms that have been proposed typically 

operate at much longer time scales than the very rapid recalibration that is commonly 

observed (Guediche et al., 2014; Mirman et al., 2006). Even if the learning rate can be 

dynamically adjusted, existing proposals for “flat” learners cannot account for the speech 

perception system’s sensitivity to structure (e.g. persistent talker-specific representations). 

Episodic accounts which track raw acoustic episodes of a large enough size to 

simultaneously encode the phonetic features and the other acoustic information that tells you 

how to interpret those features (e.g. frication energy and adjacent vowel formants/f0 to get 

gender) cannot easily generalize recalibration to unheard words (Cutler et al., 2010). More 

importantly, episodic models cannot generalize across groups of different levels of 

specificity by simply recording acoustic episodes. Rather, they require some additional 

mechanism for “tagging” and filtering or weighting exemplars based on indexical variables.
31

Charting a middle course—Of course, these criticisms are based on extreme or purist 

interpretations of these two approaches, and there is no reason why abstractionist models 

cannot be made to be a bit more like episodic models and vice-versa. Indeed, this has been 

the trend in recent years, and a number of hybrid models have been called for or proposed 

(e.g., Ernestus, 2014; Goldinger, 2007; McLennan, Luce, & Charles-Luce, 2003). Of 

particular interest are proposals for abstractionist models that learn (Lancia & Winter, 2013; 

Mirman et al., 2006), and episodic models that track episodes at sublexical granularity 

(Pierrehumbert, 2006) or tag episodes with explicit indexical variables and use these to bias 

later recognition (Johnson, 2006, 2013).

In fact, the perspective offered by the ideal adapter suggests that some balance between 

complete abstraction and complete lack of abstraction is optimal. The particular balance 

depends both on the current situation(which might require more or less flexibility and hence 

sensitivity to individual episodes) and on the listener’s previous experience. A listener who 

has experienced input from a broad range of different generative models will have reason to 

believe that flexibility will be required in the future, and thus will be more likely to display 

it. A Listener who has experienced a narrower range or more consistent groupings has 

required less flexibility. The ideal. adapter framework relates an individual listener’s 

31Or, alternatively, a “smarter” similarity function that is somehow sensitive to the structure of the episodes, both linguistically and 
indexically (e.g., as discussed above, van den Bosch & Daelemans, 2013)
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(potentially idiosyncratic) structured experience with different cue-category mappings to the 

kind of representations that will best serve the listener’s needs, interpolating between 

complete abstraction and no abstraction. Like the rational model of categorization 

(Anderson, 1991), the ideal adapter framework proposes that listeners tune the specificity of 

their cue-category mappings based on their beliefs about the underlying structure of the 

world.

The ideal adapter framework thus incorporates insights from both abstractionist and episodic 

approaches. On the one hand, like episodic approaches, it recognizes the need to estimate 

cue distributions. On the other hand, it recognizes that there is a substantial benefit from 

having only a compact set of generative model parameters that need to be adapted in each 

situation. In this sense, our approach is inspired by normalization accounts. However, 

instead of adjusting the acoustic cue space to make all talkers align with a fixed set of cue-

to-category mappings, the ideal adapter adjusts the category-to-cue mappings for each 

situation. We have also tentatively proposed that there is a parallel trade-off at a higher 

level, in estimating the distribution of generative models themselves across situations. This 

suggests that listeners might be able to use exemplars in generative model parameter space 

(rather than acoustic space) to estimate, in an approximate, boundedly-rational way, the 

overall distribution of generative models across situations (Ashby & Alfonso-Reese, 1995; 

Gibson et al., 2013; Griffiths, Sanborn, Canini, & Navarro, 2008) and to adapt to the current 

situation (Shi et al., 2010). However, there is also a benefit from abstracting away from 

individual situations by explicitly representing summaries of different group-level 

distributions in order to generalize across groups. While there is some evidence that 

phonetic adaptation reflects updating of top-down category-to-cue representations rather 

than bottom up cue warping (Dahan, Drucker, & Scarborough, 2008), further work is 

required to determine whether this is what human listeners always do and to computationally 

flesh out these different approaches.

The role of subphonetic detail—The importance of subphonetic detail for categorizing 

speech has long been acknowledged, both by probabilistic, ideal observer models (Clayards 

et al., 2008; Feldman et al., 2009; Norris & McQueen, 2008; Sonderegger & Yu, 2010) and 

others (McClelland & Elman, 1986; Norris, 1994; Norris et al., 2000). For example, 

subphonetic detail is necessary for making linguistic inference in the face of variability and 

uncertainty. Higher levels of analysis benefit from knowing not just which phonetic category 

is most likely, but how certain that judgement is and what plausible alternatives are. To the 

extent that uncertainty can be carried through the different levels of inference, later evidence 

can be integrated rationally, allowing the listener to revise earlier interpretations when 

necessary. So-called right-context effects in spoken language processing show that listeners 

do, in fact, maintain uncertainty over the categorization of previous input (Bard et al., 1988; 

Connine et al., 1991; Dahan, 2010; Grosjean, 1985), and there is some evidence that the 

same occurs in written language processing, too (Levy, Bicknell, Slattery, & Rayner, 2009). 

Conversely, people are sensitive to information from anticipatory coarticulation (Dahan, 

Magnuson, Tanenhaus, & Hogan, 2001; Marslen-Wilson & Warren, 1994; McQueen, 

Norris, & Cutler, 1999; Whalen, 1984), where upcoming segments change how an earlier 
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segment is produced, providing probabilistic information about how to categorize later input 

and the underlying words.

The ideal adapter makes an even stronger claim about the importance of subphonetic detail. 

Compared to just speech recognition, a different (but overlapping) type of subphonetic detail 

is necessary in order to achieve robust categorization in the face of situational variability. 

We have argued that the distributions of cues corresponding to a category change across 

situations, and that robust categorization requires that these distributions be tracked. Such 

distributional learning relies on predictions about the subphonetic distribution of cues 

expected based on prior experience in order to detect when, and determine how, the current 

distributions deviate from what is expected. Two subphonetic variants of a particular 

category which would be classified—even probabilistically—in exactly the same way can 

nevertheless in principle produce very different adaptation effects because they signal 

different underlying distributions. That is, in order to effectively update beliefs about the 

distribution of cues for each category, the speech perception system needs to be sensitive, at 

some level, to types of subphonetic differences that are irrelevant for classification.

Moreover, because different talkers can produce different distributions (which are 

distinguished by potentially subtle subphonetic differences), subphonetic detail provides 

information about who is talking (Creel & Bregman, 2011; Pardo & Remez, 2006). In a 

world where phonetic category distributions vary systematically as a function of who is 

talking, any information about the talker, even at a general level like gender or language 

background, is informative about what kind of category distributions will most likely be 

appropriate. This not only determines how adaptation proceeds but also can determine how 

speech sounds ought to be categorized. Much of this information is contained in subphonetic 

details like voice quality (Pardo & Remez, 2006), but also, as we have argued, in 

subphonetic variation in phonetic cues themselves. Thus, our analysis suggests that even at 

fairly high levels of processing, the speech recognition system should be sensitive to 

subphonetic variation even when this variation is not directly informative about 

categorization.

Implications of the ideal adapter framework beyond speech perception

We now turn to the broader implications of this framework for speech perception, 

acquisition, and language comprehension. We begin by discussing the relation between 

adaptation in adults and language acquisition in infants. We then discuss how the proposed 

framework highlights an important parallel between learning (in the form of adaptation) and 

processing. Following that, we summarize parallels that the proposed account highlights 

between speech perception and language processing beyond speech perception. Finally, we 

suggest how our computational analysis of speech perception and the resulting models might 

be realized as process and mechanistic models, and some of the challenges in doing so.

Parallels between acquisition and adaptation: Both can be understood as a 
form of distributional learning—We have proposed that adaptation is a form of 

distributional learning and hence that distributional learning is a central part of processing 

spoken language by adult listeners in the face of variability across situations. Distributional 
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learning has also been proposed as a mechanism by which linguistic categories are learned 

during language acquisition in infants (e.g., Aslin, Saffran, & Newport, 1998; Gómez & 

Gerken, 2000; Saffran, Aslin, & Newport, 1996; Wonnacott, Newport, & Tanenhaus, 2008) 

and adults (e.g., Pajak & Levy, 2011; Saffran, Newport, & Aslin, 1996). This includes the 

acquisition of phonetic categories (e.g., McMurray et al., 2009; Toscano & McMurray, 

2010; Vallabha et al., 2007). For example, infants have demonstrated sensitivity to the 

distribution of acoustic cues to phonetic categories as early as 6 months of age (Maye et al., 

2002). This parallel has been taken to suggest that language acquisition and adaptation can 

be attributed to the same implicit learning mechanisms, which continue to operate 

throughout life (e.g., Botvinick & Plaut, 2004; Chang et al., 2006; Elman, 1990). We briefly 

review the arguments and challenges for such accounts.

While the adult listener has uncertainty about the distribution of cues associated with each 

category, the language learner faces the additional challenge of not knowing what the 

underlying categorical structure is. On top of the distributions (e.g. mean and variance), the 

language learner must therefore infer the existence and number of categories. Additionally, 

infant language learners must arguably do so from unlabeled data, so that at least the earliest 

stages of language acquisition require un supervised learning. Given these prima facie 

differences between adaptation and acquisition, it is striking that distributional learning 

models similar to the one we propose here have been found to account for phonetic category 

acquisition data (Feldman, Griffiths, et al., 2013; McMurray et al., 2009; Vallabha et al., 

2007), as well as acquisition of other linguistic structures (M. C. Frank, Goodman, & 

Tenenbaum, 2009; O’Donnell, Snedeker, Tenenbaum, & Goodman, 2011).

This and the work we present here have two implications for future work. First, our analysis 

of adaptation as central to speech processing suggests that the distributional learning 

mechanisms that seem to underly acquisition might continue to operate throughout life (as 

also proposed in Botvinick & Plaut, 2004; Chang et al., 2006; Elman, 1990). Adult listeners 

have acquired rich distributional knowledge about both the cue-to-category mappings 

(generative model) of their native language and the distribution of these mappings across 

talkers. Still, even adult listeners are routinely exposed to situations in which they need to 

learn novel statistics. In ongoing work, we have found that a model which correctly infers 

that there are two voicing categories based on unlabeled distribution of VOTs can also 

account for adult listeners shifts in categorization after hearing unlabeled, shifted 

distributions of VOTs, and strikingly can do so using a single set of parameters (Toscano, 

Munson, Kleinschmidt, and Jaeger, under revision). Thus it appears that some distributional 

learning may be involved from acquisition to adult language use, echoing life-long learning 

accounts.

In this context, it is worth noting that research on phonetic category acquisition has 

generally employed unsupervised learning models. The model we used in Part I was 

supervised. This is, however, not an in-principle limitation of the ideal adapter framework. 

Indeed, adults clearly can engage in unsupervised adaptation (Clayards et al., 2008; C. M. 

Munson, 2011). Further work is required to better understand the relative role of supervised 

and unsupervised learning (or the continuum between these extremes; e.g., Gibson et al., 
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2013; Zhu, Rogers, Qian, & Kalish, 2007) both during acquisition and in speech perception 

in adults.

Second, as we have pointed out, the distributional statistics of phonetic categories depend on 

talkers, accents, etc. (e.g., Figure 1). This raises the question of how infants acquire 

categories statistically unless they separate the observations they make based on who is 

talking. This is an underexplored question that deserves further attention in future work. 

Preliminary evidence comes from White and Aslin (2011), who find that 20-month-old 

toddlers demonstrate phonetic recalibration in paradigms similar to those used in research on 

adults. This suggests that infants may be learning talker- or situation-specific phonetic 

category representations, as we have argued for adults. Furthermore, some computational 

studies demonstrating the ability of distributional learning algorithms to extract categorical 

structure have used input data that comes from multiple talkers, even collapsing across 

gender (e.g., Feldman, Griffiths, et al., 2013). This increases category overlap, which a 

priori would seem to make it more difficult to learn good phonetic categories. If infants 

separate tokens according to who produced them (or even according to non-phonetic 

features like voice quality) then at least some of this difficulty may be overstated.

However, tracking talker-specific distributions of cues also means that learners need to track 

a set of speech sound statistics for each individual talker, instead of just a single set of 

language-level distributions (as is typically modeled). This introduces two types of costs. 

First, it requires more statistics to be represented (remembered). Second, there are fewer 

observations available for each (talker-specific) generative model that needs to be learned, 

decreasing the reliability of these models. One way to ameliorate both costs is to recognize 

generalizations across talkers. In any case, however, the costs introduced by talker-specific 

or group-specific expectations can be justified when the variation between talkers is so large 

that the differences in the cue distributions of phonetic categories within each talker are 

obscured. Future work could employ computational simulations to probe the statistical 

conditions under which this trade-off is predicted to work out in favor for talker- and group-

specific learning. Similarly, more experimental research is required on the changes in the 

way we learn and generalize throughout language acquisition.

Parallels between processing and learning: Both involve inference—Our ideal 

adapter framework is inspired by previous work which treats speech perception as a problem 

of inference under uncertainty (Clayards et al., 2008; Feldman et al., 2009; Norris & 

McQueen, 2008; Sonderegger & Yu, 2010). Like this previous work, we analyze the 

problem of speech perception via an ideal listener model where processing depends on the 

listener’s model of the statistics of phonetic categories. However, the models developed in 

this previous work generally assume (tacitly) that for the purposes of adult language 

processing, these statistics are known and fixed. Our analysis points out that this is not a 

reasonable assumption, because the lack of invariance introduces variability in these 

statistics across situations.

In the proposed framework, the lack of invariance means that learning is closely intertwined 

with processing of spoken language. One insight of the ideal adapter is that processing and 

learning are both instances of inference under uncertainty. An ideal listener uses knowledge 
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of how phonetic categories generate acoustic cues in order to determine which underlying 

category best explains an observed cue. In the same way, an ideal adapter uses knowledge of 

how different generative models produce different distributions of acoustic cues in order to 

update their beliefs about the appropriate generative model for the current situation. That is, 

in the ideal adapter framework, adaptation is inference at another level, inference of 

generative models.

There’s a deeper parallel between processing and learning in speech perception, as well. 

Phonetic categories don’t occur arbitrarily, in isolation, but have a regular structure 

determined by, for instance, the words of the language. An ideal listener uses knowledge 

about this structure to narrow down the possible explanations for a given acoustic cue 

through the prior p(c) (Feldman, Myers, White, Griffiths, & Morgan, 2013). In the same 

way, we have proposed that an ideal adapter should exploit the fact that changes in phonetic 

category distributions are systematically related to changes in talker, dialect, etc. This allows 

an ideal adapter to quickly and efficiently infer (re-learn) the distributions of a familiar 

talker when encountering them again, or to generalize from experience with talkers from a 

particular foreign accent group to a novel talker from the same group.

Language understanding beyond speech perception—The idea that language 

understanding involves prediction and inference under uncertainty has also guided work on 

language processing beyond speech perception. For example, expectation-based theories of 

sentence processing hold that comprehenders use knowledge of the statistics of syntactic 

structures in order to generate expectations about upcoming material (Hale, 2001; Levy, 

2008a; MacDonald, Pearlmutter, & Seidenberg, 1994; MacDonald, 2013; Tanenhaus, 

Spivey-Knowlton, Eberhard, & Sedivy, 1995). As for speech perception, reliance on such 

statistics is efficient (Levy, 2008a; Smith & Levy, 2013). As predicted by these theories, 

processing of structures which are highly likely given, say, a particular verb is faster than an 

alternative structure which is less likely (Garnsey, Pearlmutter, Myers, & Lotocky, 1997; 

MacDonald et al., 1994; Staub & Clifton, 2006; Trueswell & Tanenhaus, 1994). Similarly, 

word-by-word processing times in reading have been found to increase with decreasing 

contextual predictability of the word (specifically, its contextual surprisal, Demberg & 

Keller, 2008; Hale, 2001; S. L. Frank & Bod, 2011)

As is the case for phonetic categories, these statistics vary across situations (see Fine et al., 

2013, for references). Thus, the same argument that we have made here for phonetic 

categorization—that effective comprehension relies on good estimates of the talker’s 

generative model and deviations from expected statistics will lead to changes in 

comprehension—applies to syntactic processing, as well. Indeed, recent studies show that 

comprehenders do adapt to changes in the statistics of syntactic structures, with repeated 

exposure to a previously rare structure facilitating processing of that structure (Fine, Qian, 

Jaeger, & Jacobs, 2010; Fine et al., 2013; Jaeger & Snider, 2013; Kaschak & Glenberg, 

2004).

These syntactic adaptation effects have much in common with phonetic adaptation. They are 

both rapid, occurring after only tens of exposures to the critical structure (Fine et al., 2013; 

Kaschak & Glenberg, 2004), and there is some evidence that they are persistent, lasting over 
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multiple days (Wells, Christiansen, Race, Acheson, & MacDonald, 2009), and that unusual 

syntactic preferences can be explained away (Hanulíková, van Alphen, van Goch, & Weber, 

2012). Consistent with the hypothesis that such adaptation generally serves to make 

language comprehension robust to systematic situational variability, Kamide (2012) found 

that comprehenders tracked talker-specific syntactic preferences (high-vs. low-attachment), 

and that this adaptation was reflected in online processing.

Further reinforcing the tentative parallels between syntactic and phonetic adaptation, belief 

updating models similar to the one presented here can quantitatively account for these 

syntactic adaptation effects (Fine et al., 2010; Kleinschmidt, Fine, & Jaeger, 2012). 

Intriguingly, as we found here, these models also fit best with low effective prior sample 

sizes.

Similar findings are emerging for prosodic processing (Kurumada, Brown, Bibyk, Pontillo, 

& Tanenhaus, 2013), phonotactic constraints (Chambers, Onishi, & Fisher, 2010; Dell, 

Reed, Adams, & Meyer, 2000; Goldrick, 2004; Warker & Dell, 2006), pragmatic processing 

(Grodner & Sedivy, 2011), and semantic interpretation, such as quantifier processing 

(Yildirim, Degen, Tanenhaus, & Jaeger, 2013). This suggests that not only do people use 

their previous experience with the statistics of their language to predict upcoming material in 

order to facilitate comprehension, but that they are tracking situation-specific statistics and 

tuning their expectations to reflect changes in such statistics. The current work thus 

contributes to a growing literature that considers language comprehension to be intimately 

tied to adaptation and implicit learning (see also Dell & Chang, 2014; Chang et al., 2006; 

Fine et al., 2013; Jaeger, 2013; Jaeger & Snider, 2013; MacDonald, 2013).

Perception and learning beyond language—The problem of achieving robust speech 

perception in many situations in the face of the lack of invariance is not unique to speech or 

language. Generally, agents (both people and other animals) need to act effectively based on 

sensory cues, and the mapping from cues to the appropriate actions (or interpretations, more 

generally) can vary quite a bit. There is a very long literature on how agents manage to act 

appropriately in a variety of situations. Much of this comes down to learning new or 

adjusted cue-outcome associations, and as such the majority of the classical behavioral 

paradigms expose animals to highly novel cue-outcome mappings, in order to better assess 

and understand learning. However, a recurring theme in this work is that learners have to 

function in a multi-context world, where the cue-outcome mappings are not simply drawn 

from a single random distribution but rather depend systematically on factors of the 

underlying context.

Much of the work on such multi-context learning treats it as a change-detection problem, 

where the learner’s strategy is to detect when the context has changed and then change their 

learning strategy by, for instance, increasing the learning rate (e.g., Courville, Daw, & 

Touretzky, 2006; Gallistel et al., 2001). The ideal adapter framework offer an alternative to 

change detection models (see also related proposals discussed in Qian et al., 2012). By 

trying to infer the underlying generative model (or cue-outcome mapping) in each situation, 

changes in context can be detected implicitly. Further, by tracking context-specific 
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generative models, previous experience can be used to efficiently re-learn previously 

encountered contexts.

There is indeed some evidence that learners do not abandon previously learned associations 

when learning new associations. For instance, extinction (unlearning) of a classically 

conditioned response (e.g. a fear response or eyeblink) is not absolute, and the original 

conditioned association is still present and can re-appear under a variety of circumstances 

from re-introduction of the original context, very brief exposure to the conditioned 

association, or simply spontaneously (Thanellou & Green, 2011; Bouton & King, 1983; 

Sissons & Miller, 2009). Similarly, early exposure to perturbed audio-visual spatial 

correspondences in barn owls leads to more rapid re-adaptation to the same perturbation 

later in life, even with substantial un-perturbed experience in between (Körding, 

Tenenbaum, & Shadmehr, 2007; Knudsen, 1998; Linkenhoker, von der Ohe, & Knudsen, 

2005). Similarly, talker-and group-specific expectations in speech perception could be seen 

as resulting from context-sensitive associative learning, although we have not described it as 

such.

All of this raises the question as to whether the very same computational framework 

developed here—the ideal adapter—could be directly applied to the problem of domain-

general learning in a multi-context world. It is not entirely clear that the entities of the ideal 

adapter can be mapped to more general settings, even if the central idea is applicable. What 

is, for instance, the analogue of a talker, or a phonetic category?

Speech perception as a computational problem is characterized by two, largely orthogonal, 

types of structure: linguistic and indexical. Linguistic structure refers to the fact that acoustic 

cues signal the presence of underlying phonetic categories, lexical items, syntactic 

structures, etc. Indexical structure refers to the fact that these cue-category mappings—

which we have referred to as the generative model—vary across situations based (in large 

part) on who is talking, and other indexical variables like accent, dialect, gender, etc. The 

fact that the same set of generative model parameters (e.g. mean VOT of /p/) are relevant for 

all (or nearly all) talkers means that listeners have a lot to gain by combining experience 

with different generative models in different situations. But the same may not be true of 

other domains, where the underlying categorical structure of the stimuli itself varies across 

contexts.

This is not to say that the basic logic of the ideal adapter framework does not apply: people 

(and other agents) can benefit from tracking the structure of how cue statistics vary across 

situations to the extent that this variation is structured. By the same logic, a learner should 

not build a model of how sensory statistics vary across situations if that variability is 

unpredictable. In such a domain, the ideal adapter predicts that people would not show 

situation-specificity, but rather continuously adapt.32 Similarly, in a domain where the 

variability across situations is informative about both the cue-category mappings and what 

categories are relevant, then there is little benefit to tracking the distribution of category 

32This leaves aside the possibility of any higher-level inference about whether or not situation-specificity is appropriate that people 
may be doing.
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statistics across situations. That is, if each category is only relevant in one particular 

situation, then by the logic of the ideal adapter framework, people might not generalize 

across situations.

This is also an argument for speech perception as a good test case for theories of multi-

context learning. Variability in speech is highly structured—both linguistically and 

indexically—so that listeners pick up on and use both kinds of structure.

Conclusion

The proposed ideal adapter framework provides a potential solution to one of the oldest 

questions in research on speech perception: how do listeners overcome the computational 

problem caused by the lack of invariance of the speech signal? Recent proposals treat speech 

perception as a problem of inference under uncertainty about the phonetic category (or other 

linguistic unit) that a talker intended to produce (e.g., Clayards et al., 2008; Feldman et al., 

2009; Norris & McQueen, 2008). The ideal adapter extends these models by treating speech 

perception as a problem of inference under uncertainty at multiple levels. Robust speech 

perception requires that listeners continuously draw inferences not only about what the 

talker is trying to communicate, but also about the cue-category mappings that the talker is 

using (i.e., the talker’s generative model). Moreover, in order to determine what previous 

experience is relevant in making these inferences, and how relevant it is, these inferences in 

turn depend on higher-level inferences about who the talker is. This ranges from specific 

talker identity—supporting recognition of familiar talkers—to more general groups like 

gender, accent, or dialect—supporting generalization across similar talkers. The proposed 

multi-level inference solution can capture a variety of otherwise puzzling properties of 

speech adaptation and provides a guiding framework for future research on speech 

perception, adaptation, and generalization.

The challenges posed by variability are not unique to speech perception, but rather general 

to the problem of effective perception and action in a variable world. This problem has been 

explored in the context of motor control (e.g., Körding, Beierholm, et al., 2007) and 

reinforcement learning (e.g., Cho et al., 2002; Gallistel et al., 2001), where it is typically cast 

as a problem of detecting changes in the statistics of the local environment (change 

detection). Our proposal highlights the fact that in a world where substantial parts of cross-

situation variability are not random, but rather structured, simply detecting changes is not 

enough. Rather, learners can benefit from inferring the underlying structure to cross-

situation variation, in order to recognize familiar situations and generalize to similar 

situations. In speech perception, the major source of variation across situations is the talker, 

but the same logic can be applied to other domains (Qian et al., 2012; Qian, Jaeger, and 

Aslin, submitted). The ideal adapter highlights the potential of speech perception to serve as 

a model organism for understanding perception in a variable—but structured—world, and 

suggests that superficially unrelated phenomena from non-linguistic perceptual/motor 

domains might be informative about language processing and acquisition and vice-versa.
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Appendix

Modeling methods and assumptions

This appendix lays out the basic Bayesian belief updating model proposed as part of the 

ideal adapter framework. We first summarize the formal specification of the model. As we 

describe in the main text, the model assumes that adaptation takes place over a cue 

dimension that might integrate auditory and visual information. The arguments for this 

assumption, potential caveats, and our reply to those caveats are summarized next. We then 

describe how the model’s parameters were fit to the behavioral data from Vroomen et al. 

(2007) and our own study. Throughout these sections we state the assumptions made by our 

model and model fitting procedure. Crucially, none of these assumptions creates a bias in 

favor of our hypothesis. Finally, we provide a table that summarizes our assumptions.

Model specification

To quantify and test the qualitative predictions of the ideal adapter framework, we 

implemented a basic Bayesian belief updating model. This model makes a number of 

simplifying assumptions. The most notable is that we consider only two categories in this 
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model, /b/ and /d/, and assume that the prior beliefs about their means and variances are 

independent

(26)

Combined with the fact that participants in these experiments reliably classify even the 

auditorily ambiguous audio-visual adaptors as the intended categories (Vroomen et al., 

2004), this simplifies belief updating (Equation 8).

The form of the individual category parameter priors was also chosen for reasons of 

computational convenience. We use the conjugate prior for the Normal distribution with 

unknown mean and variance, a Normal-χ−2 distribution (Gelman et al., 2003). This 

distribution factorizes the joint prior into two components:

(27)

(28)

The prior on the variance is a χ−2 distribution, with two parameters, ν0 and .  is the 

expected value of the category variance , while ν0 represents the effective prior sample 

size for the mean (reflecting the uncertainty about , see main text) The prior on the mean 

is conditioned on the value of the category variance, and is a Normal distribution. The 

expected value of that normal distribution is the prior mean parameter μ0,c. Its variance is 

, i.e., the category variance divided by the effective prior sample size for the mean κ0.

Belief updating with a conjugate prior—Using a conjugate prior is convenient 

because after updating with observations X = x1, …, xn (whose mean value is x̄ and sample 

variance is ), the posterior is also a Normal-χ−2 distribution, with updated 

parameters (Gelman et al., 2003):

(29)

(30)

(31)

(32)

These parameter updates have intuitive interpretations: the κ0 and ν0 parameters are 

‘pseudocounts’, or the effective sample size of the prior. To update them from their prior to 

posterior values, they are both incremented by n, the number of observations. The updated 
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mean μn,c is a weighted average of the sample mean (weighted by the actual sample size n) 

and the prior mean (weighted by the prior effective sample size of the mean κ0). The 

updated expected variance  is also a weighted average, of the observed variance ns2 

(weighted by the actual sample size n), the prior expected variance  (weighted by the 

effective prior sample size, ν0), and a third term, which accounts for deviation of the 

observed mean from the expected mean μc,0. This last term is weighted by nκ0/κn, which 

gets larger (relative to the weights of the other terms, n and ν0) when n ≈ κ0.

What happens to the expected mean and variance when more and more observations are 

made? Specifically, what happens when n becomes much larger than the prior effective 

sample sizes for the variance ν0 and mean κ0? First, the posterior mean μn converges to the 

observed mean x̄ (since n/κn = n/(κ0 + n) ≈ 1 when n ≫ κ0). Second, and similarly, the 

expected variance converges on the observed variance. That is, with a lot of data about the 

current situation the model’s beliefs will converge against the actual statistics of that 

situation. In both cases, the stronger the prior beliefs (larger prior sample sizes κ0 and ν0), 

the more observations it takes to overcome the listener’s prior beliefs. These prior effective 

sample size parameters can thus be understood as controlling the strength and speed of 

adaptation effects.

Incremental belief updating—If all the individual, observed cue values for each 

category are assumed to be statistically independent (conditioned on the mean and variance), 

then the joint likelihood of all observed cues is equal to the product of the individual 

likelihoods, and thus

(33)

(34)

(35)

(36)

That is, the listener’s beliefs after the Nth observation are a combination of their beliefs 

about the means and variances after all N − 1 preceding observations, combined with the 

likelihood of the current observation given those beliefs.

One insight this provides is that it is not always necessary to maintain a full record of all 

observations made so far, or even their statistics. Rather, it is sufficient to just track the 

posterior distribution over means and variances after each token. This leads naturally to 
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approximate inference methods like particle filters, which approximate beliefs after N −1 

observations via a set of “particles”, each a particular set of means and variances, with the 

particles collectively approximating the full distribution . After observation N, each 

particle’s estimate is updated, with particles failing to predict observation N effectively 

being thrown out and particles which do effectively predict observation N persisting or even 

being “cloned” to replace the rejected particles. Particle filters have been shown to be a 

reasonable approximation of Bayes-optimal inference in distributional learning 

categorization problems, and match human performance well even with a small number of 

particles (Sanborn et al., 2010).

Audio-visual cue integration

Next, we discuss the model’s assumptions about the nature of the dimension over which 

adaptation takes place. This part of the model is not a consequences of the ideal adapter 

framework. Instead, it is motivated by evidence for cross-modal interactions in audio-visual 

speech processing (Bejjanki, Clayards, et al., 2011; McGurk & MacDonald, 1976). Given 

evidence for such cross-modal interactions, we remain agnostic about the level at which 

listeners are adapting to the audio-visual stimuli. Specifically, we treat as a free parameter 

whether listeners adapt to a purely auditory representation of the perceived cues, or to some 

representation which integrates information from both auditory and visual cues. After 

describing how this was implemented in the model, we summarize possible objections to 

this aspect of the model and our reply to these objections.

Linear cue combination—Under reasonably general assumptions, information from 

auditory and visual cues to the same phonetic dimension can be optimally combined into a 

multimodal cue value by a weighted sum x = wax(a) + wυx(υ), where the weights wa and wυ 

sum to 1 and are proportional to the reliability of the auditory and visual cues (Bejjanki, 

Clayards, et al., 2011; Ernst & Banks, 2002; Jacobs, 2002; Knill & Saunders, 2003; Toscano 

& McMurray, 2010).

We incorporate this into our model via treating the perceived cue values x as a weighted sum 

of the continuum values for the auditory and visual tokens x = wx(υ) + (1 − w)x(a), where the 

weight w is a free parameter. For the audio-visual adaptors used in this experiment, in the /b/ 

condition the visual cue indicates a prototypical /b/, and so x(υ) = 1, while the auditory cue 

indicates an ambiguous /b/-/d/, x(a) = xbd ≈ 5 (depending on the particular participant’s most 

ambiguous stimulus).

The linear combination of these two cues results in an integrated cue estimate somewhere in 

between, not quite prototypical but not fully ambiguous. Note that for our model fits, the 

best-fitting cue weights are in general roughly equal (w ≈ 0.5), which suggests that the 

perceived cue value for the audiovisual adaptor is substantially less ambiguous than the 

auditory cue. This is hardly surprising given well-known cross-modal effects on speech 

perception with similar consequences, such as the McGurk effect (McGurk & MacDonald, 

1976). The assumption that the audio-visual stimulus is not really ambiguous is also 

consistent with our finding from pilot studies that participants can reliably classify the 

ambiguous audiovisual adaptor stimuli (which also justifies somewhat our assumption—
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made solely for the sake of convenience—that the category label of each adaptor stimulus is 

known with certainty).

Is there evidence against audio-visual integration in adaptation?—Our decision 

to include audio-visual cue integration in the model is supported by a wealth of evidence 

that audio and visual cues are processed together in speech perception (e.g. Bejjanki, 

Clayards, et al., 2011; Massaro, 2004; Van Wassenhove, Grant, & Poeppel, 2005; Vatakis & 

Spence, 2007). There are, however, two studies that have looked specifically at selective 

adaptation to audio-visual adaptors, and contrary to what we propose here, have concluded 

that selective adaptation is driven entirely by the adaptor’s audio component (Roberts & 

Summerfield, 1981; Saldaña & Rosenblum, 1994). Since these studies might be taken to 

argue that we introduce unnecessary complexity into the model, we briefly discuss them.

The audio-visual adaptors used by Roberts and Summerfield (1981) and Saldaña and 

Rosenblum (1994) differ from the adaptors used by Vroomen et al. (2007) and our 

replication, in that the audio and visual components had large, categorical mismatches. 

Roberts and Summerfield (1981) used auditory-/b/, visual-/g/ adaptors, intended to evoke 

a /d/ percept (as in McGurk & MacDonald, 1976), but found selective adaptation effects on 

a /b/-/d/ continuum that were indistinguishable from an audio-visual /b/ adaptor. However, 

their participants did not generally perceive the adaptor in this way, with only half reporting 

an alveolar /d/ or /ð/, and the others reporting /kl/, /m/, of /fl/. This contrasts with with the 

perception of the stimuli in Vroomen et al. (2007) and our own studies, where participants 

reliably classified the audio-visual adaptor stimuli as ‘labeled’ by the visual component.

Saldaña and Rosenblum (1994) is more relevant for the current purpose. They used an 

audio-/ba/, visual-/va/ adaptor stimulus which was consistently identified as /va/ by 

participants. This produced a selective adaptation effect on a /ba/-/va/ continuum equivalent 

to that of its audio /ba/ component presented separately. However, it is not possible to tell 

whether the observed effect was due to selective adaptation of /b/, or recalibration of /v/, 

since both would produce a shift in the category boundary towards /b/. If the visual and 

auditory cues are integrated as we have tentatively proposed, and the visual cue weight is 

higher than the auditory weight, then the audio-visual integration would be an imperfect /v/, 

leading in our model to both a /v/ percept and recalibration of /v/ and fewer /b/ responses.

In sum, it is broadly accepted that speech perception involves cross-modal cue integration. 

Whether adaptation can take place over those integrated cues is an open question that 

previous literature does not speak to. Our own results suggest a positive answer (since the 

best-fitting visual cue weight w ≈ .5 in all our studies).

The (ir)relevance of audio-visual integration for the interpretation of our 
results—Treating the adaptor cue value as a linear combination of the audio and visual 

cues has two main effects in our model. First, it causes recalibration to saturate somewhere 

below the maximum possible aftereffect of +1 (all adaptor-category responses). Second, it 

causes recalibration to peak and then decrease with further exposure. Neither of these 

consequences comes from the combination of audio and visual cues in the model per se, but 
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rather from the fact that such combination causes the adaptor percept to be perceived as not 

fully ambiguous.

There are other possible reasons this might occur besides cue integration, such as a 

perceptual magnet effect. Feldman et al. (2009) explain the perceptual magnet effect as a 

result of the listener’s attempt to infer what cue value the talker intended to produce based 

on an observed cue that is corrupted by noise variability or sensory uncertainty.33 In such a 

model, the listener’s knowledge of the category distributions acts as an additional cue, which 

is combined with the noisy percept. Many of the aspects of the perceptual magnet effect can 

be explained by assuming that what the listener perceives—for the purposes of making 

responses in a perceptual magnet experiment—is the best guess about the talker’s intended 

production, which is a combination of the actual cue value perceived and the cue values 

expected based on the category structure. Furthermore, when the listener knows that the 

talker intended to produce a particular category, this framework predicts that the perceived 

cue is pulled towards that category mean, which is very similar to the effect of cue 

integration with a prototypical visual cue value.

Regardless of whether the perceptual magnet effect (through visual labeling of the auditory 

stimulus) or early audio-visual integration cause the audio-visual stimulus to be substantially 

less ambiguous than the auditory, the underlying (statistical) logic of the two approaches is 

very similar. The standard cue integration model (Ernst & Banks, 2002) assumes that the 

perceiver is trying to get a good estimate of an (unobserved) quantity (like the talker’s 

intended production) which is noisily approximated by multiple cues. When the two cues are 

corrupted by independent Gaussian noise, this gives rise to an optimal strategy of taking an 

average of the individual estimates yielded by the two cues, weighted according to their 

reliability. Similarly, in the perceptual magnet model of Feldman et al. (2009), when the 

category and noise distributions are Gaussian, the best estimate of the intended cue value is 

the same, reliability- (inverse variance-) weighted average of the category mean and the 

observed cue value.34

Why would the ideal adapter combine information about the intended production from 

multiple cues before adaptation? Within-category variability is not only meaningless noise, 

but rather might additionally reflect factors like coarticulation, or other systematic changes 

in cue value. This means that the cue values we have treated as relevant only for making a 

single, categorical decision (e.g. /b/ vs. /d/) are actually potentially informative about other 

nearby segments as well. Thus, the talker’s intended cue value, in addition to their intended 

category, reflects nearby categories as well. This fact, combined with non-uniform 

33Here we use “noise” as a shorthand for noise and sensory uncertainty. Such uncertainty is not necessarily due to noise in the sense 
of random variability but also arises from, for instance, the limited resolution in the neural representation of particular stimulus 
parameters or a mismatch in the type of features encountered and those assumed by upstream neural decoding (Beck, Ma, Pitkow, 
Latham, & Pouget, 2012).
34For the purposes of adaptation, the major practical difference between an explanation in terms of the perceptual magnet effect and 
an explanation in terms of cross-modal cue integration would be that as the listener updates their beliefs about the category mean, the 
value of the perceptual magnet cue would change with exposure, whereas the value of the visual cue (presumably) does not. Of 
relevance is evidence that prolonged repeated exposure can also erase lexically-driven recalibration (where there is no visual cue 
available): Vroomen et al. (2007) re-analyzed data from Samuel (2001), and found that a lexically disambiguated, auditorily 
ambiguous adaptor elicited the same pattern of initial positive and long-run negative aftereffects as their visually-disambiguated 
adaptor. This suggests that an explanation of long-run recalibration behavior which relies on adaptation to integration of audio-visual 
cues per se is inadequate.
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transitional probabilities between different categories, means that when considered as a 

distribution over multiple cues, the distribution for each category can be thought of as highly 

structured, to the extent that meaningful variability in a cluster of cues is stronger than 

meaningless noise variability in those cues.

With multiple cues, within-category variability due to the influence of neighboring segments 

might thus lie a low-dimensional manifold, the shape and structure of which is determined in 

part by how possible contexts influence the cue values corresponding to each category. 

Treating the bottom-up sensory signal as a likelihood over intended productions (as do 

Feldman et al., 2009) and combining it with a structured prior in essence filters the uncertain 

sensory estimates in such a way as to maximize information about meaningful within-

category variation in cue values and minimize variability due to uninformative noise.

Using such an integrated cue value for belief updating would not be strictly optimal in a 

Bayesian sense. It could still, however, reflect constraints imposed by a system which is 

optimized for processing running speech, rather than estimating the distributions of raw 

acoustic cue values for each single category in isolation. Support for this idea comes from 

findings that listeners do use information about the onset of an upcoming noun contained in 

the vowel of the determiner ‘the’ to launch saccades to the corresponding target in a visual 

world task before the onset of the target noun itself (Salverda, Kleinschmidt, & Tanenhaus, 

2014).

Next, we describe how the model was fit to the behavioral data from Vroomen et al. (2007) 

and our own study.

Model fitting and parameter estimation

The updating rules of the conjugate prior (29) suggest natural ways of fitting the model to 

the data from Vroomen et al. (2007). First, there is a natural separation between the expected 

value parameters, μc,0 and , which determine the category means and variances the 

listener believes are most probable before the adaptation phase begins, and the effective 

prior sample size parameters, κ0 and ν0, which determine how willing they are to update 

those beliefs. The expected means and variances can be set a priori, based on pre-test data. 

These are thus fixed by the data, rather than being free parameters. Only the effective prior 

sample size parameters must be fit to the actual adaptation data.

While it is in principle possible to fit each participant’s data individually, the amount of data 

available from each participant is very small (only six trials per test block) and leads to 

unstable parameter estimates. We thus chose to use the aggregate data. Another possibility 

would be to fit a model with a linked prior on the hyperparameters ν0, κ0, and w that allows 

for systematically limited variability between listeners. While the insights into possible 

individual differences would be enlightening, the primary purpose of the current study is to 

demonstrate the mechanics of the proposed framework. We therefore leave additional 

modeling improvements to future work.
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Estimating prior expected means and variances from pre-test data—We used 

the pre-test classification data collected by Vroomen et al. (2007) to estimate the underlying 

means and variances of the corresponding Gaussian mixture (Feldman et al., 2009).

For a mixture of two Gaussian distributions—/b/ and /d/—with equal variance σ2, the 

categorization function p(C = b | x) is a logistic function (1 + exp(−gx + b))−1, with slope g 

and intercept b related to the means μb and μd and the variance σ2:

(37)

To estimate b and g from the pre-test data, one additional degree of freedom in Equation 37 

needs to be held constant. We chose to fix the distance between the means, μb − μd. Given 

these values, the values for (μb + μd)/2 (the middle of the participant’s subjective continuum) 

and σ2 can be calculated using

(38)

The difference between the means sets the scale of the continuum, and we chose to use μb − 

μd = 8, the length (in steps) of the acoustic continuum, which stretches from x = 1 (derived 

from a natural /aba/) to x = 9 (from a natural /ada/). This is roughly equivalent to assuming 

that all subjects would accept these tokens as good productions of /aba/ and /ada/, which 

indeed they do (Vroomen et al., 2004).

This method makes two assumptions. First, it assumes that participant’s subjective prior 

probabilities of /b/ vs. /d/ (regardless of the cue value) are equal. This is not difficult to relax 

(it only shifts the boundary of the classification function by the log ratio of the prior 

probabilities; Feldman et al., 2009), and the model’s predictions are qualitatively unchanged 

when the prior probability of /b/ vs. /d/ is included as a free parameter.

Second, it assumes that the prior variance of the two categories is equal. There are two 

reasons why this assumption (though probably false) is sufficient for our purpose. First, 

based on pilot simulations, asymmetric prior variance results in asymmetries between 

recalibration by  and  which appear as a overall bias towards more /b/ or /d/ responses 

with further exposure, regardless of the exposure category. Using the aftereffect difference 

score as the dependent measure largely removes any effect of this bias, because taking the 

difference between the /b/ and /d/ exposure conditions removes this positive correlation (see 

Figure 5). Second, and more importantly, asymmetric prior variance does not change the 

qualitative predictions about the build-up and decay of recalibration overall, and the purpose 

of setting prior parameters based on non-adaptation data is to reduce the flexibility of the 

model in order to more clearly evaluate the hypothesis that phonetic adaptation reflects 

incremental belief updating.35

Individual listeners’ classification functions show a fair amount of variability, but all have 

comparable slopes and boundaries roughly in the middle of the continuum. For this reason, 
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we fit a mixed effects logistic regression model (Jaeger, 2008) to the pre-test data, which 

allows for some variability in the slope and intercept of each subject, and so better estimates 

the slope and intercept most representative of the population. The prior parameters were set 

based on this slope and intercept as above, with μb,0 = 1.10, μd,0 = 9.10 and .

Generating predictions from prior confidence and visual cue weight 
hyperparameters—The free parameters—ν0, κ0, and w—were fit to the listeners’ 

responses during test trials, which occurred after exposure to 1,2,4, …, 256 adaptor stimuli.

Model predictions were generated for each test block in the following way. For a test block 

after n cumulative exposures to the /b/ adaptor, model predictions are generated assuming 

that the observed values are n repetitions of the most ambiguous cue value (X = {x1, …, xn}, 

xi = xbd) which are labeled as /b/ with very high certainty (C = {c1, …, cn}, ci = b) by the 

visual component (and vice-versa for /d/ exposure trials). The response of the ideal adapter 

to test stimulus xtest depends on the posterior distribution over category parameters given the 

exposure to the adaptor thus far, :

(39)

(40)

Because of the conjugate prior we used, the posterior  is found analytically, 

by updating the hyperparameters (κ0, ν0, μb,0, ) as described above in equations (29)–

(32). Specifically, they were updated with the sample statistics, which have count n, mean x̄ 

= wxvisual + (1 − w)xbd (where the visual cue value xvisual = 1 for visual /b/ and xvisual = 9 for 

visual /d/), and sample variance s2 = 0.

The particular choice of prior is also convenient in that the integral in (39) can be evaluated 

analytically, with the result that the marginal likelihood p(xtest | ctest = b, X, C) has a scaled t 

distribution, with mean μb,n, variance (squared scale) , and degrees of freedom 

νn (Gelman et al., 2003). The marginal likelihood of the xtest under the other, un-adapted 

category, is analogously found from the prior hyperparameters, κ0, ν0, μd,0, , and the 

marginal posterior probability p(ctest = b | xtest, X, C) can then be found for each test 

stimulus based on Equation 40. The marginal posterior probabilities for the three types of 

test stimuli are averaged to produce the model-predicted probability of a /b/ or /d/ response 

on test block n (depending on whether the visual cue indicated /b/ or /d/, respectively).

35Note that it would in theory be possible to estimate prior category variances directly from other data, removing the need for the 
simplifying assumption of equal prior variances. For example, prior variances could be estimated from aggregate or even individual 
production data, discriminability data (Kronrod et al., 2012), goodness-of-exemplar judgments (Pisoni & Tash, 1974; Andruski, 
Blumstein, & Burton, 1994) or any combination thereof. The exploration of these directions for model improvement are left for future 
work.
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Likelihood of test stimuli—To fit to the overall data, the likelihood of the data was 

calculated based on the number of responses that were the same category as the adaptor. 

These adaptor-category response counts were summed in each block. That is, for a /b/-

exposure block, /b/ responses were considered ‘positive’ responses, while /d/ responses were 

considered ‘positive’ responses for test blocks during /d/ exposure. This adaptor-category 

response rate is essentially equivalent to the aftereffect difference score: if yb and yd denote 

the proportion of /b/ responses after /b/ and /d/ exposure respectively, zb = yb and zd = 1 − yd 

denote the proportion of adaptor category responses after /b/ and /d/ exposure, and 

is the average adaptor category response overall, then the aftereffect can be found via 2z − 1 

= zb + zd − 1 = zb − (1 − zd) = yb − yd = yAE.

The likelihood of the adaptor-category response counts given the total number of trials and 

the model predicted adaptor-category response probability for each block and condition 

(derived from particular values of the hyperparameters ν0, κ0, and w) was evaluated by a 

binomial likelihood distribution. Specifically, if zj is the number of adaptor-category 

responses at test block j, out of nj test trials in that block (in both cases summing across 

participants), and θj is the model-predicted probability of adaptor-category response, then 

the likelihood of block j is

(41)

and the joint likelihood of the data is

(42)

Because a binomial likelihood was used for fitting the model to the data, the error bars on 

the data show the confidence intervals for the rate parameter of a binomial distribution with 

the observed counts of adaptor-category responses and non-adaptor-category responses. 

These were calculated as the 2.5% and 97.5% quantiles of the posterior distribution for the 

adaptor-category response rate, which is  assuming a non-

informative (Jeffrey’s)  prior (Gelman et al., 2003). These quantiles were 

transformed to the aftereffect scale for visualization in the same way as the data, and for the 

proportion-/b/ response plots were calculated based on the number of /b/ and /d/ responses 

instead of the number of adaptor-category responses.

Sampling and hyperpriors—This joint data likelihood was combined with a weak, 

regularizing prior, p(log κ0) = p(log ν0) = Normal(0, 100), which has a 95% interval that 

stretches from about ν0 = 10−9 to 109, with a mode of 1. Any prior sample size that is a few 

times larger than the maximum sample size (256) results in essentially no adaptation; in this 

range the prior is essentially constant (the prior probability of ν0 = 1, the value which 

maximizes the prior probability, is only 1.2 times greater than the prior probability of ν0 = 
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1000, and likewise for κ0), and thus this prior has essentially no influence on the fit of the 

model. For the visual cue weight w the prior was uniform between 0 and 1 and thus 

uninformative.

The posterior distribution of the hyperparameters is not easy to find analytically, and so 

samples were drawn from this distribution using a hybrid Gibbs/slice sampler, where each 

hyperparameter is sampled in turn via slice sampling (Neal, 2003), given the last sampled 

values of the other parameters. The samples can be used to find the maximum a posteriori 

(MAP) estimate of the best-fitting parameter values, as well as the full joint posterior. The 

joint posteriors of the confidence parameters (mean prior pseudocount κ0 and variance prior 

pseudocount ν0) for the fits to the build-up of recalibration, build-up of selective adaptation, 

long-term effects in both, and the Mechanical Turk replication data are shown in Figure A1.

Model assumptions

In order to relate the qualitative predictions of the ideal adapter framework to the behavior 

of human listeners, it is necessary or convenient to make some simplifying assumptions. 

Table A1 review these assumptions, whether they are justified, and if not, whether violating 

them leads to problems for the conclusions we reach from our modeling results. Many of 

them have already been introduced and discussed above. None of these assumptions bias the 

results of the modeling towards better fits. If anything many of them make it harder for the 

model to fit data which violates them.

All of these assumptions are assumptions of the model, and not the ideal adapter framework. 

In particular, the assumption that all observed cues (from one category) are identically 

distributed goes against the basic point of the ideal adapter analysis that cue distributions 

change from one situation to another, but it is a necessary simplification for specifically 

modeling beliefs about cues in the particular situation of a laboratory experiment. Also, a 

true ideal adapter would use their prior experience with category variance and base rate 

category probabilities to set these for each category, but we assume they are equal for /b/ 

and /d/ because this is a convenient simplification which reduces the number of 

hyperparameters that need to be estimate to fit the model without qualitatively changing the 

predictions.

Kleinschmidt and Jaeger Page 92

Psychol Rev. Author manuscript; available in PMC 2016 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure A1. MCMC-estimated joint posterior density (contours) and MAP-estimates 

(asterisks) of prior confidence parameters for all studies presented in the main text. Black 

asterisk shows MAP estimate for combined fit, and colored asterisks show earlier fits. Blue 

asterisk shows the MAP estimate for the selective adaptation condition, and red the 

recalibration condition. Panel (a): perceptual recalibration data from Vroomen et al. (2007) 

up 64 exposures (replotted for convenience). Panel (b): selective adaptation data from 

Vroomen et al. (2007) up to 64 exposures. Panel (c): data from both recalibration and 

selective adaptation Vroomen et al. (2007) up to 256 exposures. Panel (d): data from our 
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web-based experiment. Light grey asterisk shows MAP estimate for these fits and dark 

asterisk shows MAP estimates from fit to Vroomen et al. (2007) data for comparison.

Table A1

Assumptions of the belief updating model used to evaluate the ideal adapter framework 

predictions.

Assumption Simplification justified by data? Problem?

Independently and 
identically distributed cues.

No: non-stationarity/lack of invariance 
means cue distributions are different.

Not for modeling first block adaptation 
in the lab (listeners seem to assume 
that they’re in a totally new situation).

Equal prior variances Probably not, a priori. Also, pilot simulations 
show that asymmetrical prior variance leads 
to an overall increase or decrease in the 
proportion of /b/ responses regardless of the 
exposure category, and the same pattern 
shows up in the data.

Not when using the aftereffect 
measure, which effectively controls for 
changes in overall rate of /b/ responses.

Equal prior probability 
of /b/ vs. /d/

No. /b/ is more than twice as likely as /d/ in 
this context (Vitevitch & Luce, 2004). 
However, listeners make roughly equal 
numbers of /b/ and /d/ responses during pre-
test so they could infer that /b/ and /d/ are 
equally likely in this task.

No, based on pilot simulations there’s 
no qualitative difference.

No change in beliefs about 
prior probabilities

Unclear. No. When confidence in prior 
probability is included as a free 
hyperparameter, it’s always inferred to 
be very high (no change).

Labeled data (supervised 
adaptation)

Yes. Listeners can classify the ambiguous 
audio-visual stimuli nearly perfectly (98%), 
and they can’t discriminate between 
ambiguous and prototypical audio-visual 
adaptor from the same category (52% on an 
ABX task; Vroomen et al., 2004).

Only labeled data counts 
for adaptation

Unclear. Listeners can adapt to shifted 
distributions without additional information 
(C. M. Munson, 2011). Fully optimal ideal 
adapter predicts beliefs should be partially 
updated (7), but depends on tracking the full 
posterior distribution for all previous 
observations which may be psychologically 
implausible.

Probably not: doubling the number of 
test trials doesn’t change adaptation. 
Other category learning studies suggest 
that when there are many unlabeled 
training items, they have little 
influence on later behavior (Zhu et al., 
2007), but it’s a question for future 
work.

Adaptation to integrated 
audio and visual cues

Maybe, see main text for discussion. Probably not. There are other reasons 
why the ambiguous audiovisual 
adaptor might not be perceived as 
ambiguous for the purposes of 
adaptation as discussed above.

Normal distributions for 
cues; Normal-χ−2 parameter 
distributions

Normal cue distributions are a common 
assumption in computational modeling, and 
using a conjugate prior is a natural, 
convenient choice.

No: any distribution that is 
informationally efficient (has few 
enough effective parameters) would 
predict the same kind of rapid/stable 
adaptation.

Order of trials doesn’t 
matter (exchangeability)

No: Kraljic et al. (2008) and carry over 
effects between blocks observed in our own 
data and Vroomen et al. (2007) (see 
Supplementary Material for discussion).

No: when modeling just the first block 
of exposure to simple cue statistics, 
exchangeability is probably reasonable.

Independence of prior 
beliefs about different 
categories

No. For instance: vowel F1 means are all 
higher for female vs. male talkers, which 
introduces positive correlations between the 
means across talkers (Hillenbrand et al., 
1995).

Probably not, especially when prior 
beliefs are weak, as we have argued is 
expected in laboratory studies with 
unusual speech (and is supported by 
the estimates of weak prior 
confidence).
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Figure 1. 
Distribution of frication frequency centroids, a crucial cue to the contrast between /s/ and /ʃ/, 

from two talkers (reproduced with permission from Newman et al., 2001, copyright 2001 

Acoustical Society of America).
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Figure 2. 
Spectrograms for /aba/ (top) and /ada/ (bottom) with formant tracks (synthesized as 

described in Vroomen et al. (2004) and provided by Jean Vroomen). Note the higher second 

formant (F2) locus for the transitions into and out of the closure for /ada/.
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Figure 3. 
Relationship between F2 locus likelihood functions p(x|c) (top) and posterior probability 

of /b/, or classification function p(c|x) (bottom; assuming p(c) = 0.5 for both c =/b/ and /d/), 

for three different talkers: a ‘normal’ talker (Norman), a ‘shifted’ talker (Sherman), and a 

‘precise’ talker (Priscilla). Dashed lines show the /b/ likelihood function and classification 

function corresponding to the ‘normal’ talker. Light gray line in top left shows the marginal 

likelihood, p(x) = Σ p(x|c)p(c), which corresponds to the overall distribution of cue values, 

regardless of which category they came from, and is the sum of the two likelihood functions.
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Figure 4. 
Schematic illustration of the results of perceptual recalibration on classification of a /b/-/d/ 

continuum (A), and the changes in the listener’s beliefs about the underlying distributions 

which we propose to account for the changes in classification (B). Dashed lines show pre-

exposure classification functions and distributions, while solid lines show post-recalibration. 

Left panels show the results of exposure to , and the right to .
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Figure 5. 
Recalibration results from Vroomen et al. (2007), showing both the proportion of /b/ 

responses (top, solid line /b/ exposure and dashed line /d/ exposure) and the aftereffect 

difference score (bottom) for the first 64 critical exposures in the first exposure block. Error 

bars indicate 95% confidence intervals.
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Figure 6. 
Belief updating model fit to build-up of recalibration data from Vroomen et al. (2007). The 

x-axis shows the number of cumulative exposures to the adaptor (on a log scale), and the y-

axis shows the aftereffect difference score. The solid black line shows the MAP (maximum 

a posteriori) estimate predictions (r2 = 0.96). The error bars and shaded region show 95% 

credible intervals for the data and model predictions, respectively (see Appendix A).
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Figure 7. 
The belief-updating model finds two different ways of fitting the build-up of recalibration 

(Figure 6), as illustrated by this density plot of the distribution of the mean and variance 

prior confidence parameters (κ0 and ν0, respectively) that are consistent with the data 

(estimated by samples via MCMC). The diagonal shows solutions with equal confidence in 

prior beliefs about the mean and variance. Points below the line have higher confidence in 

the variance, and adapt by shifting the category mean. Points above the line have higher 

confidence in the mean and adapt by expanding the category variance. Note that even 

though the best-fitting parameters (red asterisk, and curve in Figure 6) are below the line 

(and shift the mean), there are areas of high posterior probability on both sides of the line 

(hills on the contour plot).
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Figure 8. 
Selective adaptation results from Vroomen et al. (2007), showing both the proportion of /b/ 

responses (top) and the aftereffect difference score (bottom) for the first 64 cumulative 

exposures in the first exposure block. Error bars indicate 95% confidence intervals.
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Figure 9. 
Schematic illustration of the results of selective adaptation on classification of a /b/-/d/ 

continuum (A), and the changes in the listener’s beliefs about the underlying distributions 

which we propose to account for the changes in classification (B). Dashed lines show pre-

exposure classification functions and distributions, while solid lines show post-recalibration. 

Left panels show the results of exposure to prototypical , and the right to .
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Figure 10. 
Belief-updating model fits to the data from Vroomen et al. (2007) on the build up of 

selective adaptation after varying levels of cumulative exposure to a prototypical audio-

visual adaptor (x-axis, on a log scale). The solid black line shows the MAP (maximum a 

posteriori) estimate predictions (r2 = 0.83). The error bars and shaded region show 95% 

credible intervals for the data and model predictions, respectively.
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Figure 11. 
Schematic illustration of the predicted trade-off between shifts in mean and change in 

variance. With exposure to tightly clustered (or repeated) stimuli which are perceived as not 

fully ambiguous, the ideal adapter predicts that the initial shift in mean should lead to a 

positive aftereffect with small amounts of exposure (left, and dashed line), while the low 

variance of the repeated adaptor eventually leads to a neutral or even negative aftereffect 

with prolonged exposure (middle).
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Figure 12. 
Results from Vroomen et al. (2007), showing the full 256 exposures. Red/top curve: 

ambiguous audio-visual adaptor (recalibration). Blue/bottom curve: prototypical audio-

visual adaptor (selective adaptation).
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Figure 13. 
Results from fitting the belief updating model to all 256 exposures in both conditions from 

Vroomen et al. (2007) simultaneously. Model predictions correspond to MAP-estimate 

hyperparameters of ν0 = 100, κ0 = 17, and w = 0.47.
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Figure 14. 
Construction of stimuli for four conditions with visual /b/ (visual /d/ is analogously the 

mirror image).
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Figure 15. 
Results from all four conditions in the first exposure block: ambiguous, intermediate-

ambiguous, intermediate-prototypical, and prototypical (colored lines with error bars 

showing 95% confidence intervals). Model fits (black lines with 95% confidence interval 

ribbons) are generated based only on the ambiguous and prototypical conditions (r2 = 0.91); 

for the two intermediate conditions the model makes the predictions shown (r2 = 0.96). 

Colored arrows show the amount of exposure required for behavior to switch from 

recalibration-like (positive after-effect) to selective adaptation-like (negative after-effect), 

which decreases as the adaptor stimulus goes from ambiguous to prototypical, as predicted 

by the model (black arrows; see Figure 16).
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Figure 16. 
The belief-updating model predicts when behavior should switch from recalibration-like to 

selective adaptation-like (see Figure 15). Each dot shows the model predicted cross-over 

point (x-axis) versus the actual observed cross-over point (y-axis), with a linear regression fit 

to these four points showing close agreement.
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Figure 17. 
Talker-specific speech perception can be formalized as inference under uncertainty 

conditional on talker identity. The probability that a particular cue value x (here, frication 

frequency) was intended to be category c (/s/ or /ʃ/) depends on the talker t that produced it, 

written p(c | x, t) (left). This probability is related via Bayes Rule to the talker-specific 

likelihood, the distribution of cues produced by talker t for each category, p(x | c, t) (middle). 

These distributions can be described by the parameters of the generative model, θ, such as 

the talker’s mean frication frequency for /s/ and /ʃ/ as plotted (right). Although we only plot 

two parameters, many more are required to even approximate the full generative model. 

Each talker can be thought of as a point in this (very high dimensional) parameter space.
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Figure 18. 
Adapting to multiple talkers: Updating of talker-specific beliefs allows listeners to continue 

to learn about individual talkers’ generative models by accumulating evidence over multiple 

encounters. These plots visualize beliefs about generative models as distributions in 

generative model parameter space (here, showing only mean frication frequencies for /s/ 

and /ʃ/). Each panel plots equiprobability contours of a distribution (that outline the highest 

probability region of generative model parameter space), based on prior experience (left 

column), a single observation (middle), and their combination after belief updating (top). 

Top row: updating beliefs about a familiar talker (“Frank”), starting from relatively specific 
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beliefs (left). A single observation x1 is compatible with a wide range of generative models 

(middle), but when combined with prior beliefs leads to more specific updated beliefs. 

Middle row: updating beliefs about a new talker (“Susan”), encountered next, based on very 

vague prior beliefs and the next observed speech x2. Bottom row: continuing to update 

beliefs about Frank—which are not affected by the intervening speech from Susan—after 

observing another cue value x3.
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Figure 19. 
Two examples of how prior experience with many talkers of a language can constrain the 

space of generative models that has to be searched during adaptation. Left: an individual 

talker’s mean frication frequency for /s/ generally falls in the 5 kHz to 7 kHz range, while 

the mean for /ʃ/ is typically in the 4 kHz to 6 kHz range. Combined, these exclude much of 

the logically possible space of generative models. Right: moreover, the mean for /s/ is 

generally higher than the mean for /ʃ/, which also excludes a substantial proportion of the 

possible generative models.
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Figure 20. 
Prior beliefs at varying levels of specificity, formalized as conditional distributions over 

generative model parameters (plotted as ellipses of most probability mass). Left: Experience 

with all talkers of English constrains the listener’s prior beliefs about another talker of 

English, but only very broadly: the mean frication centroid for /s/ tends to be higher than 

for /ʃ/, and they tend to be positively correlated, but the actual values can range quite a bit. 

Middle: experience with all female talkers provides more information, because female 

talkers tend to pronounce /s/ and /ʃ/ with frication frequency means on the high side of the 

overall range. Thus the distribution of females’ generative model parameters for /s/ and /ʃ/ is 

more concentrated than that of all English speakers. Right: experience with a particular 

female talker provides even more information, and the corresponding distribution over 

generative model parameters is even more concentrated
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