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ABSTRACT

The abstraction augmented Markov model (AAMM) is an extension of a Markov model that
can be used for the analysis of genetic sequences. It is developed using the frequencies of all
possible consecutive words with same length ( p-mers). This article will review the theory
behind AAMM and apply the theory behind AAMM in metagenomic classification.
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1. INTRODUCTION

Sequence analysis refers to the process of examining a DNA, RNA, or protein sequence to inves-

tigate its characteristics, structure, function, or etiology. This field has grown enormously in recent years due

to the dramatic increase in sequence data, driven by the completion of a draft human genome in 2001 (Con-

sortium, 2001). Further research on the HGP and the growth of next generation sequencing (NGS) technologies

has led to a digital tsunami of sequencing data (Fuhrman, 2012). Metagenomics, the study of genetic material

recovered directly from environmental samples (Hugenholtz et al., 1998), is one field born from the increasing

accessibility and affordability of NGS technologies. One example of such a project is the Human Microbiome

Project (Turnbaugh et al., 2007), whose goal is to characterize the taxonomic diversity of microbial communities

within the human body. Once sequences within an environment are characterized, it is hoped that they can be

classified into known phylogenetic categories in order to infer their representative organism’s function within the

sampled environment. One can view this problem as a classification problem, in which the metagenomic data is

used to create a model for the organisms within the sample, and then new organisms can be classified into this

model (or not). Often, 16S ribosomal (16S rRNA) is used for phylogenetic studies since it is highly conserved

between different species of bacteria and archaea (Case et al., 2007). Also, 16S rRNA is a component of the 30S

small subunit of prokaryotic ribosomes and consists of 1562 nucleotides, on average (Weisburg et al., 1991).

Once the NGS data are available, most metagenomic data analyses proceed in the identification of short

reads by aligning sequences within the sample to their closest relatives using reference databases containing

full-length sequences (Kim et al., 2013). BLAST (Altschul et al., 1990) is a popular choice for organism

classification, and often the top hits from BLAST results are used to identify the taxa of query sequences.

However, since reads from metagenomic data are often short DNA fragments, the top hits are not always

accurate. Furthermore, the computational load for alignment-based schema increases as a power function with

the length of the sequences, which makes it infeasible to search large genetic databases (Zhu, 2014). Other
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algorithms, such as MEGAN (Huson et al., 2007) and TANGO (Clemente et al., 2011), improve speed and

accuracy in taxonomic classification by using BLAST in conjunction with other consensus measures. A naive

Bayesian classifier implemented in the Ribosomal Database Project [RDP, Wang et al. (2007)] is very

computationally efficient, as it trains sequences using only eight-word alignments. It further gives a probability

of a correct assignment along with bootstrapped confidence intervals. While all of the previously mentioned

algorithms have produced meaningful results, the algorithms rely on alignment of sequences that may arise

from heretofore unknown and unsequenced organisms. As a result of this lack of information, and for the sake

of computational efficiency, many researchers have developed so-called ‘‘alignment-free’’ algorithms.

Alignment-free methods to compare biological sequences were first proposed by Blaisdell (Blaisdell,

1986, 1989). Since that time, the pace of development and improvement for alignment-free methods has

increased dramatically. There are two main categories of proposed methods: methods based on word

(nucleotides/amino acids) counts, and those that are not based on fixed word-length segments. As for the

methods in the first group, sequence similarity is measured using procedures based on metrics defined in

coordinate space on word-count vectors. Such metrics include Euclidean or Mahalanobis distance (Torney

et al., 1990; Hide et al., 1994; Wu et al., 2001) and correlation/covariance methods (Fichant and Gautier,

1987; Gibbs et al., 1971; Solovyev and Makarova, 1993; van Heel, 1991). Other methods do not involve

counting the frequency of segments with fixed length, rather, these algorithms use methods from infor-

mation theory (Wu et al., 1997), Kolmorgorov complexity theory (Li et al., 2001), angle metrics (Stuart

et al., 2002), and iterative maps (Almeida and Vinga, 2002).

Alignment-free methods provide a computationally efficient way to overcome the shortcomings of tra-

ditional alignment-based methods. However, important sequence structural information is sacrificed (Zhu,

2014). Markov models, in particular Hidden Markov Models (HMMs), provide a scheme for maintaining

structure within the sequence (Yoon, 2009). The Markov structure specifies that the probability of observing

a particular nucleotide in a sequence depends only on the previous nucleotide. Methods for sequence

classification using HMMs typically rely on alignment to a reference sequence. Additionally, HMM algo-

rithms often require long sequences in order to incorporate long-term sequence dependency. Long sequences

are not always available in metagenomic data. Furthermore, HMMs require user specification of several

parameters that, if misspecified, could produce misleading results (Kotamarti et al., 2010).

There are other Markov-based sequence classification methods that have been shown to model sequence

structure, exhibit computational efficiency, and do not need alignment. One such method is ‘‘quasi-alignment,’’

which is based on the extensible Markov model (Dunham et al., 2004), extended to biological sequence analysis

(Hahsler and Nagar, 2014; Kotamarti et al., 2010). Quasi-alignment consists of three standard steps: pre-

processing sequences, learning target EMMs, and scoring query sequences against target EMMs. In the context

of metagenomics, one can construct an EMM using sequences of the same phylogenetic class from a well-

known database, such as Greengenes (DeSantis et al., 2008). An example of an EMM constructed from the 302

metagenomic 16S rRNA sequences for the genus Escherischia is shown in chapter 1 of Zhu (2014). Each EMM

represents one taxon at a particular phylogenetic rank. When an unknown sequence is to be classified, it is

scored against all the EMMs at the specified rank and is assigned to the class with the highest score. Details of

the scoring process are given in chapter 2 of Zhu (2014) and summarized in Kotamarti et al. (2010). The method

is implemented in the R package QuasiAlign (Hahsler and Nagar, 2014). In this way, one can assign sequences

within any environmental sample without having to align the sequences against a reference database. Instead,

the query sequences can be quasi-aligned against an EMM that represents an entire phylogenetic taxon. Quasi-

alignment has been shown to outperform naive Bayes, as implemented in RDP, by a large margin (Nagar, 2013).

In addition, quasi-alignment can provide an accurate classification at the genus and species level, which is not

possible for other methods due to the small intra-sequence variability at such levels.

Another Markov-based model is the abstraction augmented Markov model (AAMM). Like quasi-

alignment, it is a computationally efficient method that does not require alignment of query sequences to a

target sequence database. As a result, neither method is affected by minor sequencing errors or multiple

sequence alignment errors. AAMMs effectively reduce the number of numeric parameters of a standard

Markov model through abstraction, or the grouping of strings of length p into hierarchical clusters (Caragea

et al., 2009). In AAMMs, the abstraction acts as a regularizer that helps minimize overfitting when the

training sequence set is limited in size. Therefore, AAMMs can perform much more robustly than an HMM

(Caragea, 2009). Previously, AAMMs have been evaluated on three protein subcellular localization pre-

diction tasks (Caragea, 2009). It was shown that AAMMs are able to use significantly smaller number of

features than traditional higher order Markov models and perform significantly better than variable Markov
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models. AAMMs have a theoretical advantage over the EMMs used in quasi-alignment, in that the base

model for an AAMM does indeed have the Markov property (Caragea, 2009). Even though EMMs as

originally defined are Markov (Dunham et al., 2004), when applying EMM in quasi-alignment, the Markov

property is no longer tenable. In quasi-alignment, each state represents a cluster of NSVs that are created

from overlapping gene sequence segments of length p. These states cannot be specified prior to creating the

model, and the NSV’s within the states are not statistically independent (Zhu, 2014).

The purpose of this article is to present the AAMM as a method of metagenomic analysis that carries the

theoretical properties of Markov models while retaining the efficiency of alignment-free methods. The

formal definition of an AAMM and an algorithm for obtaining the abstractions are presented in section 2.

Details of the implementation are in section 3, where we also show that AAMMs are able to classify

correctly approximately 95% of sequences to their appropriate taxa, even at the genus level. Finally, we

discuss future developments and applications in section 4.

2. METHODS

Abstraction augmented Markov models have been evaluated on three protein subcellular localization pre-

diction tasks (Caragea, 2009), where it was shown that AAMMs were able to use a significantly smaller

number of parameters than traditional higher order Markov models, and perform significantly better in pre-

dictive accuracy than variable Markov models. AAMMs are able to reduce the number of numeric parameters

of higher order Markov models through successively grouping all possible consecutive words of length p

according to the word frequencies in training data set. When constructing an AAMM, a set of all existing

p-mers in the training data set is clustered into an abstraction hierarchy according to some similarity measure of

p-mer frequencies. This section gives formal definitions and explains the theory behind the AAMM.

2.1. Definitions

An abstraction hierarchy is a rooted tree model whose root represents a set of all existing p-mers, while

each leaf-node represents one individual p-mer. Formally,

Definition 1. An abstraction hierarchy T over a set of p-mers S is a rooted tree such that

� The root of T denotes S
� The leaves of T correspond to singleton sets containing individual p-mers in S
� The children of each node {a1,.,am} ˛A correspond to a partition of the set of p-mers denoted by ai.

This partition is also called an abstraction.

Figure 1 shows an example of abstraction hierarchy on a set S = {ra, ca, da, ab, br, ac, ad} of 2-mers over

the alphabet {a, b, c, d, r}. This abstraction hierarchy is learned from the training sequence abracadabra.

The root of the above abstraction hierarchy a12 represents the entire set S. The leaf nodes {a0,.,a6}

denote each individual 2-mer in the set S = {ra, ca, da, ab, br, ac, ad}. The children of each node correspond

to an abstraction of the set of p-mers denoted by that node. For example, the children of a12 are a11 and a8

FIG. 1. An example of an abstraction hierarchy

learned from the training sequence abracadabra. The

root node (top) represents the entire set S, and the leaf

nodes (bottom) indicate each individual 2-mer. Nodes

are merged from the leaf to the root, forming abstrac-

tion hierarchies.
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in Figure 1; therefore, the set {ra,ca,da,ab} denoted by a11 and set {br, ac, ad} denoted by a8 compose a

partition of S denoted by a12. Different partitions of S specify different levels of this abstraction hierarchy,

which leads to the concept of an m-Cut.

Definition 2. An m-cut of an abstraction hierarchy is a unique subset of m nodes of the abstraction

hierarchy, which partitions the set of all possible p-mers into m non-overlapping subsets. In other words, an

m-cut is the union of the sets of p-mers of the corresponding m nodes in set S.

Specifically, an m-cut cm partitions the set S into m non-overlapping subsets A = fa1 : S1‚ . . . ‚ am : Smg‚
where ai represents the ith abstraction and Si denotes the subset of p-mers, which are grouped together

into the ith abstraction based on some similarity measure. For example, the two-cut of the abstraction

hierarchy from Figure 1 is {a11, a8}. Node a11 and a8 partition the entire 2-mer set S = {ra, ca, da, ab,

br, ac, ad} into two groups, {ra, ca, da, ab} and {br, ac, ad}. The three-cut of this abstraction hierarchy is

{a10, a3, a8}. A two-cut and a three-cut are depicted in Figure 2. A procedure for selecting the appropriate

m-cut for a data set is given in section 2.3.

AAMMs incorporate new variables ai 2 A, where A = {a1,.,am} is a set of abstractions over the set of

all p-mers Si - 1‚ for i = 1.,n - 1, and n is the total number of p-mers. Each node Xi in an AAMM directly

depends on an abstraction ai. The procedure for building AAMMs involves learning an abstraction hier-

archy and estimating model parameters using the appropriate abstraction hierarchy. Once the abstraction

hierarchy A is learned, a similarity measure is used to calculate the similarity between two abstractions.

Then, abstractions are recursively grouped according to this similarity measure until all abstractions are

part of the hierarchy. The learning algorithm is as follows:

1. Input a set of p-mers S = fs1; . . . ; sng and training sequences D.

2. Initialize A = fa1 : s1‚ . . . ‚ an : sng and T = fa1 : s1‚ . . . ‚ an : sng. The set T will eventually

contain the estimated abstraction hierarchy.

3. Recursively merge pairwise abstractions ai that are most similar to each other on the basis of

Equation 2.

4. An abstraction hierarchy T results after all nodes have been successively joined into a root node.

2.2. Similarity between abstractions

Before discussing the similarity between two abstractions, we need to define the concept of the context of

a p-mer, which will be used to calculate the similarity between two abstractions.

Definition 3. The context of a p-mer s 2 S is the conditional probability distribution of observing a

sequence element r ˛ v after the p-mer s. This conditional probability is given by

FIG. 2. An example of a two-cut (a) and a three-cut (b) for the

example abstraction hierarchy of the sequence abracadabra. The

two-cut creates two non-overlapping trees from the original

abstraction hierarchy, and the three-cut creates three non-

overlapping trees. The root node for each cut is depicted as a

solid circle.
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ĥrjs = p̂(rjs) =
1 +SL

i = 1 fi(sr)

jvj +Sr02vSN
i = 1 fi(sr0)

(1)

In Equation 1, L is the total number of nucleotide sequences in the training set D, v is the set of

characters of sequences with cardinality jvj‚ fi(sr) represents the number of times one observes character

r (or r0) immediately after observing the p-mer s in the ith sequence. To calculate the context of an

abstraction a = {s1,.,sn}, we use a weighted regression of the contexts of its constituent p-mers (Enright

et al., 1999). The weights are chosen to make sure that such aggregation defines a proper probability

distribution.

The distance between two abstractions au and av, based on their contexts, is measured using weighted

Jensen–Shannon divergence (Lin, 1991). The distance between au and av is given by Equation 2 below

dD(au‚ av) = dIf(au‚ av)‚ awg = [JSpu‚...‚ pv
(p(Xijau)‚ p(Xijav))][p(au) + p(av)] (2)

where aw = {au W av} and p(a) represents the prior probability of an abstraction a, and pu, pv denote the

prior probabilities of au and av, respectively, in the union aw. The estimate p̂(a) of p(a) can be calculated

from D, as given in Equation 3:

p̂(a) =
1 +SL

i = 1Ssj2a fi(sj)

jAj +Sa0 2 ASL
i = 1Ssj2a0 fi(sj)

: (3)

Equation 4 can be used to calculate pu as follows:

pu =
p(au)

p(au) + p(av)
‚ (4)

where pv can be calculated analogously.

Figure 1 showed an abstraction hierarchy T on a set S = {ra, ca, da, ab, br, ac, ad} of 2-mers over the

alphabet v = {a, b, c, d, r}. In the appendix, we give a detailed example for calculating the context of the

3-cut for the hierarchy represented in Figure 1.

Figure 3 shows an example of abstraction hierarchy for genus Propionibacterium. Members of the genus

Propionbacterium are gram-positive bacteria that live either on the skin of humans and other animals

(so-called ‘‘cutaneous’’ type) or in dairy products, particularly in cheese (‘‘classical’’ type) (Charfreitag

FIG. 3. An abstraction hierarchy for the genus Propionibacterium using words of length 3. The leaf nodes at the top

represent all 64 possible 3-mers.
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and Stackebrandt, 1989). This abstraction hierarchy was trained on 3-mers using 4936 16S rRNA sequences

of Propionibacterium from the Greengenes database (DeSantis et al., 2008).

In this abstraction hierarchy, the terminal nodes {s1,.,s64} represent all 64 possible 3-mers. Nodes were

recursively merged on the basis of the distance measure given in Equation 2. This abstraction hierarchy

describes the similarity of occurrence behavior of 3-mers in genus Propionibacterium; therefore, it could be

viewed as a graphical representation of this genus and act as a target model in sequence classification.

2.3. Selecting an M-cut

Recall that an m-cut cm through an abstraction hierarchy T is a subset of m nodes of T such that for any

leaf si 2 S, either si ˛ cm or si is a descendant of some node in cm. The set of abstractions A at any given

m-cut cm forms a partition of S. To clarify, S is the leaf set (set containing all p-mers), and each si 2 S
represents a distinct p-mer. One could also think of si as the smallest abstraction of ai, since an abstraction

ai can contain more than one si.

The purpose of scoring an unknown sequence against a target abstraction hierarchy of a known taxon at a

preselected level of m-cut is to obtain the posterior probability of unknown query sequence belonging to

that known taxon. Abstraction hierarchies are trained by using sequences from the same phylogenetic

taxon. Evaluation of each m-cut is based on the posterior probability of the AAMM for a training data set.

Given an unknown query sequence {x = x0, x1,.,x(n-1)} and a target abstraction hierarchy with a pre-

selected m-cut gammam, the posterior probability for the query sequence is calculated using Equation 5:

p(xjĥ) = p(x0 . . . xk - 1)
Yn - k

i = k

ĥ(xija0i) (5)

where p(x0.,xk-1) is the prior probability of p-mer x0 . . . xk - 1‚ a0i 2 cm is the abstraction that contains p-mer

xi-k . xi-1, and h0(xija0j) is the posterior probability of observing xi right after abstraction a0j=
The process of m-cut selection is given by the following algorithm:

1. Specify all possible values of m, {m0,m1,.}.

2. Score all training sequences against the abstraction hierarchy for each mi.

3. Calculate the average of the posterior probabilities for each abstraction (using Equation 5).

4. Return the maximum average posterior probability and the corresponding m-cut.

The main purpose of m-cut selection is to search for the appropriate level of abstractions that best

describes the training data set. The performance for sequence classification varies at different levels of

target abstractions. Implementing a more specific level (larger m value) of abstractions does not necessarily

improve the accuracy of classification, because the parameters may not be accurately estimated if the

amount of data at that level is insufficient. On the other hand, classifying sequences at a more general level

(smaller m value) of abstractions would not guarantee an improvement in classification performance

because there may not be enough terms on the cut to differentiate each class. A simple classification

experiment is performed here to illustrate how the m-cut selection affects the classification accuracy.

In all the experiments to evaluate the validity and accuracy of metagenomic classification using AAMM

theory, all model training and test sequences are from 16S rRNA sequences, the most widely used genetic

marker for bacterial genomes (Case et al., 2007). The sequences are available from the Greenegenes project

website (DeSantis et al., 2008). For all experiments, we mainly use 2-mer abstraction hierarchies as the

target models in sequence classification, because 16S rRNA sequences, whose average length is around

1500, are comparatively short genetic sequences. Therefore, the parameters in the AAMMs may not be

accurately estimated for p-mer abstraction hierarchies if p is greater than two.

In this experiment, the test sequences are from the genera Bacillus, Streptococcus, Clostridium, and

Escherichia, since these genera each contain a large number of sequences. We randomly select 20% of the

sequences from the Greengenes database in these four genera as the training data set. The test sequences are

classified against the corresponding target abstraction hierarchies at all possible levels of abstraction.

Figure 4 shows the classification accuracy at all abstraction levels from 2-cut to 16-cut.

From Figure 4, the classification rate varies when the classification is performed at different levels of

abstraction (i.e., m-cuts). When classifying test sequences at abstraction level of five-cut, the average classi-

fication accuracy is only 60%; however, this changes to nearly 100% when moving to a more specific level of

abstraction. It is also clear that each genera has a slightly different pattern of response. For example, the
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classification rate for the genus Escherichia varies dramatically depending on the abstraction level, while the

genus Streptococcus displays a more stable classification rate at various values of m. The main reason is due to

the amount of variability within each genus. Genera (and, in general, taxa) with larger intra-variability tend to

have unstable classification rates at different m-cut levels. Thus, different genera may have different optimal

abstraction levels, and it is important to select an appropriate m-cut for each taxon before performing sequence

classification. For these particular genera, the classification rate stabilizes for m ‡ 8.

3. RESULTS

Sequence classification experiments were carried out to evaluate the validity and accuracy of metage-

nomic classification using AAMMs. For the experiments here, both the Greengenes data set and

Yellowstone National Park data sets (described in section 3.1) were imported and processed to use in model

learning, m-cut selection, and sequence classification. The Greengenes database was used as training for the

Yellowstone data, in order to avoid the bias of classification results due to the sequence replication within

one data source. The software was implemented in R (R Core Team, 2014), and the code is available at

https://github.com/MonnieMcGee/ZhuMcGeeJCB2015.

3.1. Data sets used

The Greengenes database is a 16S rRNA gene database that addresses limitations of public repositories

by providing chimera screening, standard alignment, and taxonomic classification using multiple published

taxonomies (DeSantis et al., 2008). The unaligned version of the 16S rRNA sequences from the Greengenes

databases are used to train AAHMs to represent each taxon. The total number of sequences we use in this

dataset is 406,997, which belong to 94 phyla.

The Department of Energy Joint Genome Institute (DOE-JGI) produced a bacteria-specific 16S rRNA

gene library from Yellowstone National Park samples. Samples are from 20 geothermal sites with 35 to 50

megabases of sequence data per site in Yellowstone National Park. Standard Sanger shotgun sequencing

(Staden, 1979) was used to obtain genomic samples. This method assembles randomly broken-up DNA

segments into continuous sequences using multiple overlapping segments. We refer to this dataset as YNP,

FIG. 4. Classification accuracy rate for m-cuts (abstraction levels) from two to sixteen for four genera from the

Greengenes database. The x-axis represents the m-cut level from 2-cut to 16-cut, and the y-axis denotes the classifi-

cation accuracy rate. Each colored dotted line represents the classification rate for a specific genus. The solid black line

is the average classification rate.
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and it contains 6026 16S rRNA sequences in 30 phyla. This data set is used to test the performance of

AAMMs in metagenomic classification.

3.2. Classification at the phylum level

In order to demonstrate the performance of AAMM for classification of metagenomic data at the phylum

level, we designed two phases of experiments. For the first phase of experiments, sequences from the five

most abundant phyla in Yellowstone National Park data set were selected as the test sequences. Ten percent

of sequences from the Greengenes database in the same five phyla were randomly selected to learn

abstraction hierarchies. For each target phylum, the m-cut is selected as described in section 2.3. Then, the

entire test sequences were combined and scored against the five abstraction hierarchies at the preselected

level of m-cut and were assigned to the phylum with the highest score. The predicted phylum was compared

with the actual phylum of the sequence to obtain the classification rate. The list of experimental designs and

results is shown in Table 1. The average classification rate for this experiment is 94.26%. As for m-cut

selection, three out of five abstraction hierarchies have 15-cut as their optimal level of abstractions, and the

other two selected m-cuts of 13 and 14.

In the second phase of phylum level experiments, which are denoted by * in Table 1, sequences from six

medium-sized phyla in the Greengenes database were selected to evaluate the performance of gene clas-

sification using AAMMs. Each phylum was split up into a ratio of 90% and 10% for training 2-mer

abstraction hierarchies and test sequences, respectively. For both large and midsize phyla, all classification

rates are above 86%.

3.3. Classification at the genus level

Since it has already been shown that quasi-alignment is more effective than naive Bayes or HMMs for

classification at the genus level (Nagar, 2013), we compare the percent of sequences correctly classified

from several genera for both AAMM and quasi-alignment. The results are shown in Table 2. For the first

phase of this experiment, sequences from the ten most abundant genera in the YNP data set were selected as

the test sequences. The training sequences were from the Greengenes data set. We randomly selected 20%

of the sequences from the Greengenes database in the same genera to learn abstraction hierarchies and

select an optimal m-cut. All test sequences were combined and scored against the ten abstraction hierar-

chies at preselected abstraction levels and were assigned to the genus with the highest score. The predicted

genus was compared with the actual genus of the sequence to obtain the classification rate. The average

classification rate for this experiment is 98.62%, and all classification rates are greater than 93%. All ten

abstraction hierarchies have 15-cut as their optimal level of abstraction. In each case, the AAMM performs

as good as or better than quasi-alignment.

Table 1. Phylum Level Experiments on Large and Midsize Phyla

Phylum name Sequences from GG Sequences from YNP Classification rate (%)

Proteobacteria 12,152 2,726 91.86

Firmicutes 12,256 1969 86.44

Actinobacteria 7,705 442 97.51

Bacteroidetes 4,343 196 98.47

Euryarchaeota 471 135 97.04

Thermi* 576 58 97.93

Thermotogae* 445 45 95.60

Synergistetes* 421 43 93.02

Chlorobi* 408 41 87.80

SAR406* 336 34 95.29

TM7* 264 27 100

For the first five rows in the table, the test sequences for each phylum were selected from the YNP data. The same five sequences

were selected from the Greengenes database to train the AAMM. For phyla marked with *, all sequences were from the Greengenes

database. Ninety percent of the sequences in each phylum were used to train the AAMM, and 10% were used for testing.
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Similarly to the phyla experiments, sequences from 20 medium-sized genera, which contained 154 to

175 sequences, in the Greengenes database were selected to evaluate the performance of gene classification

using AAMM’s. Each genus was split up into a ratio of 90% and 10% for training and test sequences,

respectively. For this experiment, most of the classification rates are 100%; therefore, the results are not

shown in detail. For a detailed table of results, see chapter 3 of Zhu (2014).

4. CONCLUSION

In this article, we reviewed the theory behind AAMM and applied AAMM in metagenomic classifica-

tion. Detailed algorithms of metagenomic classification we proposed were illustrated, which include model

learning, m-cut selection, and sequence classification. Experiments were conducted using 16S rRNA se-

quences of known microbes. The sequences from the Greengenes data set and Yellowstone National Park

data set were divided into training and test sequences at each taxon level. The test sequences were scored

against all target abstraction hierarchies at a preselected level in order to determine the predicted taxon.

This method has been able to provide accurate classification results at both high and low taxon level, and

the average classification rate is above 95%.

The analyses can easily be extended to any set of DNA and RNA sequences. We further compared the

sequence classification performance of quasi-alignment method and AAMM method. The two techniques

perform similarly; however, the AAMM slightly outperformed quasi-alignment in most cases. These two

techniques have the potential to be used in identifying novel species in environmental or biological samples.

With regard to assessing the statistical significance of quasi-alignment and AAMM methods, in future

work, we will develop hypothesis tests for the null hypothesis that the query sequence does not belong to a

specific taxon in order to provide further information in the classification accuracy. In particular, we will

focus on deriving theoretical background distributions for both EMM’s supported transition score and

AAMM’s posterior probability score in order to obtain an accurate representation of the null distribution,

and thus an accurate p-value for a hypothesis test. Especially, in regard to EMM construction, further

research will concentrate on analytically deriving the distribution of the NSV to the setting where sequence

preprocessing step is a renewal process of a Markov Chain. Further research is also required to see how the

power of the test behaves in order to better evaluate it. For the extension of application for current quasi-

alignment and AAMM methods in sequence classification, further research will aim to apply them in other

types of genetic sequences, such as amino acid sequences.

6. APPENDIX

The following example shows a detailed procedure for calculating the context of the three-cut of the

abstraction hierarchy from Figure 1. The procedure for calculating the context of other cuts is similar. In a

Table 2. Genus Level Experiments on Large and Midsize Phyla

Genus name Sequences from GG Sequences from YNP AAMM rate (%) QA rate (%)

Bacillus 1704 434 100 97.2

Streptococcus 1202 275 99.27 99.6

Clostridium 1840 264 100 91.7

Escherichia 214 232 100 98.7

Shewanella 200 228 100 91.7

Lactobacillus 1156 191 93.19 84.4

Burkholderia 354 137 97.08 96.4

Staphylococcus 4600 128 100 97.7

Salmonella 148 121 98.35 89.3

Pseudomonas 2566 118 98.30 99.2

Test sequences for each genus were selected from the YNP data. The same five sequences were selected from the Greengenes

database to train the AAMM. The same training and test sets were used for quasi-alignment. In most instances, the AAMM

outperforms quasi-alignment in terms of percent correctly classified.
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real sequence classification problem, the value of m is determined by the posterior probability of model

training sequences, given in Equation 5. Here, we selected the three-cut as an example for convenience and

concreteness.

For the abstraction hierarchy in Figure 1, D = {abracadabra}, v = {a, b, c, d, r}, and S = {ra, ca, da, ab,

br, ac, ad}. The three-cut for this hierarchy is a unique partition of S‚ which contains nodes {a10.as,a8}. In

order to find the three-cut, we first calculate the contact of all existing 2-mers. For example, the context

of s1 = {ra} for character a, based on the Smith–Waterman algorithm for local alignment (Smith and

Waterman, 1981), is

ĥajs1
= ĥajra =

1 + f [s1a]

5 + f [s1a] + f [s1b] + f [s1c] + f [s1d] + f [s1r]
=

1 + 0

5 + 1
=

1

6
‚ (6)

which means that the conditional probability of observing character a right after 2-mer s1 = {ra} is

one-sixth. We can calculate the context of all two-mers in a similar manner. The results are given in

Table 3.

Now that we have the context of the 2-mers, we can calculate the context of the abstractions. Since

a10 = {ra, ca, da} = {s1, s2, s3}, on the basis of the Poisson distribution (Karlin and Altschul, 1990), the

context of abstraction a10 for character a is.

ĥaja10
=

1 + f [s1]

3 + f [s1] + f [s2] + f [s3]
ĥajs1

+
1 + f [s2]

3 + f [s1] + f [s2] + f [s3]
ĥajs2

+
1 + f [s3]

3 + f [s1] + f [s2] + f [s3]
ĥajs3

=
1

6
‚ (7)

which means that the conditional probability of observing character a right after a set of 2-mers

a10 = {ra, ca, da} = 1/6. Similarly, Table 4 lists the context of abstractions {a10, a3, a8}. Once the distance

between two abstractions is defined, we can train abstraction hierarchies using known sequences.

Table 4. The Context of Abstractions {a10, a3, a8}

ĥrjsi
a10 = {s1,s2,s3} a3 = s4 a8 = {s5,s6,s7}

a 1/6 1/7 55/147

b 3/14 1/7 23/147

c 5/21 1/7 23/147

d 3/14 1/7 23/147

r 1/6 3/7 23/147

For example, the conditional probability of observing character b immediately after a set of two-

mers a10 = {ra,ca,da} is 3/14, and the conditional probability of observing character d immediately

after a set of two-mers a8 = {br, ac, ad} is also 3/14.

Table 3. The Calculated Context for All 2-mers

ĥrjs1 s1 = ra s2 = ca s3 = da s4 = ab s5 = br s6 = ac s7 = ad

a 1/6 1/6 1/6 1/7 3/7 2/6 2/6

b 1/6 1/6 2/6 1/7 1/7 1/6 1/6

c 2/6 1/6 1/6 1/7 1/7 1/6 1/6

d 1/6 2/6 1/6 1/7 1/7 1/6 1/6

r 1/6 1/6 1/6 3/7 1/7 1/6 1/6

For example, the conditional probability of observing character a right after two-mer s4 = {br} is 3/7, and the conditional probability

of observing character c right after two-mer s3 = {da} is 1/6.
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