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Flexible selection of a single treatment
incorporating short-term endpoint
information in a phase II/III clinical trial
Nigel Stallard,a*† Cornelia Ursula Kunz,a Susan Todd,b
Nicholas Parsonsa and Tim Friedec

Seamless phase II/III clinical trials in which an experimental treatment is selected at an interim analysis have
been the focus of much recent research interest. Many of the methods proposed are based on the group sequential
approach. This paper considers designs of this type in which the treatment selection can be based on short-term
endpoint information for more patients than have primary endpoint data available. We show that in such a case,
the familywise type I error rate may be inflated if previously proposed group sequential methods are used and the
treatment selection rule is not specified in advance. A method is proposed to avoid this inflation by considering
the treatment selection that maximises the conditional error given the data available at the interim analysis. A
simulation study is reported that illustrates the type I error rate inflation and compares the power of the new
approach with two other methods: a combination testing approach and a group sequential method that does not
use the short-term endpoint data, both of which also strongly control the type I error rate. The new method is
also illustrated through application to a study in Alzheimer’s disease. © 2015 The Authors. Statistics in Medicine
Published by John Wiley & Sons Ltd.
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1. Introduction

Adaptive and sequential methods are often used in clinical trials to allow changes to be made to a trial
design at one or more interim analyses during the course of the trial on the basis of the data observed.
Such methods are appealing because they allow data observed early in the trial to be used to ensure that
the trial is as efficient as possible [1].

Several authors have developed methods for such trials that test a single hypothesis to compare an
experimental treatment with a control. These include the group sequential method [1,2], the combination
test method [3–5] and the conditional error function method [6,7]. Building on this work, there has been
much recent interest in trials involving selection of the most promising of a number of treatments, in
what is sometimes called a multi-arm, multi-stage (MAMS) design, an adaptive seamless design, or a
seamless phase II/III trial [8, 9], or of a subgroup of the population in which a therapy is particularly
effective [10, 11].

A desire in the analysis of trials that use interim analysis data for treatment selection is usually the
control of the overall type I error rate, and this has been the focus of most of the development of statistical
methodology in the area. In trials in which multiple hypotheses are tested, it is usually required that the
familywise error rate is controlled in the strong sense. Several authors have developed methods based on
the group sequential approach. Compared with other approaches, the group sequential method benefits
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from the fact that inference is based on sufficient statistics for the parameters of interest [12–14] and
may be preferable from a regulatory perspective [15]. The group sequential approach lacks flexibility,
however, in that the rules for adaptation, in this case treatment selection, must generally be specified in
advance in order to ensure type I error rate control. This has been termed pre-specified adaptivity.

A number of authors [8, 16–22] have proposed group sequential methods for selection of one or more
treatments using a pre-specified rule. The selection rules specify either the conditions under which treat-
ments should be dropped, as proposed by Follman [17], Hellmich [18] and Magirr et al. [22], or the
number of treatments to continue at each stage, as proposed by Thall et al. [16], Stallard and Todd [8],
Bischoff and Miller [19] and Stallard and Friede [20]. Here, we take the latter approach and consider
two-stage designs in which the data available at the interim analysis are used for selection of a single
experimental treatment, which continues along with the control to the second stage.

Thall et al. [16] and Stallard and Todd [8] show how the type I error rate can be controlled when
selection of a single experimental treatment is based on the primary endpoint data alone and the most
promising treatment is selected. Jennison and Turnbull [23] and Graf et al. [24] point out that the method
proposed by Thall et al. [16] and Stallard and Todd [8] also controls the type I error rate when the
treatment selected is not the most promising.

In some cases, in addition to primary endpoint data, data on some short-term endpoint may also be used
for treatment selection. As such data may be observed more quickly than the primary endpoint, short-term
endpoint data may be available at the interim analysis for patients for whom the primary endpoint data
are not yet available. Stallard [21] showed how to control the type I error rate in this case, again assuming
that the most promising experimental treatment was selected to continue beyond the interim analysis.
The aim of this paper is to explore the properties of this approach when some treatment other than the
most promising is selected, in particular when the selection rule is not specified in advance. We show
that in this case, unlike the setting in which primary endpoint data only are used at the interim analysis
considered by Jennison and Turnbull [23] and Graf et al. [24], such selection may lead to inflation of the
type I error rate. Based on consideration of a trial in which the selection is made so as to maximise the
conditional type I error given the data available at the interim analysis, we show how to construct critical
values for the final hypothesis test to ensure that the familywise type I error rate is controlled strongly
for any selection rule.

2. Motivating case study

There is a growing number of examples of multi-arm clinical trials that incorporate treatment selection
at an interim analysis, illustrating the range of areas of application and variety of details of implemen-
tation of treatment selection and interim analyses, with four examples given in the recent paper by
Cuffe et al. [25].

Wilkinson and Murray [26] describe a multi-stage phase II trial in Alzheimer’s disease in which
patients are initially randomised between a placebo control and 18, 24 and 36 mg/day doses of the
exploratory drug, galantamine. In this study, the primary endpoint was a 3-month change in Alzheimer’s
Disease Assessment Scale cognitive subsection (ADAS-Cog) score, but both 3-month and 6-week change
data were used at an interim analysis for dose selection. Wilkinson and Murray found the 24 mg/day dose
to be the most promising, although further research [27] indicated that lower doses may be as efficacious.

In the setting of a phase II/III trial in Alzheimer’s disease, the primary endpoint might be change in
ADAS-Cog score over 6 months, but, as in the trial described by Wilkinson and Murray, data on the
change over a shorter period, for example, over 3 months, might be recorded and be available more
rapidly than the final endpoint data. A decision at an interim analysis of which dose should continue along
with the control to the second stage of the trial could thus be based on a combination of 6- and 3-month
data. Trials such as this motivate the work described in this paper. The aim is to provide a method that
strongly controls the familywise type I error rate while allowing for use of all interim analysis data for
treatment selection.

3. Error rate control for flexible selection of a single treatment in a two-stage
multi-arm clinical trial

Consider a multi-arm clinical trial comparing k (k ⩾ 2) experimental treatments, treatments 1,… , k, with
a control treatment, treatment 0. Let 𝜃i be a measure of the efficacy of treatment i relative to treatment
0 for i = 1,… , k, in terms of the primary endpoint and suppose that we wish to test a family of null
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hypotheses Hi, i ∈ {1,… , k}, with Hi ∶ 𝜃i ⩽ 𝜃0 for specified 𝜃0, which, without loss of generality, we
may take to be zero. We wish to control the familywise error rate in the strong sense for testing this family
of null hypotheses.

Suppose that the trial is conducted in two stages, with, in the first stage, primary endpoint responses
available for n1 patients randomised to each of treatments 0,… , k. Let X1 denote the full data observed in
the first stage, which includes the primary responses from these n1 patients in each treatment group but,
as in the example described earlier, may also include data from additional patients from whom primary
endpoint data are not yet available.

On the basis of the data X1, treatment T(X1), for some T(X1) ∈ {1,… , k}, will be chosen to continue
along with the control to the second stage with the hypothesis, HT(X1) tested at the end of the trial. Primary
responses are then observed for a further n2 − n1 patients randomised to each of treatments T(X1) and 0
in the second stage of the trial. Let Si denote a test statistic for Hi based on data observed in both stages
of the trial. We assume that the distribution of Si depends on 𝜃i, but not on 𝜃i′ with i′ ≠ i, and that a larger
𝜃i value leads to larger values of Si, as formalised in the Appendix. The hypothesis HT(X1) will be rejected
at the end of the trial if and only if ST(X1) ⩾ c for some critical value c, which will be chosen so as to
provide strong familywise error rate control.

As indicated earlier, in general, the data X1 may include data other than the primary responses
summarised by S1,… , Sk and so may depend on further parameters in addition to 𝜃1,… , 𝜃k.
When this is the case, we will denote these additional parameters by 𝜃k+1,… , 𝜃k∗ with k∗ > k.
Otherwise, we will define k∗ = k. We will write 𝜽 for the vector of all parameters, that is,
𝜽 = (𝜃1,… , 𝜃k∗ )′.

We require to strongly control the familywise error rate at level 𝛼, that is, to ensure that the probability
of rejecting any true Hi (i = 1,… , k) is at most 𝛼 for any 𝜽. This is required for any data-dependent
choice of T(X1). We therefore wish to find c such that

pr𝜃(ST(X1) ⩾ c, 𝜃T(X1) ⩽ 0) ⩽ 𝛼 (1)

for all 𝜽, and for any T in 𝒯 , where 𝒯 denotes the set of functions from the stage 1 sample space to
{1,… , k}.

Given 𝜽 with 𝜃i ⩽ 0, that is Hi true, for some i = 1,… , k, let

T∗
𝜽
(X1) = arg maxi∈{1,…,k}∶𝜃i⩽0

{
pr

𝜽
(Si ⩾ c ∣ X1)

}
.

Thus, T∗
𝜽

denotes the rule that selects the treatment, treatment i, for which the conditional probability
given X1 of rejecting Hi is highest amongst those i for which Hi is true given 𝜽. That is, T∗

𝜽
(X1) is chosen

to maximise the conditional error given X1 under 𝜽.
It can be shown (Appendix) that the left-hand side of (1) is maximised over T ∈ 𝒯 by taking T(x1) =

T∗
𝜽
(x1) for all x1 and maximised over 𝜃1,… , 𝜃k by taking 𝜃1 = · · · = 𝜃k = 0.
To satisfy (1) and control the familywise error rate in the strong sense, it is therefore sufficient

to have

pr
(

ST∗
𝜽
(X1) ⩾ c; 𝜃1 = · · · = 𝜃k = 0

)
⩽ 𝛼 (2)

for all 𝜃k+1,… , 𝜃k∗ .
In the case that k = k∗, when no short-term endpoint data are available, (2) states that the familywise

error rate is controlled at level 𝛼 in the weak sense, that is, under the global null hypothesis ∩i=1,…,kHi.
The result in the Appendix shows that strong control of the familywise type I error rate is also achieved.
For k = k∗, 𝜽 and hence T∗

𝜽
are entirely defined. In order to find the value of the critical value c to satisfy

(2) and hence (1), it is thus necessary to obtain the distribution of ST∗
𝜽
(X1). Although in general this may

not be a straightforward problem, the distribution is obtained for normally distributed responses by Thall
et al. [16] and Stallard and Todd [8].

In general for k∗ > k, the probability in (1) must be controlled for all 𝜃k+1,… , 𝜃k∗ . In this case, it
is therefore necessary to find the values of 𝜃k+1,… , 𝜃k∗ to maximise the probability in (2) to obtain
the critical value c. Depending on the setting, this may be possible. For example, it may be that the
values of 𝜃k+1,… , 𝜃k∗ to maximise the error rate can be found directly, or that the probability in (2)
does not depend on 𝜃k+1,… , 𝜃k∗ . The latter situation arises when data from different patients are inde-
pendent and treatment selection is based either only on data from patients for whom primary endpoint
data are available or on a combination of primary endpoint data and short-term endpoint data avail-
able for patients for whom the primary endpoint is not yet available, as discussed in more detail in the
next section.
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4. Application with normally distributed responses and short-term endpoint data

In this section, the method described earlier is illustrated through application in the setting of a clini-
cal trial with a normally distributed primary endpoint. In many cases, similar settings with non-normal
data may be handled using asymptotically normally distributed test statistics as described in the group
sequential setting by Jennison and Turnbull [28].

Suppose that in stage 1, primary endpoint data, Yij, are observed for patients j = 1,… , n1 receiving
treatment i and that in stage 2, data Yij are additionally observed for patients j = n1 + 1,… , n2 for the
control, i = 0 and i = T(X1). Assume Yij ∼ N(𝜇i, 𝜎

2), with data from different patients independent, that
is, cov(Yij,Yi′,j′ ) = 0 unless i = i′ and j = j′, and let 𝜃i = 𝜇i − 𝜇0 (i = 1,… , k).

We assume that at the first stage, we additionally observe short-term endpoint data, Wij, for patients
j = 1,… ,N1 in treatment group i, i = 0,… , k, where N1 > n1, and that at the end of the second stage,
data are available for n2 ⩾ N1 patients per group including the N1 with short-term endpoint data available
at the first stage. We assume(

Yij
Wij

)
∼ N

((
𝜇i

𝜇k+1+i

)
,

(
𝜎2 𝜌𝜎𝜎0

𝜌𝜎𝜎0 𝜎2
0

))
, (3)

with cov(Wij,Wi′j′ ) = 0, cov(Yij,Yi′j′ ) = 0, and cov(Wij, Yi′j′ ) = 0 (i ≠ i′ or j ≠ j′). Noting that 𝜇k+1 is the
mean for the short-term endpoint for the control treatment, the short-term treatment effect for treatment
i is given by 𝜇k+1+i − 𝜇k+1, which will be denoted 𝜃k+i, (i = 1,… , k). The parameters of interest are
𝜃i, i = 1,… , k, and it is desired to test the null hypotheses Hi ∶ 𝜃i ⩽ 0 (i = 1,… , k). The short-term
endpoint treatment effects, 𝜃k+i (i = 1,… , k), are not of interest, so that we are interested in testing k null
hypotheses, with the distribution of the data depending on k∗ = 2k parameters.

Assume that at the end of the trial a test statistic Si =
∑n2

j=1

(
Yij − Y0j

)
will be used for test-

ing hypothesis Hi. The results stated earlier and proved in the Appendix show that in order to find
c to satisfy (1), we need to consider only the case 𝜃1 = · · · = 𝜃k = 0 and T(x1) = T∗

𝜽
(x1) =

arg maxi∈{1,…,k}∶𝜃i⩽0

{
pr𝜃(Si ⩾ c ∣ X1 = x1)

}
. The resulting form of the rule, T∗

𝜽
(x1), that maximises the

conditional error over 𝜃k+1,… , 𝜃k∗ is obtained later.
We consider first the case with 𝜎, 𝜎0 and 𝜌, assumed known. It can be shown that, given X1 =

(W1,… ,WN1
,Y1,… ,Yn1

)′ = (w1,… ,wN1
, y1,… , yn1

)′, the conditional distribution of Si is given by

Si ∼ N
(
(n2 − n1)𝜃i + n1𝜃i, 2

(
(n2 − n1) − (N1 − n1)𝜌2

)
𝜎2
)
,

where

𝜃i = 𝜃̆i + 𝜌
𝜎

𝜎0

N1∑
j=n1+1

(wij − w0j − 𝜃k+i))∕n1

with 𝜃̆i =
∑n1

j=1(yij −y0j)∕n1 denoting the estimate of 𝜃i based on the interim primary endpoint data alone.
Thus, if 𝜃1 = · · · = 𝜃k = 0, T∗

𝜃
(x1) = arg maxi∈{1,…,k} 𝜃i. The selection rule T∗

𝜃
(X1) would maximise

the error rate if 𝜃k+1,… , 𝜃k∗ were known. Even if 𝜃k+1,… , 𝜃k∗ are unknown, however, full flexibility over
the choice of T means that this rule might be chosen. The critical value, c, must thus be calculated based
on this rule to ensure error rate control.

The joint distribution of 𝜃1,… , 𝜃k and S1,… , Sk is given by

(𝜃1,… , 𝜃k, S1,… , Sk)′ ∼ N

(
(𝜃1,… , 𝜃k, 𝜃1,… , 𝜃k)′,

(
V1 𝜌e

√
V1V2

𝜌e

√
V1V2 V2

)
⊗ 𝚺

)
with V1 = 2𝜎2(n1 + 𝜌2(N1 − n1))∕n2

1, V2 = 2n2𝜎
2 and 𝜌e =

√
(n1 + 𝜌2(N1 − n1))∕n2. As this distribution

does not depend on 𝜃k+1,… , 𝜃k∗ , the distribution of ST∗
𝜃
(X1) does not depend on 𝜃k+1,… , 𝜃k∗ and is entirely

specified by taking 𝜃1 = · · · = 𝜃k = 0.
Noting that the conditional variance of Si given 𝜃i is V2

(
1 − 𝜌2

e

)
, ST∗

𝜽
(X1) has density

k∑
i=1

∫
∞

−∞

1√
V2

(
1 − 𝜌2

e

)𝜙
⎛⎜⎜⎜⎝

s − (n2 − n1)𝜃i − n1x√
V2

(
1 − 𝜌2

e

)
⎞⎟⎟⎟⎠ fi(x,V1)dx
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and distribution function

k∑
i=1

∫
∞

−∞
Φ
⎛⎜⎜⎜⎝

s − (n2 − n1)𝜃i − n1x√
V2

(
1 − 𝜌2

e

)
⎞⎟⎟⎟⎠ fi(x,V1)dx,

where

fi(x,V) = ∫
∞

−∞

1
V
𝜙

(
x − y√

V

)
𝜙

(
y − 𝜃i√

V

)∏
i′≠i

Φ

(
y − 𝜃i√

V

)
dy

and 𝜙 and Φ denote the density and distribution functions of the standard normal distribution [8]. Numer-
ical integration and a simple numerical search, for example, using the R function uniroot, can thus be
used to find the critical value c to control the error rate as required.

When 𝜎, 𝜎0 and 𝜌 are not known, estimates obtained at the interim analysis can be used in this
expression to find c.

5. Example

In this section, the method described earlier is illustrated through application to a simulated dataset based
on the setting of the phase II/III trial described in Section 2. We assume that three doses, 16, 24 and
32 mg/day of galantamine, are compared with a placebo control. In the first stage of the trial, N1 =
100 patients per group are randomised between the four treatment arms, with an interim analysis being
conducted when wij, the 3-month endpoint data, are available for all of these patients. It is assumed that
at this time yij, the primary, 6 month, endpoint data, are available for n1 = 40 patients per arm. Data
were simulated from a model based on the Cochrane review of clinical trials of galantamine by Loy and
Schneider [27].

The simulated interim analysis data are shown in Figure 1 giving the change from baseline to 3- and
6-month ADAS-Cog scores with the sign of the change chosen so that positive changes correspond to
an improvement. Plotted points indicate values of the long-term and short-term endpoint data for the n1
patients per group for whom these are both available. The tick marks at the bottom of each plot give
the values of the short-term endpoint data for the remaining N1 − n1 patients per group for whom long-
term endpoint data are not available at this time. The mean long-term response for the n1 patients in each
group are given in Table I along with the mean short-term response for these n1 patients per group, for
the additional N1 − n1 patients per group for whom only short-term endpoint data are available and for
all N1 patients per group included in the interim analysis.

Using the approach of Stallard and Todd [8], treatment selection would be based on the long-term
endpoint data alone. The estimate of the treatment effect for treatment i relative to the control, 𝜃i, is then
given by 𝜃̆i =

∑n1

j=1(yij − y0j)∕n1, which is given in Table I. In this case, this would lead to selection of
the 32 mg/kg dose. Assuming treatment selection is always made using this approach, the critical value
for the final test statistic needs to be adjusted as described by Stallard and Todd [8] in order to control
the type I error rate. In this case, the critical value depends on n1 and N. The critical value, c∕

√
V2, with

which a standardised test statistic should be compared with give a one-sided type I error rate of 𝛼 = 0.025
is 2.19.

Use of the additional 3-month endpoint data would improve the treatment selection. The method of
Stallard [21] would base treatment selection on the estimate of 𝜃i given by

𝜃̂i = 𝜃̆i − 𝜌
𝜎

𝜎0

n1∑
j=1

(
wij − w0j − 𝜃̂k+i

)
∕n1,

with 𝜃̂k+i =
∑N1

j=1(wij − w0j)∕N1. These estimates are also given in Table I. Figure 1 shows that for i = 3
values of wij for j = n1,… ,N1 are typically smaller than those for j = 1,… , n1, as is reflected in the mean
values given in Table I. This leads to 𝜃̂3 being considerably smaller than 𝜃̆3, so that 𝜃̂3 < 𝜃̂2. Incorporation
of the additional short data would thus lead to selection of the 24 mg/day dose rather than 32 mg/day. If
this approach is always used for treatment selection, the critical value needs to be adjusted to allow for
the use of the additional 3-month endpoint information as described by Stallard [21]. In this case, the
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Figure 1. Interim analysis data for simulated example (see main text for details).

Table I. Summary of interim analysis results for simulated example.

Dose
∑n1

j=1
yij

n1

∑n1
j=1

wij

n1

∑N1
j=n1+1

wij

N1−n1

∑N1
j=1

wij

N1
𝜃̆i 𝜃̂i 𝜃k

Control (i = 0) −1.24 −0.05 0.06 0.02
16 mg/day (i = 1) 0.91 0.56 1.48 1.11 2.15 2.53 2.06
24 mg/day (i = 2) 2.64 2.15 2.43 2.32 3.88 3.96 3.74
32 mg/day (i = 3) 3.62 2.59 0.36 1.25 4.86 3.77 2.30

critical value depends on n1, N1, N and the correlation between the endpoints, 𝜌. Using an estimate of 𝜌
from the interim analysis data, in this case, 0.77, leads to a critical value with which a standardised test
statistic should be compared of 2.23.

As described earlier, the conditional type I error rate is maximised by selecting the treatment based
on the estimate 𝜃i. This requires specification of the true short-term endpoint treatment effects 𝜃k+i, i =
1,… , 3. Based on [27], for example, a researcher might guess that the true treatment effects relative to
the control might be close to 1.5, 2.5 and 2.5 for i = 1, 2 and 3, that is, for the 16, 24 and 32 mg/day
doses. The values of 𝜃k obtained using these values for k + i are given in Table I. In this case, this would
again lead to selection of the 24 mg/day dose. If a larger value was assumed for 𝜃k+i, 𝜃i would be reduced,
reflecting the fact that the observed values of wij are smaller relative to their expected value. Thus, for
example, if it was assumed that the true treatment effects for the three doses were 1.5, 4.0 and 4.0, 𝜃2 and
𝜃3 would be smaller than 𝜃1, so that the 16 mg/day dose would be selected. Note that using the estimated
values for 𝜃k+i, i = 1,… , 3 based on the interim analysis data, denoted by 𝜃̂k+i earlier, leads to 𝜃i equal
to 𝜃̂i given earlier, reflecting the fact that no additional information is available in this case.

As this selection maximises the type I error given the observed data, in the case of fully flexible treat-
ment selection, selection based on 𝜃i could lead to inflation of the type I error rate for appropriate choice
of 𝜃k+i, i = 1,… , 3 unless the critical value was adjusted to allow for this. In this case, the critical value
that controls the type I error rate again depends on n1, N1, N and 𝜌. Using the estimated value of 𝜌 as
mentioned earlier, the critical value for a standardised test statistic is 2.25.

Assuming selection of the 24 mg/day dose to continue to the second stage, simulated means at the end
of the trial for the 6-month change for control and 24 mg/day arms were −1.39 and 2.07, respectively,

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3104–3115
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with an estimated standard error for the difference between them,
√

V2, of 0.525, leading to standardised
test statistic of 6.60. A significant treatment effect is thus indicated for this dose irrespective of the way
in which it was selected.

6. Simulation study

In order to illustrate the properties of the method described and to compare them with those of alter-
native approaches, it is of interest to consider outcomes from a large number of simulated trials under
specified scenarios.

One alternative to the phase II/III trial considered earlier would be to conduct separate phase II and
phase III trials, the first used for selection of the most promising dose and the second comparing this
dose with a placebo. As previous simulations (for example, [29]) have shown that such an approach can
require considerably more patients than a two-stage phase II/III design, this option was not included in
our simulation study.

We considered two-stage trials with, as mentioned earlier, 𝛼 = 0.025, k = 3, n1 = 40,N1 = 100
and n2 = 200. Critical values with which standardised test statistics, Si∕

√
V2, would be compared

in this trial using the earlier approach to control the type I error rate for any treatment selection rule
are given in Table II for a range of 𝜌 values calculated assuming 𝜎, 𝜎0 and 𝜌 are known. The criti-
cal values increase with 𝜌 to control the type I error rate. Results from simulations of this procedure
are shown in columns 3 to 5 of the table. Estimated error rates were based on 100 000 simulations
so that if the true type I error rate was 0.025, we would expect the estimated error rate to be below
0.026 with probability 0.975. Columns 3 and 4 show the type I error rates simulated under 𝜃1 = · · · =
𝜃k = 0 with selection of arg max{𝜃i} assuming 𝜃k+1,… , 𝜃k∗ known, when the type I error rate is max-
imised, both using the known values of 𝜎, 𝜎0 and 𝜌 and using estimates of these obtained from the
stage 1, respectively, confirming that the type I error rate is controlled at the nominal 0.025 level in
both cases.

In practice, as 𝜃k+1,… , 𝜃k∗ are unknown, selection based on 𝜃i is impossible. An alternative would
be to select the treatment with the largest estimated effect 𝜃̂i as described in the earlier example, with
𝜃̂k+i =

∑N1

j=1(wij −w0j)∕N1 as in Stallard [21]. Column 5 shows the type I error rate in this case, when the
test is conservative.

The last column in Table II shows the power to select treatment 1 and reject H1 when 𝜃1 = 1∕3, 𝜃2 =
𝜃3 = 0 again selecting arg maxk

i=1{𝜃̂i} with 𝜃k+1,… , 𝜃k∗ unknown. The power shows how the gain from
using the short-term endpoint increases with 𝜌 relative to using the long-term endpoint alone, equivalent
to 𝜌 = 0.

For comparison with Table II, Table III gives critical values, c∕
√

V2, from the method proposed by
Stallard [21], assuming the selection of arg maxk

i=1{𝜃̂i}, and Stallard and Todd [8], assuming the selection
of arg maxk

i=1{𝜃̆i}, and the resulting simulated type I error rate under 𝜃1 = · · · = 𝜃k = 0 with the treatment
selected so as to maximise the error rate, that is, selecting arg max{𝜃i}, if 𝜃k+1,… , 𝜃k∗ were known, in
this case using the known values of 𝜎, 𝜎0 and 𝜌. The error rate inflation from use of the Stallard and Todd
[8] method when selecting arg maxk

i=1{𝜃̂i} was demonstrated by Stallard [21]. The new results show that
the error rate may be inflated further by using some other selection rule and illustrate the maximal error
rate inflation from the use of any selection rule based on X1 for these two designs.

Table II. Properties of the flexible design with 𝛼 = 0.025, k = 3, n1 = 40, N1 = 100, n2 = 200 and
𝜎 = 𝜎0 = 1 for a range of 𝜌 values (error rates are based on 100 000 simulations).

𝜌 c∕
√

V2 Type I error Type I error Type I error Power
selecting selecting selecting selecting

arg max{𝜃i} arg max{𝜃i} arg max{𝜃̂i} arg max{𝜃̂i}

Variances known Variances unknown Variances known Variances unknown

0.0 2.19 0.0242 0.0246 0.0243 0.7827
0.5 2.22 0.0241 0.0244 0.0234 0.7974
0.6 2.23 0.0245 0.0248 0.0233 0.8071
0.7 2.24 0.0249 0.0252 0.0239 0.8119
0.8 2.25 0.0253 0.0255 0.0240 0.8251
0.9 2.27 0.0245 0.0248 0.0236 0.8358
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Table III. Properties of the Stallard [21] and Stallard and Todd [8] designs and the
combination test with parameters as in Table I (error rates are based on 100 000
simulations).

𝜌 Stallard test Stallard and Todd test Combination test

c∕
√

V2 Type I error c∕
√

V2 Type I error Type I error Power
selecting selecting selecting selecting

arg max{𝜃i} arg max{𝜃i} arg max{𝜃i} arg max{𝜃̂i}

0.0 2.19 0.0242 2.19 0.0242 0.0197 0.7617
0.5 2.20 0.0252 2.19 0.0259 0.0200 0.7807
0.6 2.21 0.0256 2.19 0.0270 0.0200 0.7912
0.7 2.22 0.0262 2.19 0.0284 0.0216 0.8010
0.8 2.23 0.0266 2.19 0.0296 0.0218 0.8134
0.9 2.25 0.0252 2.19 0.0298 0.0231 0.8265

Additional simulations were conducted with n1 = 20,N1 = 50 and n2 = 100 and n1 = 10,N1 = 25
and n2 = 50 to explore the impact of smaller sample sizes when 𝜎, 𝜎0 and 𝜌 were considered unknown.
There was some indication of type I error rate inflation in these cases with maximum simulated error rates
for the new method of 0.02601 and 0.02645, respectively. This suggests that the new method may not be
suitable in trials of very rare diseases or orphan drugs when sample sizes as small as this may be used. In
other settings, it is unlikely that such small sample sizes would be used for a confirmatory clinical trial.

An alternative method to that proposed here would be to use a combination testing method [3, 9, 30],
as this is known to strongly control the type I error rate for any treatment selection. To apply such an
approach in this case requires some care to ensure that the p-values that are combined satisfy the ‘p-
clud’ condition [31]. Friede et al. [32] describe one way in which this can be performed, considering the
‘stage 1’ p-value to be that obtained from the analysis of the primary endpoint of all those N1 patients per
group for whom some data were available at the interim analysis, and the ‘stage 2’ p-value to be from
the analysis of the primary endpoint for the n2 − N1 patients per group recruited following the treatment
selection. The power for this method to select treatment 1 and reject H1 when 𝜃1 = 1∕3, 𝜃2 = 𝜃3 = 0 again
selecting arg maxk

i=1{𝜃̂i} and assuming 𝜎, 𝜎0 and 𝜌 are known is also shown in Table III for comparison
with that of the new procedure shown in Table II. It can be seen that the combination test has slightly
lower power in this case. This is consistent with the findings of Friede and Stallard [33]. Although the
power gain for the new procedure over the combination test is modest, in settings in which it is known that
a single experimental treatment will be selected to continue along with the control to the second stage,
the new method is to be preferred. If additional flexibility, for example, over the number of treatments to
continue, is required, the combination test could be used with only a small loss in power.

7. Discussion

This paper has considered trials in which treatment selection at an interim analysis may be made using
data for patients for whom the primary endpoint has not yet been observed. Stallard [21] showed how
the error rate can be controlled in this case if the most promising treatment is selected. We have shown
that this does not provide error rate control for an arbitrary selection rule and illustrated how this can
be achieved.

It is interesting to consider possible extensions of the method proposed. One extension is to allow the
possibility of early stopping at the interim analysis with additional testing of Hi (i = 1,… , k) on the basis
of X1. In this case, Hi could be tested using some test statistic S(1)

i (X1), rejecting Hi if and only if S(1)
i (X1)

is at least as large as some specified value c1. If any Hi is rejected, that hypothesis will not be tested
again, so that treatment i could be dropped from the trial, and if not all hypotheses are rejected, HT(x1) is
selected and tested at the end of the second stage, being rejected if and only if ST(x1)(X2) ⩾ c. In this case,
as there is an opportunity to reject hypotheses at both stages, requirement (1) is insufficient to give both
c1 and c uniquely. A stronger requirement is that the probability to reject any true Hi (i = 1,… , k) at or
before analysis j is controlled to be at most some specified 𝛼j (j = 1, 2) with 𝛼1 ⩽ 𝛼2 = 𝛼. The values 𝛼1
and 𝛼2 may be considered as a simple 𝛼-spending function as proposed by Slud and Wei [34].

A further extension would be to allow additional interim analyses, so that the two-stage design becomes
a multi-stage design. With a single hypothesis selected at the first interim analysis, as no further selection
is possible, the extension to allow additional stages with the opportunity for early stopping, for example,
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using an 𝛼-spending function approach, is relatively straightforward. The extension of the method pro-
posed to select more than one treatment to continue, and hence more than one hypothesis to be tested
at the end of the trial, or in a multi-stage trial to allow selection of treatments over several stages, while
maintaining strong control of the familywise error rate, for example, to add flexibility to the methods of
Follman et al. [17], Hellmich [18] or Magirr et al. [22], is more difficult. If c is fixed as above, with full
flexibility over the choice of hypotheses from the family Hi (i = 1,… , k), the type I error rate is max-
imised by selecting all k hypotheses, so that c must be chosen to control the type I error in this case.
This can be achieved using a test similar to the Dunnett test. An alternative is to have c dependent on the
number of hypotheses selected, say k1 ⩽ k. One such approach, using the conditional error method, has
been proposed by Magirr et al. [35]. If k1 is specified in advance, the method described can be extended
for k1 > 1. In this case, a result analogous to Theorem 1 in the Appendix, stating that the type I error
rate is maximised by selecting the k1 treatments corresponding to values of i with the largest values of
pr𝜃(Si ⩾ c ∣ X1), can be shown to hold.

In this paper, we have assumed that the short-term endpoint information available is based on the same
length of follow-up for all patients. An anonymous referee has suggested that short-term information
based on different follow-up duration for different patients might be available. This would also be an
interesting area for future research.

In this paper, we have considered flexible treatment selection. Other adaptations could, in principle, be
handled in a similar way. Graf and Bauer [36] and Graf et al. [24], for example, considered sample size
reestimation based on interim data in two-stage studies both with and without treatment selection.

The method introduced in this paper enables strong control of the familywise error rate when the
treatment selection rule is unspecified by constructing the selection rule that maximises the condi-
tional error rate and then obtaining a critical value such that strong error rate control is achieved if this
rule is used.

When treatment selection is made on the basis of the primary endpoint data available at the interim
analysis, that is, in the setting considered by Thall et al. [16] and Stallard and Todd [8], this maximum
occurs for selection of the most promising experimental treatment as noted by Jennison and Turnbull [23]
and Graf et al. [24], so that the method of Thall et al. [16] and Stallard and Todd [8] strongly controls
the familywise error rate if any other treatment is selected.

In addition, if the data available at the interim analysis, X1, include additional data available from the
same patients from whom primary endpoint data are available, given the final endpoint data, Si is condi-
tionally independent of these additional data. The distribution of Si ∣ X1 thus depends on 𝜃i alone, and the
probability in (2) does not depend on 𝜃k+1,… , 𝜃k∗ , so that strong control of the familywise error rate is
again obtained. Similarly, the distribution of Si given X1 can also reasonably be assumed to be independent
of any data obtained from sources external to the trial, so that this can also be used for decision-making
without inflating the type I error rate. The latter point allows, for example, treatment selection using
Bayesian methods where prior distributions may be informed, either formally or informally, by results
from other trials of the same or similar treatments.

Although we have considered group sequential approaches, with c fixed, as indicated earlier, alter-
native methods with c depending on X1 can also be used to allow flexibility with strong control of the
familywise error rate. Both the combination testing approach and the conditional error approach have
been proposed for use in the treatment selection setting. Combination tests generally allow greater flex-
ibility than the group sequential approach, in this case allowing fully flexible selection of any number
of hypotheses for testing at the second stage, with some modification [32] even in the case of correlated
data. As demonstrated in the earlier example, however, this can be at the loss of efficiency. Koenig et
al. [37], Posch et al. [38] and Magirr et al. [35] have proposed methods based on the conditional error
approach of Müller and Schäfer [7]. Friede et al. [33] showed that the method of Koenig et al. [37] per-
formed well in terms of power. Extending such methods to more general settings, such as multi-stage
designs or correlated data at different stages, could be difficult, however.

Appendix

In a study in two stages, let X1 denote the first stage data with the distribution of X1 depending on 𝜃 =(
𝜃1,… , 𝜃k∗

)′
. We wish to test a family of null hypotheses Hi, i ∈ {1,… , k}, for some k ⩽ k∗ with

Hi ∶ 𝜃i ⩽ 0, controlling the familywise error rate in the strong sense.
The study will be conducted so as to test a hypothesis, HT(x1) (T(x1) ∈ {1,… , k}), chosen on the basis

of X1. Further data will then be observed, leading to a final dataset X2, and HT(x1) will be rejected if and
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only if ST(x1)(X2) ⩾ c for some specified c and test statistic ST(x1)(X2). Writing Si for Si(X2), we assume
that the distribution of Si depends on 𝜃i, but on no other elements of 𝜃 and that for any possible stage 1
dataset, x1, Si and Si ∣ X1 = x1 is stochastically non-decreasing in 𝜃i.

Let T∗
𝜃
(X1) = arg maxi∈{1,…,k}∶𝜃i⩽0

{
pr𝜃(Si ⩾ c ∣ X1)

}
.

We prove the following result.

Theorem 1
(i) For given 𝜃, the left-hand side of (1) is maximised over T ∈ 𝒯 by taking T(x1) = T∗

𝜃
(x1) for all x1.

(ii) The left-hand side of (1) is maximised over 𝜃1,… , 𝜃k by taking 𝜃i = 0 (i = 1,… , k).
The proof of Theorem 1 is based on the following two lemmas.

Lemma 1
Let 𝒯 (t) be the set of functions from the sample space of X1 to {1,… , t}, for t ⩽ k, and then for fixed
𝜃, the left-hand side of (1) is maximised over T ∈ 𝒯 (t) by T = T∗(t)

𝜃
, where

T∗(t)
𝜃

(x1) = arg maxi∈{1,…,t}∶𝜃i⩽0

{
pr𝜃(Si ⩾ c ∣ X1 = x1)

}
.

Proof
The probability pr𝜃(ST(X1) ⩾ c, 𝜃T(X1) ⩽ 0) is equal to E𝜃(pr𝜃(ST(X1) ⩾ c, 𝜃T(X1) ⩽ 0 ∣ X1)).

This is maximised by taking T ∈ 𝒯 (t) to maximise pr𝜃(ST(X1) ⩾ c, 𝜃T(X1) ⩽ 0 ∣ X1), that is by taking

T = T∗(t)
𝜃

as stated.

Lemma 2
For fixed 𝜃k+1,… , 𝜃k∗ , the left-hand side of (1) is non-decreasing in 𝜃i, i = 1,… , k.

Proof

As T∗
𝜃

takes values in {i ∶ 𝜃i ⩽ 0}, we have pr𝜃
(

ST∗
𝜃
(X1) ⩾ c, 𝜃T∗

𝜃
(X1) ⩽ 0

)
= pr𝜃

(
ST∗

𝜃
(X1) ⩾ c

)
. This is

equal to E𝜃

(
pr𝜃

(
ST∗

𝜃
(X1) ⩾ c ∣ X1

))
, which, by Lemma 1, is equal to E𝜃

(
maxi∶𝜃i⩽0

{
pr𝜃(Si ⩾ c ∣ X1)

})
.

It has been assumed that for any x1 and i, Si ∣ X1 = x1 is stochastically non-decreasing in 𝜃i. Therefore,
maxi∶𝜃i⩽0

{
pr𝜃

(
Si ⩾ c ∣ X1 = x1

)}
is non-decreasing in 𝜃i (i = 1,… , k). As this holds for all x1, the

expected value must also be non-decreasing in 𝜃i as required.

Proof of Theorem 1
Setting t = k, the first part of Theorem 1 follows from Lemma 1.

For the second part, writing 𝜃(t) =
(
0,… , 0, 𝜃t+1,… , 𝜃k∗

)′
, where the first t elements are equal to 0,

we require

pr𝜃
(

ST∗
𝜃
(X1) ⩾ c, 𝜃T∗

𝜃
(X1) ⩽ 0

)
⩽ pr𝜃(k)

(
ST∗

𝜃(k)
(X1) ⩾ c, 𝜃T∗

𝜃(k)
(X1) ⩽ 0

)
. (1)

If 𝜃i > 0(i = 1,… , k), the left-hand side of (1) is equal to zero, so that the inequality is trivially
satisfied. Suppose, therefore, that 𝜃i < 0 for some i ⩽ k and, without loss of generality, reorder such that
𝜃i ⩽ 0 for i = 1,… , t and 𝜃i > 0 for i = t + 1,… , k for some t.

As, by Lemma 2, pr𝜃(ST∗
𝜃
(X1) ⩾ c, 𝜃T∗

𝜃
(X1) ⩽ 0) is non-decreasing in 𝜃i, the probability on the left-hand

side of (1) must be non-decreased by taking 𝜃1 = 0(i = 1,… , t). Thus,

pr𝜃
(

ST∗
𝜃
(X1) ⩾ c, 𝜃T∗

𝜃
(X1) ⩽ 0

)
⩽ pr𝜃(t)

(
ST∗

𝜃(t)
(X1) ⩾ c, 𝜃T∗

𝜃(t)
(X1) ⩽ 0

)
. (2)

As T∗
𝜃(t)

maximises the left-hand side of (1) under 𝜃(t), we must have T∗
𝜃(t)
(X1) ∈ {1,… , t} because if,

for any x1, it took a value outside this range, the probability would be increased by moving mass into this
set. Thus, T∗

𝜃(t)
= T∗(t)

𝜃(t)
and the right-hand side of (2) is

pr𝜃(t)
(

ST∗(t)
𝜃(t)

(X1)
⩾ c, 𝜃T∗(t)

𝜃(t)
(X1)

⩽ 0
)
.

The function T∗(t)
𝜃(t)

, and hence T∗
𝜃(t)

, as defined by Lemma 1, depends only on S1,… , St, and by
Assumption 1 therefore not on 𝜃t+1,… , 𝜃k. Thus, the right-hand side of (2) is unchanged by setting
𝜃i = 0(i = t + 1,… , k) and is, as required, equal to
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pr𝜃(k)
(

ST∗
𝜃(k)

(X1) ⩾ c, 𝜃T∗
𝜃(k)

(X1) ⩽ 0
)
.
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