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Extensive studies have demonstrated that infant immune responses are distinct from those of adults. Despite these differences,
infant immunization can elicit protective immune responses at levels comparable to or, in some cases, higher than adult immune
responses to many vaccines. To date, only a few HIV vaccine candidates have been tested in infant populations, and none of them
evaluated vaccine efficacy. Recent exciting studies showing that HIV-infected infants can develop broad neutralizing antibody
responses and that some HIV vaccine regimens can elicit high levels of potentially protective antibodies in infants provide sup-
port for the development and testing of HIV vaccines in pediatric populations. In this review, we discuss the differences in adult
and infant immune responses in the setting of HIV infection and vaccination.

Infancy is a critical window for the generation of protective im-
munity via vaccination due to the vulnerability of infants to

infections. Vaccination early in life can establish immunity that
persists throughout adulthood or that can be boosted prior to
periods of potential increased pathogen exposure. In addition, the
frequent interactions of young infants and their families with
health care providers provide an opportune time to achieve high
vaccine coverage. In fact, the majority of vaccines used for the
prevention of human infections are administered in early child-
hood, and they typically offer long-lived protection. In the case of
an HIV vaccine, effective immunization in infancy might both
protect against HIV acquisition via breastfeeding and provide ma-
ture anti-HIV immunity prior to sexual debut, potentially con-
tributing to protection against sexually acquired infections from
early adolescence through adulthood. Thus, the use of infant vac-
cination, perhaps followed by later boosting in preadolescence,
might be a highly desirable tool in the quest for an HIV-free gen-
eration.

Despite the success of many vaccines in the youngest age
groups, our understanding of vaccine-generated immune re-
sponses in infants and how they differ from those of adults re-
mains limited. Important factors that distinguish the infant im-
mune system from that of adults include differences in effector cell
subsets, immunoregulatory mechanisms of fetal development,
passive acquisition of maternal antibodies, and limited preexpo-
sure to environmental immune stimuli. These immunologic dif-
ferences may result in distinct immune responses following infant
and adult vaccination. An understanding of the infant immune
landscape is therefore critical for the design of vaccines that will
elicit optimal immune responses in infants and target long-term
immunity.

EARLY LIFE AND ADULT IMMUNE RESPONSES

The immune system undergoes changes throughout early age due
to the abrupt transition from a sterile environment in the womb to
an environment with repeated immune stimuli (1). Substantial
evidence demonstrates that the neonatal immune system is not
unresponsive but instead is adapted for early life. In contrast, im-
munologically mature adults have acclimated to persistent anti-
gen exposure, including a host of commensal bacteria and viruses
that reside in the gut and skin, and as a result orchestrate immune

responses differently than infants. In this section, we will use se-
lected examples to demonstrate that although infants and adults
respond differently to antigenic stimulation, infants are capable of
mounting robust immune responses.

Phenotypic and qualitative differences in immune responses
between infants and adults. Analysis of immune cell populations
has demonstrated substantial phenotypic and functional differ-
ences between human infants and adults (Table 1). For example,
neonatal neutrophils have lower chemotactic responses (2) and
reduced phagocytic capacities (3) compared to adult neutrophils.
Moreover, cord blood displays a higher ratio of plasmacytoid to
conventional dendritic cells than adult blood, but cord blood den-
dritic cells express lower levels of major histocompatibility com-
plex (MHC) class II, CD80, and CD86 (4). Interestingly, although
infant plasmacytoid dendritic cells have a lower ability to respond
to stimulation by bacterial DNA CpG motifs than adult dendritic
cells (5), they can secrete higher levels of interleukin-1 beta (IL-
1�), IL-6, and IL-10 (6), demonstrating that they are not deficient
in cytokine production. Cord blood also contains higher propor-
tions of NK cells than adult blood, but they have distinct expres-
sion levels of activating and inhibitory markers (7). Although in-
fant and adult NK cells express similar levels of CD16 (Fc�RIII),
cord blood cells have a reduced capacity to respond to stimuli and
lower cytotoxic capabilities than adult cells (8). Nevertheless, the
expression of activating markers and function of cord blood NK
cells can be enhanced in vitro in the presence of IL-2, IL-12, and
IL-15 (9–11). Thus, under certain conditions, neonatal innate im-
mune cells can be as functionally potent as adult cells.

It was previously thought that infants have deficient CD4� T
cell responses. However, recent discoveries indicate that infant
hyporesponsiveness is largely modulated by T regulatory cells. In

Accepted manuscript posted online 9 December 2015

Citation Martinez DR, Permar SR, Fouda GG. 2016. Contrasting adult and infant
immune responses to HIV infection and vaccination. Clin Vaccine Immunol
23:84 –94. doi:10.1128/CVI.00565-15.

Editor: C. J. Papasian

Address correspondence to Genevieve G. Fouda, genevieve.fouda@duke.edu.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.

MINIREVIEW

crossmark

84 cvi.asm.org February 2016 Volume 23 Number 2Clinical and Vaccine Immunology

http://dx.doi.org/10.1128/CVI.00565-15
http://crossmark.crossref.org/dialog/?doi=10.1128/CVI.00565-15&domain=pdf&date_stamp=2015-12-9
http://cvi.asm.org


fact, infants have a higher proportion of T regulatory cells but a
lower proportion of T follicular helper cells than adults (12). In-
fants have lower numbers of circulating CD4� CCR5� T cells, the
main target for HIV (13), although a high proportion of CD4�

CCR5� T cells was recently reported in the infant gut (14). Infants
also exhibit a bias toward Th2 responses (15). This Th2 polariza-
tion is likely due to the high levels of Th2-promoting cytokines,
such as IL-10, and prostaglandin E2 in early life (16, 17). In addi-
tion, infants have impaired humoral responses. They develop
poor antibody responses to bacterial capsular antigens and are
deficient in the production of antibodies of the IgG2 subclass (18,
19). Moreover, studies in mouse models have demonstrated that
neonatal B cells have an impaired ability to become long-lasting
memory B cells, which may be related to their lack of bone marrow
homing receptors and survival markers or to impaired survival
signals in the bone marrow stromal environment (20, 21). Inter-
estingly, recent studies have indicated that infant B cell responses
can be improved by adjuvants (22). For example, cord blood B
cells are able to produce polysaccharide-specific antibodies fol-
lowing CpG engagement of Toll-like receptor 9 (23). Moreover,
the oil-in-water adjuvant MF-59 can induce robust germinal cen-
ter formation in mice as young as 3 weeks of age (24), and immu-
nization of infant mice using the adjuvant IC31 can enhance IgG1,
IgG2a, and IgG2b subclass antibodies to polysaccharide antigens
(25). These findings indicate that under certain circumstances,
infants can develop robust responses, highlighting the need to
tailor immunization strategies to pediatric populations.

Infants are able to develop robust immune responses to non-
HIV vaccines. Several studies have demonstrated that infant im-
munization can generate high-magnitude immune responses. For
example, 3-day-old neonates immunized with the oral poliomy-
elitis vaccine (OPV) and boosted throughout the first year of life
developed long-lived antibody responses, and close to 100% of
infants achieved seroconversion after the fourth immunization
dose (26). Similarly, a recent vaccine efficacy study against entero-
virus 71 (EV71) conducted in a total of 10,077 Chinese children
age 6 months to 3 years showed a remarkable 94.8% efficacy rate
(27). Interestingly, newborns immunized with the hepatitis B vac-
cine can produce higher anti-hepatitis B antibody levels than vac-
cinated adults (28). Furthermore, the gamma interferon (IFN-�)
CD4� T cell response in infants immunized with the bacillus
Calmette-Guérin vaccine is comparable to that in vaccinated
adults (29). These infant immunization studies provide a proof of
principle that infants can mount comparable or higher immune
responses than adults following vaccination.

Importantly, vaccine boosting schedules and the vaccine adju-
vant can significantly affect the quality and magnitude of immune
responses in infants. For example, infants vaccinated against diph-
theria, tetanus, and pertussis at 2, 3, and 4 months of age generate
lower-magnitude antibody responses than infants immunized at
3, 5, and 9 months (30). The only adjuvants approved by the FDA
for use in commercial pediatric vaccines in the United States are
aluminum salts, but in other areas of the world, additional adju-
vants, such as the oil-in-water adjuvant MF-59, are also used. A
recent study compared the vaccine efficacies of unadjuvanted and
MF-59-adjuvanted trivalent influenza vaccines in 4,707 German
and Finnish children between 6 months and 36 months of age. The
vaccine efficacy against the vaccine-matched strain was 45% for
the unadjuvanted vaccine and 89% for the MF-59-adjuvanted
vaccine. Similarly, the MF-59-adjuvanted vaccine was more pro-
tective against all virus strains (86% efficacy rate) than the unad-
juvanted vaccine (43% efficacy rate) (31). Thus, the choice of the
vaccine adjuvant is critical in the setting of pediatric immuniza-
tion.

Maternal antibodies can interfere with infant response to
vaccination. Maternal IgG antibodies are transferred to infants
across the placenta (32), and they persist throughout the first year
of life. These maternal passively acquired antibodies are critical for
protecting infants against common pathogens (33, 34), but they
can interfere with infant immune responses to vaccines (35). In
fact, infants immunized against measles at 6 months of age gener-
ate weaker vaccine-induced antibody responses than infants im-
munized at 9 months of age. Moreover, there is an inverse corre-
lation between maternal antibody titers and infant responses
against the measles vaccine (36). Interestingly, maternal antibod-
ies do not always affect infant vaccine responses. For example, a
recent study reported an inverse correlation between birth levels
of antibodies and infant vaccine-elicited responses against tetanus
and pneumococcus but not against pertussis and Haemophilus
influenzae B (37). Similarly, maternal levels of anti-hepatitis B
surface antibodies do not appear to interfere with the long-term
immunogenicity of the hepatitis B vaccine (38). Several hypothe-
ses have been proposed to explain the mechanism by which ma-
ternal antibodies interfere with infant vaccine responses. These
include inhibition of B cell responses through masking of impor-
tant epitopes, inhibition of B cell responses by binding of maternal
passively acquired IgG to Fc�RIIB expressed in infant naive B

TABLE 1 Examples of immune parameters that differ between infants
and adults

Immune
parameter Infants Adults Reference(s)

NK cell
activity

CD16 expression similar
to adult cells but
lower cytotoxic
capacity

Lower no. of NK
cells than
infants

8, 9

Dendritic cells Higher ratio of
plasmacytoid to
monocyte-derived
DCs than that in
adults

Higher response to
stimulation by
CPG motifs
than infant DCs

4, 5

CD4� T cell
responses

Th2 bias Th2 and Th1
responses

15

Treg
a High levels of Treg

compared to adults
Normal Treg levels 12

Memory B cell
formation

Lower markers of
memory B cells,
impaired bone
marrow homing
markers

High expression of
memory B cell
markers

20, 21

IgG subclass IgG1 and IgG3 attain
adult levels earlier
than IgG2 and IgG4;
low levels of IgG2 to
polysaccharide
antigens

IgG2 responses to
polysaccharide
antigens

18, 19

Maternal
antibodies

Interference with
development of B cell
but not T cell
responses in infants

Not present 34–38

a Treg, T regulatory cells.
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cells, neutralization of live-attenuated vaccines, and antigen re-
moval by infant macrophages (reviewed in reference 39). Impor-
tantly, as this interference appears to vary from one vaccine to
another, the potential impact of maternal antibodies should be
investigated when developing novel infant vaccines.

IMMUNE RESPONSES TO HIV INFECTION IN INFANTS AND
ADULTS

HIV disease progression differs significantly between adults and
infants. In the absence of treatment, progression to AIDS or death
in adults usually occurs at a median time of 10 years after infec-
tion. In contrast, 20 to 30% of HIV-infected infants die within the
first year of life (40). The kinetics of plasma virus load is also
strikingly different between adults and infants. During adult in-
fection, the initial plasma virus load peak is rapidly followed by a
100- to 1,000-fold decrease in viral copies, reaching a relative sta-
ble “set point” within weeks of infection. In contrast, in infants,
plasma viral load levels slowly decline and do not reach a set point
until around 5 years of age. The difference in disease progression
between adults and infants might be related to the differences
between the infant and adult immune systems. These may include
the ongoing development of the infant immune system, with a
rapid expansion of CD4� T cells, and the distinct HIV-specific
immune responses in adults and infants (Table 2).

Ontogeny of HIV envelope-specific antibody responses in
HIV-infected adults and infants. The initial envelope (Env)-spe-
cific antibody response in HIV-infected adults arises approxi-
mately 14 days after infection and targets the glycoprotein 41
(gp41) envelope (41). Recent reports have demonstrated cross-
reactivity between gp41 and gut flora antigens (42, 43), leading to
the hypothesis that the early gp41 response is a secondary anti-
body response driven by a preexisting pool of memory B cells
raised against commensal bacteria. As newborns are unlikely to
have this pool of memory B cells, it is possible that the specificity of
the early antibody response to HIV infection differs between
adults and infants. Because the presence of maternally acquired
antibodies clouds the investigation of infant antibody responses,
Pollack et al. (44) assessed the ability of lymphocytes isolated from
46 HIV-infected infants age 0 to 12 months to produce HIV-spe-
cific antibodies in vitro. Their results indicated that in the neonatal
period, infants produced only low levels of antibodies against a
restricted number of HIV antigens, but by 6 months of age, the
majority of infants had detectable levels of antibodies against two
or more HIV antigens. Antibodies against gp160 appeared first,
followed by anti-gp120 and anti-gp41 antibodies, indicating pos-

sible differences in the ontogeny of HIV-specific antibodies be-
tween adults and infants. The use of advanced methods to produce
monoclonal antibodies from antigen-specific memory B cells
might provide a deeper understanding of potential differences in
the development of HIV-specific antibodies in infected adults and
infants.

The lack of correlation between the magnitude of adult early
HIV-specific antibody responses and the viral load set point sug-
gests that antibody responses may not play a major role in the
suppression of viral load during adult acute HIV infection. To
investigate the association between infant antibody responses and
disease progression in infants, Henrard et al. (45) measured HIV-
specific antibody responses in a prospective cohort of 32 HIV-
exposed infants. While HIV-specific maternal antibodies de-
creased over time in HIV-exposed uninfected infants, 9 of the 12
HIV-infected infants showed an increase in HIV-specific antibod-
ies at a median time of 6 months. Importantly, the 8 infants who
remained asymptomatic at 1 year of age developed de novo anti-
body responses, whereas 3 of the 4 infants with rapid disease pro-
gression showed no significant rise in antibodies. These results
suggest that HIV-specific antibody responses might contribute to
disease control in infants. It will be important to confirm these
results in large cohorts of infected infants and to identify the spec-
ificities of antibodies associated with disease control.

HIV-infected infants develop neutralization breadth early in
life, but antibody-dependent cell-mediated cytotoxicity re-
sponses are delayed in infants. The presence of antibodies capa-
ble of mediating neutralization or antibody-dependent cell-medi-
ated cytotoxicity (ADCC) in infants has been associated with
better clinical outcome (46, 47); however, infants infected in utero
rarely develop ADCC antibodies before 12 months of age (48).
Interestingly, while a delay in the development of ADCC-mediat-
ing responses is also observed in infants infected during the first 6
weeks of life, ADCC antibodies can be detected as early as 2
months postinfection when infants are infected later in life (46).
The development of ADCC activity in older HIV-infected infants
is comparable to that in adults in whom ADCC responses can be
detected within the first months of infection (49). Interestingly,
whereas in adults, the ADCC response peaks around 4 months
postinfection and decreases thereafter (49), in some infants,
ADCC antibody levels continue to increase for more than a year
after infection (46). Importantly, until now, investigations of
ADCC responses have only been conducted on a restricted num-
ber of infected infants. Moreover, most studies measured ADCC
responses in children using adult effector cells. Future studies

TABLE 2 Comparison of anti-HIV responses between infected adults and infants

Immune parameter Infants Adults References

Env-specific antibody responses gp160-specific antibodies develop first, followed by gp120-
and gp41-specific responses

gp41-specific antibodies develop first, followed
by gp120 responses

41, 44

Broadly neutralizing responses Can develop broad neutralization as early as 2 yr
postinfection

Develop after several yr of infection 54, 55

ADCC responses Delayed development of ADCC-mediating antibodies in
infants infected in utero and intrapartum but not in
infants infected after 6 wk of age

Peak ADCC responses as early as 4 mo
postinfection

47–49

T cell responses Low CTL responses; possible association between
noncytotoxic T cell responses and virus controla

CTL responses associated with virus set point 56–62

Target predominantly variable proteins Target conserved and variable proteins
a CTL, cytotoxic T lymphocytes.
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should therefore investigate the development of functional anti-
body responses in large cohorts of infants infected by different
routes to fully decipher the potential differences between adults
and infants.

A small proportion (10 to 25%) of HIV-infected adults devel-
ops antibodies able to neutralize many primary virus isolates (50–
53). These broadly neutralizing antibodies are usually directed
against a few epitopes, including the CD4 binding site, the mem-
brane proximal external region in gp41, the gp120-gp41 interface,
and glycan-dependent sites of the Env variable loops (V1V2 or
V3) (54), and they arise after several years of infection. Until re-
cently, the ability of infants to develop broad neutralizing anti-
body responses was unknown. In an elegant study by Goo et al.
(55), it was reported that infants can develop neutralization
breadth. Remarkably, two and a half years after infection, some
infants showed a neutralization breadth comparable to the
breadth observed in the top 1% adult neutralizers several years
after infection. As neutralizing antibody responses are thought to
be important for an effective HIV vaccine, investigation of the
developmental pathway of broadly neutralizing responses in in-
fants might have important implications for HIV vaccine devel-
opment.

Cellular immune responses to HIV in adults and infants.
Previous studies in infants and adults have attempted to define the
role of cellular immune responses during HIV infection and the
ability of these responses to suppress viremia. In HIV-infected
adults, virus-specific CD8� T cells appear in blood just before
peak viremia, and cytotoxic T cell responses have been associated
with a decrease in viral load (56–58). Early studies have indicated
that while cytotoxic responses are rarely detected in infants before
6 months of age (59, 60), noncytolytic CD8 viral suppressive ac-
tivity can be detected early and is associated with lower viral load
in infected infants (61). A more recent study also reported that
HIV-specific CD8� T cells are frequently detected in 6- to 10-
week-old perinatally HIV-infected infants (62). Interestingly, the
CD8� T cell response in infants was shown to predominantly
target variable proteins (Nef, Reg, and Env), whereas the response
in their chronically infected mothers was equally spread between
variable and conserved (Gag and Pol) proteins. In contrast to the
high frequency of HIV-specific CD8� T cells detected in infants,
only 5 out of 15 tested infants had detectable HIV-specific CD4� T
cells responses at 6 to 10 weeks of age. Thus, these studies suggest
potential differences in the specificities and virus suppression
mechanisms of CD8� T cells in adults and infants.

HIV VACCINE RESPONSES IN INFANTS AND ADULTS

Only a few infant pediatric phase I/IIa vaccine trials have been
conducted to date, and their results have consistently demon-
strated that HIV vaccines are safe in infants. In the Pediatric AIDS
Clinical Trial Group (PACTG) protocol 230, the safety and im-
munogenicity of two recombinant gp120 vaccines were evaluated
in infants born to HIV-infected women from the United States
(63). Infants were immunized with 4 vaccine doses between 0 and
20 weeks of age. Both vaccines were shown to be safe and to induce
humoral and cellular immune responses (64, 65). In the initial
phase of the study, infants were immunized with escalating doses
of vaccines to identify an “optimal vaccine dose” (63). Interest-
ingly, infants who received the lowest vaccine dose had a higher
frequency of T cell lymphoproliferative responses than infants im-

munized with higher vaccine doses (65), suggesting that low vac-
cine doses may be required in early life.

HIV vaccine safety in infants was also demonstrated in PACTG
326 (66). In the first part of that trial, the immunogenicity and
safety of ALVAC-HIV vCP205 (containing HIV-1 Gag, Env, and
protease inserts [67]) were investigated in U.S. infants born to
HIV-infected mothers, and in the second phase of the trial,
ALVAC-HIV vCP1452 (containing MNgp120, LAIgp41, p55
LAIgag, pol, and pol and nef HLA-A2-restricted T cell epitope in-
serts [68]) was evaluated when administered either alone or with
an AIDSVAX recombinant gp120 (rgp120) boost. Interestingly,
while all vaccine regimens induced cellular responses, only infants
immunized with the ALVAC-AIDSVAX regimen developed Env-
specific antibody responses (69). Finally, in HPTN027, Ugandan
infants born to HIV-infected mothers were immunized with
ALVAC-HIV vCP1521 (containing HIV-1 clade E env, clade B gag,
and protease [70]). No severe or life-threatening events were ob-
served in vaccinated infants, and adverse events were equally dis-
tributed in the placebo and vaccine arms. As in PACTG 326, this
ALVAC-only regimen did not elicit significant humoral immune
responses. Overall, these trials demonstrated that HIV-exposed
infants can develop humoral immune responses when immunized
with protein-based HIV vaccines.

Immune correlates of protection in the moderately effective
adult RV144 vaccine trial. The adult RV144 HIV vaccine trial
conducted in Thailand evaluated the efficacy of an ALVAC-HIV
(vCP1521) prime expressing clade E env and clade B gag and pol,
followed by an AIDSVAX clade B/E gp120 protein boost. The
vaccine strains were similar to viruses commonly circulating in
Thailand at the time of the trial. Interestingly, in the first year
postimmunization, the vaccine efficacy was 60%, with a decline to
31% efficacy after 3 years (71, 72). To identify immune responses
associated with vaccine efficacy, a case-control study was per-
formed on 41 infected vaccine recipients, 205 uninfected vaccine
recipients, and 40 placebo recipients (20 infected and 20 unin-
fected) (73). Two distinct antibody responses were found to be
associated with a risk of HIV acquisition: a high magnitude of IgG
antibodies that bound to a scaffold recombinant protein of the
HIV Env variable loop 1 and 2 (gp70 V1V2) was associated with a
decreased risk of HIV acquisition, whereas high-magnitude
plasma Env-specific IgA correlated with an increased risk of infec-
tion. Importantly, neither low levels of V1V2 IgG nor high levels
of Env-specific IgA were associated with higher rates of infection
in vaccine recipients than in the placebo group.

Infant vaccination can induce high-magnitude potentially
protective anti-V1V2 IgG responses. Because of the differences
in the adult and infant immune systems, whether HIV vaccine
discoveries in adults are applicable to infant settings remains un-
known. To date, no HIV vaccine efficacy trial has been conducted
in infants; the identification of immune correlates of HIV acqui-
sition in the RV144 adult trial provided a unique opportunity to
determine if HIV vaccination can elicit potentially protective re-
sponses in infants. We therefore reevaluated vaccine-elicited an-
tibody responses in PACTG 230 and in PACTG 326. In PACTG
230, infants were vaccinated with four doses of Chiron rgp120
(SF-2 strain) with the adjuvant MF-59, VaxGen rgp120 (MN-
strain) with aluminum hydroxide, or placebo between 0 and 20
weeks of age (63). In PACTG 326, infants received four doses of
ALVAC vCP1452 alone, ALVAC vCP1452 with AIDSVAX B/B
with the adjuvant alum, or placebo between 0 and 12 weeks of age
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(69). Reanalysis of the antibody responses elicited by infant Env
vaccination revealed that infants developed robust Env-specific
antibody responses to these first-generation HIV Env vaccines. At
1 year of age, the majority of the maternally acquired antibodies
had waned, and vaccine Env-specific IgG responses were signifi-
cantly higher in vaccinees than in placebo recipients (74). All vac-
cine regimens induced a frequency of V1V2 response in vaccinees
similar to or higher than that in RV144 vaccinees (Fig. 1). Remark-
ably, at peak immunogenicity, 98% of the infants immunized with
the Chiron vaccine had detectable levels of anti-V1V2 IgG, a re-
sponse associated with a reduced risk of HIV acquisition in the
RV144 adult vaccine trial (Fig. 1). Moreover, the anti-V1V2 IgG
concentration was 22-fold higher in infants who received the Chi-
ron vaccine than in RV144 adult vaccinees. Importantly, there was
no correlation between anti-V1V2 IgG levels at birth and levels
either at peak immunogenicity or at 1 year of age, indicating that
maternal antibodies did not interfere with the development of
robust anti-V1V2 IgG responses in infants. Moreover, vaccine-
elicited IgA responses, which were associated with an increased
risk of HIV acquisition in RV144 adult vaccinees, were rarely de-
tected in PACTG 230 vaccinated infants. These results clearly
demonstrate that infants can develop robust antibody responses
following HIV vaccination and suggest that adult immunogenic-
ity data may not be transposable to pediatric settings. However, it
is important to keep in mind that the adult RV144 trial and the
infant PACTG 230 trial did not evaluate the same vaccines. Thus,
a comparison of adult and infant immune responses following
immunization with the same HIV vaccines is warranted to gain
more understanding regarding the potential differences between
adults and infants. In addition, the immune correlates of HIV
acquisition in infants are not known, and it is unclear if the same
mechanisms are important for blocking HIV infection through
breastfeeding and sexual transmission. In fact, it is possible that
protecting infants against breast milk HIV transmission is easier
than protecting adolescents/adults against sexual HIV transmis-

sion, because infants are born with maternal antibodies raised
against viruses to which they are exposed and their period of ex-
posure to the virus is relatively short and well defined.

Can infant HIV vaccination elicit polyfunctional antibodies?
The mechanism of protection in the RV144 adult vaccine trial is
not completely understood, but it is generally thought that non-
neutralizing effector immune responses contributed to the ob-
served protection. In support of this hypothesis, subsequent anal-
ysis of samples from RV144 vaccinees and from the nonprotective
VAX003 trial revealed that the RV144 vaccine induced a polyfunc-
tional IgG response, whereas the VAX003 vaccine elicited a mono-
functional response (75). The polyfunctionality of RV144 vac-
cine-elicited responses was driven by highly functional IgG3
antibodies, whereas the monofunctional response in VAX003 was
influenced by the production of poorly functional IgG4. Impor-
tantly, a strong correlation was observed between IgG3 antibodies
against the V1V2 loop and a reduced risk of HIV acquisition in
RV144 vaccinees (76). We therefore sought to determine if infant
vaccination could induce IgG3 antibodies against gp70 B case A2
V1V2, a murine leukemia glycoprotein containing a V1V2 clade
B-scaffolded construct that mimics the native V1V2 structure on
gp120 (77). The IgG subclass distribution of V1V2-IgG antibodies
was assessed among PACTG 230 participants immunized with the
Chiron vaccine and in placebo recipients. The majority of infants
had IgG1 antibodies against gp70 B case A2 V1V2, but 42% of
them also had V1V2-specific IgG3 antibodies at peak immunoge-
nicity (74). However, this response was short-lived, as 8 months
after vaccination, V1V2-specific IgG3 antibodies were no longer
detected in infants. A similarly short duration of IgG3 antibody
response was also observed in adult RV144 vaccine recipients (76).
V1V2-specific IgG2 and IgG4 responses were rarely observed in
vaccinated infants (our unpublished data). Thus, infant HIV vac-
cination can induce potentially highly functional IgG3 antibodies,
but whether infant vaccine-elicited antibodies are capable of me-
diating nonneutralizing effector functions remains to be deter-
mined.

Modulation of infant and adult HIV vaccine-elicited anti-
body response by adjuvants. The role of adjuvants in modulating
antibody responses to HIV vaccines was recently addressed by
comparing antibody responses in adults from the RV132 and
RV135 phase I/II vaccine trials (78). In RV132, healthy Thai vol-
unteers were immunized with ALVAC-HIV (vCP1521), followed
by a bivalent clade B/AE HIV gp120 protein boost (SF-2/CM235)
absorbed into MF-59, whereas RV135 participants were immu-
nized with vCP1521, followed by a bivalent B/AE gp120 protein
boost (MN gp120/A244 gp120) using alum as an adjuvant. Most
vaccine recipients in both trials developed Env-specific antibodies
after the first and second protein boosts. Interestingly, while there
was no difference in the binding to a clade-matched V2 cyclic
peptide between RV135 and RV132 vaccine recipients, at peak
immunogenicity, the response against gp70 B case A V1V2
(RV144 immune correlate) was significantly higher in RV135 vac-
cine recipients in whom alum was used as an adjuvant. Thus, in
HIV-vaccinated adults, alum might be more effective than MF-59
in directing the immune response toward potentially protective
antibodies. These results contrast with those observed in PACTG
230 infant vaccine recipients, in whom the MF-59-adjuvanted
vaccine (Chiron) elicited higher-magnitude and higher-frequency
IgG responses against gp70 B case A V1V2 (Table 3). In fact, at
peak immunogenicity, the percentage of infants with detectable

FIG 1 Infant HIV vaccination elicits high frequency of potentially protective
anti-V1V2 IgG responses. Shown are the proportions of infants vaccinated
with the Chiron vaccine (n � 43), the VaxGen vaccine (n � 44), and the
ALVAC � AIDSVAX regimen (n � 7) with detectable IgG antibodies against
gp70 B case A V1V2 at peak immunogenicity and subsequent time points. The
reported proportion of adult RV144 vaccine recipients with a detectable IgG
response against the gp70 B case A V1V2 construct (101) is presented for
comparison.
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IgG responses against gp70 B case A V1V2 was 98% among the
Chiron vaccinees and 73% among the VaxGen vaccine recipients.
More impressively, 8 months after the administration of the last
vaccine dose, 93% of the Chiron vaccine recipients but only 13%
of the VaxGen vaccine recipients had a detectable anti-gp70 B case
A V1V2 IgG response.

In contrast, adults from the RV135 and RV132 trials had short-
lived anti-gp70 B case A V1V2-specific antibody responses. This
might indicate that MF-59-adjuvanted HIV vaccines can elicit
more durable antibody responses in infants than in adults. It is
also possible that the difference between adult and infant re-
sponses results from the distinct vaccine regimens used in the
trials. Nevertheless, in both the adult and infant trials, the dose
used in the alum-adjuvanted vaccine was higher than that used in
the MF-59-adjuvanted vaccine. Moreover, the same clade B vac-
cine strains were used with the same adjuvants in the adult and
infant trials (MN with alum and SF-2 with MF-59). This strongly
suggests that alum and MF-59 differentially modulate infant and
adult responses to HIV vaccines.

Characterization of Env-specific monoclonal antibodies iso-
lated from vaccinated infants might provide deeper under-
standing of vaccine-elicited antibodies. Vaccine-elicited re-
sponses are evaluated by comparing immune responses after
vaccination to those measured prior to vaccination or to those of
a placebo control group. Because HIV-exposed infants are born
with high levels of maternal passively acquired Env-specific anti-
bodies, an assessment of vaccine-elicited responses relies on a
comparison between vaccine and placebo recipients. Importantly,
it is possible that this approach masks the detection of low levels of
vaccine-elicited antibodies in infants. The isolation of Env-spe-
cific antibodies from vaccinated infants can circumvent this lim-
itation, providing a deeper understanding of vaccine-induced an-
tibody responses in infants. Recent advances in antigen-specific B
cell sorting and antibody gene cloning have provided insights into
the immune mechanisms required for the development of neu-
tralization breadth (79, 80). In addition, the characterization of
monoclonal antibodies from HIV-vaccinated adults has uncov-
ered novel specificities and functional interactions that could not
be measured in whole plasma. For example, analysis of monoclo-
nal antibodies from RV144 vaccinees has demonstrated competi-
tion between IgG and IgA antibodies directed against the same
epitope (81). These findings led to the hypothesis that in RV144,
vaccine-elicited IgA antibodies interfered with the effector func-
tions of potentially protective IgG antibodies, explaining why
high-magnitude IgA responses were associated with an increased
risk of HIV acquisition in this trial. To date, no studies have char-
acterized antigen-specific B cells in infants. Aside from providing
insights into the specificity and function of vaccine-elicited anti-

body responses, such investigations will determine if differences
in affinity maturation exist between infants and adults.

Infant vaccination might be beneficial for the prevention of
sexual HIV transmission. Studies in nonhuman primates have
demonstrated that broadly neutralizing antibodies can protect
against simian-human immunodeficiency virus acquisition (82–
85); yet, all HIV vaccines tested to date in humans have failed to
induce broadly neutralizing antibody responses (86, 87). The fact
that the RV144 vaccine achieved moderate protection while elic-
iting antibodies capable of neutralizing only tier 1 (easy-to-neu-
tralize) viruses suggests that nonneutralizing antibodies mediated
the protective effect of the vaccine. It is therefore likely that a
vaccine capable of eliciting broad neutralizing responses is more
efficacious than RV144. Recent studies demonstrating that
broadly neutralizing antibodies coevolve with virus through mul-
tiple rounds of virus escape to immune pressure (88, 89) have led
to the hypothesis that the induction of broad Env-specific neutral-
izing responses through immunization will require sequential
vaccinations with a series of related antigens (88–90). Thus, it may
be difficult to raise protective antibody responses prior to sexual
debut if vaccination is initiated in adolescence or adulthood. The
initiation of HIV immunity early in life via infant vaccination has
the possibility of inducing long-term affinity maturation of the
antibody response and generating the broad HIV immunity
needed to protect against sexually transmitted HIV. Moreover, the
infant immune responses will potentially be more flexible than
those of adults, due to the more limited exposure to environmen-
tal antigens that have predefined the immune repertoire (42, 91).
Thus, a pediatric HIV vaccine might have benefits beyond the
prevention of transmission through breast milk.

Therapeutic HIV vaccines in children. Current antiretroviral
regimens can lead to sustained viral suppression, but they cannot
cure HIV even after several years of treatment, because of the
persistence of a reservoir of latently infected cells (92). The erad-
ication of this latent virus reservoir will surely require a combina-
tion of pharmacologic and immunologic approaches. Several im-
munologic strategies have been proposed to achieve viral
remission. These include passive immunization with monoclonal
antibodies and therapeutic vaccines.

Two HIV vaccine trials have been conducted in HIV-infected
children to date. ACTG 218 evaluated the safety and immunoge-
nicity of three HIV Env protein vaccines in HIV-infected infants
and children ages 1 month to 18 years (93). The vaccines were
administered at entry and then 1, 2, 3, 4, and 6 months later. The
vaccine was well tolerated, and there was no significant deteriora-
tion in clinical status, no occurrence of serious opportunistic in-
fections, no evidence of adverse effects on the immune system,
and no increase in viral replication in vaccinees. Up to 56% of the

TABLE 3 Adjuvants may differently modulate adult and infant antibody responses to HIV vaccines

Patient group Trial Vaccine(s) Adjuvant Protein dose (�g) V1V2-specific IgG response

Adults RV135 ALVAC (vCP1521), rgp120
MN/rgp120 A244

Alum 300/300 Higher with alum than with MF-59

RV132 ALVAC (vCP1521), rgp120
SF2/gp120 CM235

MF-59 100/50 Short-lived antibody responses with
MF-59 and alum

Infants PACTG 230 VaxGen, rgp120 MN Alum 30, 100, or 300 Higher with MF-59 than with alum
PACTG 230 Chiron, rgp120 SF2 MF-59 5, 15, or 50 Long-lived antibody responses with

MF-59 but not with alum
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vaccinated children developed lymphoproliferative responses
against the vaccine antigens and 65% of the vaccinated children
exhibited moderate to strong antibody responses to the vaccine
antigens, but none of the placebo recipients had moderate to
strong HIV-specific antibody responses. Similarly, the adminis-
tration of an HIV DNA vaccine construct expressing HIV-1 sub-
types A, B, and C, Env, Rev, Gag, and reverse transcriptase (RT) to
10 HIV-infected children (6 to 16 years of age) on antiretroviral
therapy was well tolerated in the PEDVAC trial (94). Interestingly,
vaccinated children developed higher lymphoproliferative re-
sponses to gag than did adults immunized with the same vaccine.
These two studies provide a proof of principle that HIV vaccines
can be safely administered to HIV-infected children, and they
pave the way for future larger trials. Importantly, it was recently
argued by Klein et al. (95) that children are ideal candidates for
immunotherapeutic interventions to achieve viral remission. The
arguments presented by the authors are based on the fact that
perinatally infected children for whom antiretroviral (ARV) treat-
ment is initiated early on have a small latent virus reservoir (96,
97) and normal development of the memory B cell and T cell
compartments (98, 99). The potential for viral eradication in chil-
dren was recently illustrated by the “Mississippi baby.” This peri-
natally infected baby received triple-ARV treatment 30 h after
birth, but the treatment was interrupted by the mother after 18
months. For �20 months after treatment interruption, the baby
had undetectable virus levels in peripheral blood. However, at 46
months of age, the plasma viral load rebounded (100), indicating
that very early treatment is not enough to prevent the establish-
ment of the latent reservoir. In future studies, it will be critical to
determine if a combination of early antiretroviral treatment and
immunotherapeutic interventions can prolong virus remission in
children.

CONCLUSION

Ridding the world of HIV will require strategies that impede all
modes of transmission, including vertical and sexual transmis-
sion. A vaccine administered early in life to elicit broad and ma-
ture antibody responses in infants and preadolescents prior to
sexual debut might therefore be a valuable resource for the global
elimination of HIV. Recent works have indicated that the neonatal
immune system is equipped to respond to HIV antigen exposure
in a way that induces broad neutralizing antibody responses (55).
In addition, infants can develop robust antibody responses that
are equal to or higher in magnitude than adult vaccine responses
that were associated with a reduced risk of sexual HIV infection
(74). Importantly, because immune pathways that lead to protec-
tive immune responses may differ between infants and adults,
HIV vaccine strategies may need to be tailored to the infant im-
mune landscape in order to direct the development of protective
HIV immunity in early life. Preclinical vaccine studies in animal
models and clinical vaccine studies in HIV-exposed infants will
increase our current understanding of how infants respond to
HIV antigens and guide the development of an effective global
HIV vaccine strategy.
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