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Abstract

Endometriosis is a nonmalignant, but potentially metastatic, gynecological condition manifested 

by the extrauterine growth of inflammatory endometrial implants. Ten percent of reproductive-age 

women are affected and commonly suffer pelvic pain and/ or infertility. The theories of 

endometriosis histogenesis remain controversial, but retrograde menstruation and metaplasia each 

infer mechanisms that explain the immune cell responses observed around the ectopic lesions. 

Recent findings from our laboratories and others suggest that retinoic acid metabolism and action 

are fundamentally flawed in endometriotic tissues and even generically in women with 

endometriosis. The focus of our ongoing research is to develop medical therapies as adjuvants or 

alternatives to the surgical excision of these lesions. On the basis of concepts put forward in this 

review, we predict that the pharmacological actions and anticipated low side-effect profiles of 

retinoid supplementation might provide a new treatment option for the long-term management of 

this chronic and debilitating gynecological disease.
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Endometriosis is a common and ubiquitous gynecologic disorder, affecting up to 10% of 

reproductive-age women worldwide, which is defined by the presence of hormonally 

responsive, ectopic implants of endometrial mucosa dispersed in extrauterine locations. 

Based on data from the World Bank, it has been estimated that 176 million women affected 

by this condition suffer pelvic pain and/or infertility.1 The direct and indirect costs 

associated with these cardinal symptoms, including diagnostic tests, medical and surgical 

treatment expenses, and lost productivity, have been estimated to approach $12,000 per 

woman per year2 and represent a global health burden. Beyond its economic impact, the 

physical and psychological tolls of endometriosis are onerous.3 The immune system is 

intimately involved with mechanisms underlying the symptomatology of endometriosis.4,5 
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Our review focuses on the roles of inflammation and immune cell infiltration in the 

pathogenesis of this enigmatic disease process and summarizes evidence that supports 

fundamental defects in retinoid metabolism and action among women with endometriosis. 

Findings from our studies suggest a new line of investigation for developing potential 

endometriosis therapeutic or preventative agents.

The classical and neoclassical concepts of endometriosis etiology have been reviewed 

comprehensively6,7 and will not be reiterated exhaustively here. However, among all the 

postulated etiologies, we wish to emphasize two popular hypotheses—”retrograde 

menstruation and implantation” and “metaplasia”—that appear to be particularly relevant to 

the theme of inflammation as a pathogenetic mechanism of endometriosis.

“Retrograde menstruation and implantation” refer to the process of menstrual regurgitation 

through the fallopian tubes. John Sampson, a Johns Hopkins gynecologist at the turn of the 

20th century, postulated that the ovarian endometriosis implant was “acquired from the 

implantation of epithelium escaping from the tube during menstruation and its subsequent 

invasion of the ovary.”8 This has become the dominant theory of peritoneal disease over the 

past century and has acquired more nuanced understanding with evidence that endometrial 

apoptosis is impeded in women with endometriosis,9 and invasiveness10 and 

neuroangiogenic properties are enhanced,11 predisposing this subset of women to the 

establishment of adherent and viable satellite lesions.

The second hypothesis, “metaplasia,” is the process by which one committed cell type is 

converted into an alternative cell type. Coelomic mucosa typically gives rise to the 

peritoneum, pleura, and surface epithelium of the gonads. In endometriosis, a metaplastic 

phenomenon is postulated to occur as a result of transdifferentiation of specialized 

peritoneal mesothelial cells into endometrial mucosa, as attributed to Robert Meyer of Berlin 

in the early 1920s.12

It is fair to say that cellular concepts of “inflammation” were rudimentary at the time these 

hypotheses were first promulgated, but the writings of these perceptive pioneers indicate that 

they recognized the peculiar significance of the stroma at the invading phalanx of 

endometriosis implants.13 The contributions of stromal cell–derived chemokines and the 

leukocytes they recruit have been a major focus of our studies in endometriosis.5,14 It is now 

accepted that within metaplastic foci, differentiated cells commonly arise in the setting of 

chronic inflammation and they may be predisposed to neoplastic transformation; all of these 

phenomena occur in endometriosis.15 Moreover, in contemporary views of metaplasia, the 

programming or recruitment and differentiation of intrinsic16 or bone marrow–derived17 

stem cells, respectively, to ectopic sites is envisioned.

The presence of ectopic or metastatic rests of autologous, benign tissues is in fact quite rare 

in human biology, but two examples, not typically considered by students of endometriosis, 

may be informative. The first of these is Barrett esophagus, wherein gastroesophageal reflux 

of bile acids and other stomach contents triggers a progressive replacement of stratified 

squamous esophageal cells by ectopic foci of intestinal mucosa with mucin-containing 

goblet cells above the pyloric valve. Histological evidence of inflammation, particularly 
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neutrophil infiltration, is commonly observed in these lesions.18 The degree of intestinal 

metaplasia and inflammation in human gastric mucosa specimens from 67 study participants 

were inversely correlated with the ability of the tissue to produce all-trans retinoic acid 

(RA).19

A second setting in which ectopic foci of autologous metaplastic “implants” occur is within 

the tracheobronchial mucosa, characteristically in response to chronic inflammation induced 

by cigarette smoking. These lesions also represent a clinically premalignant form of 

metaplasia, wherein reparative processes induce the substitution of respiratory epithelium by 

squamous cells. The density and cross-sectional area of microvessels within metaplastic 

lesions increase progressively as they manifest more neoplastic histological features.20 In 

respiratory tract biopsies from smokers, squamous metaplasia, immune cell (CD45 +) 

infiltration, and a profile of proinflammatory cytokines very similar to those reported in 

endometriosis (e.g., TNF-α, IL-1β, and IL-64) were all upregulated compared with biopsies 

from nonsmoking volunteers. In cell culture models, RA-deprived tracheobronchial 

epithelial cells also manifest squamous metaplasia.21,22 It has been established that RA can 

attenuate clinical and experimental airway inflammation.23,24

As with endometriosis, where odds ratios for developing clear cell or endometrioid 

carcinomas of the ovary may be as high as threefold,15 Barrett esophagus metaplasia25 and 

squamous metaplasia of the lung26 also are associated with increased carcinogenesis.

Endometriosis: An Inflammatory Paradigm

In each of the disorders described above, immune cell recruitment and infiltration into the 

ectopic lesions are a consistent theme. In endometriosis, intralesional accumulation of 

leukocytes was initially recognized around the turn of the 20th century, shortly after Paul 

Ehrlich and Ilya Mechnikov were jointly awarded the 1908 Nobel Prize in Physiology or 

Medicine for their discovery of what are now recognized to be the adaptive and innate 

immune systems, respectively.27 It was Meigs, then serving as director of gynecology at the 

Vincent Memorial Hospital in Massachusetts, who first described the microscopic 

infiltration of “endothelial leukocytes” into endometriosis implants, which he noted were 

associated with fibrosis and neoangiogenesis.28 These prescient observations are currently 

viewed as fundamental principles underlying the cell biology of endometriosis, but his 

progressive ideas lay dormant for nearly 60 years.

It was not until 1980 that the seminal publication of Weed and Arquembourg29 

reinvigorated Meigs’ insights into leukocyte infiltration, suggesting there were multiple 

features of local autoimmune phenomena associated with ectopic endometriosis implants. In 

addition to intralesional lymphocyte accumulation, the authors provided 

immunohistochemical evidence of complement C3 deposition in ectopic and eutopic 

biopsies from affected women and postulated that endometriosis-associated infertility might 

be due to “the rejection of early implantation of embryos,”29 a hypothesis that continues to 

have advocates to this day.30

Indeed, autoimmune disorders31 and type 1 allergies, including immediate 

hypersensitivity,32 have been increasingly associated with endometriosis. Many of the 
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chemokines and cytokines activated in lesions have been reviewed recently,33 and several of 

the genes that regulate these immunoactive proteins have single-nucleotide polymorphisms 

and copy variants affecting their expression.34

Abnormal innate cell-mediated immune responses, particularly those of macrophages and 

natural killer cells, appear to facilitate endometriotic lesion attachment and growth.35 

Accumulation of activated macrophages within the pelvic fluid of women with 

endometriosis is well established36,37; however, the potency of their scavenger function and 

phagocytotic potential appears to be inhibited.5 As discussed in detail below, in a murine 

endometriosis model, peritoneal macrophage function can be partially rescued following RA 

supplementation.38

By the mid-1990s, investigators who questioned how these peritoneal macrophages were 

recruited into the pelvic fluid were rewarded by discovering chemokines that accumulate in 

the peritoneal fluid of subjects with endometriosis. Using bioassays39 and newly developed 

enzyme-linked immunosorbent assays (ELISAs),40 the concentrations of several of these 

activities were shown to be correlated directly with the extent of endometriosis as assessed 

by laparoscopic staging.4

In clinical endometriosis studies to date, misexpression of two major classes of chemokines 

has been identified; these are categorized based on their amino acid structure.33 The largest 

class consists of the CC chemokines, named for conserved adjacent cysteine residues in the 

proteins’ carboxyl termini. CC chemokines target monocytes, T cells, and eosinophils, and 

include MCP-1 (CCL2),41 MIP-1α (monocyte inflammatory protein-1α, CCL3),42 

RANTES (CCL5),40 and eotaxin (CCL11).43 The second commonest class of chemokines is 

the CXC family, in which a single, variable amino acid is interposed between the two 

conserved cysteines. These chemokines predominantly attract monocytes and neutrophils 

and include growth regulated oncogene (GRO)-α (CXCL1),44 epithelial cell–derived 

neutrophil-activating peptide (ENA)-78 (CXCL5),45 IL-8 (CXCL8),46,47 and stromal cell–

derived factor (SDF)-1 (CXCL12).48

Different chemokines have different sites of synthesis in endometrial and endometriosis 

tissues.33 RANTES protein and mRNA are mostly confined to the stromal compartment of 

endometriosis tissues.49 By contrast, eotaxin, ENA-78, MCP-1, and IL-8 are predominantly 

epithelial.43,45,50,51 As the highest concentrations of tissue-associated macrophages are 

found in the stromal compartment of endometriosis lesions, as well as endometrial 

hyperplasia and carcinoma,52 we have concentrated on the role of RANTES in immune cell 

recruitment to the stroma of these lesions. In vitro, stromal cell cultures derived from 

endometriosis implants robustly synthesize RANTES mRNA and secrete protein when 

stimulated by proinflammatory cytokines, whereas epithelial cells synthesize neither 

transcripts nor protein encoded by this gene.53,54 The transcription factor nuclear factor 

(NF)-κB is a critical regulator of RANTES gene and protein expression.4,55

Deficiency States of Anti-Inflammatory Hormones and Autacoids

Clinicians and investigators have suspected for over 60 years that the action of progesterone 

on uterine function was dysfunctional in cases of endometriosis. Since the early days of 
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radioimmunoassay, the luteal rise in serum or pelvic fluid progesterone concentration was 

variably reported to be reduced56,57 or delayed.58,59 In more recent years, alterations in 

progesterone receptor isoform expression are increasingly recognized to modulate 

progesterone action.60 The original observation by Attia et al,61 that PR-B transcript levels 

were markedly reduced in endometriosis lesions, corroborated findings that progesterone-

regulated endometrial genes were generally underexpressed in cases of endometriosis.62–64 

This concept was further supported by evidence that the PR-B promoter was 

hypermethylated65 and other chromatin modifications occur that may account for reduced 

PR-B expression.66 Interaction of the PR with Hic-5 also is attenuated as a result of reduced 

expression of the latter in endometrial tissue and stromal cells derived from women with 

endometriosis.67 Moreover PR resistance also was shown to be manifested in baboons with 

surgically induced endometriosis.68

Excessive estrogen signaling has long been associated with endometriosis and constitutes a 

traditional target for medical therapies.69 Increased estrogenic action in these lesions appears 

to be a consequence of altered expression of both its receptors, estrogen receptor α (ERα) 

and ERβ,70,71 and increased local hormone biosynthesis by aromatase, the CYP19A1 gene 

product.72 Recent pharmaceutical developments have focused on the important role of 

estrogen receptor signaling in endometriosis. Two novel ER ligands, which bind 

preferentially to ERα and ERβ, respectively, are oxabicycloheptene sulfonate (OBHS) and 

chloroindazole (CLI). These compounds displayed dual suppression of proliferative and 

inflammatory activities and effectively prevented the establishment and progression of 

endometriotic lesions in a mouse model.73 The selective estrogen receptor modulators, 

bazedoxifene74 and ERB-041,75 also were shown to suppress endometriotic lesion growth in 

rodents.

Another family of nuclear receptor proteins with anti-inflammatory activities is the 

peroxisome proliferator-activated receptor (PPAR)-γ.76 The actions of PPAR-γ-ligand 

complexes affect endometriotic stromal cells,77–79 as well as infiltrating macrophages,5 and 

vascular endothelial cells.80,81 PPAR proteins are obligate heterodimer partners with 

retinoic X receptors (RXR) in target cell nuclei.82 Several naturally occurring, high-affinity 

ligands for PPAR-γ have been identified, including the eicosanoid (9S,10E,12Z)-9-hydroxy-

octadeca-10,12-dienoic acid (9-(S)-HODE).82 To date, we are unaware of published 

evidence of reduced circulating concentrations of endogenous PPAR-γ ligands in cases of 

endometriosis. However, such findings have been described in the clinical setting of 

pregnancy complications.83

The salutary effects of synthetic PPAR-γ agonists have been shown in rodent84,85 and 

nonhuman primate86 models of endometriosis. Given the remarkable potential, but 

significant side-effect profiles, of current PPAR-γ pharmaceuticals (thiazolidinediones), a 

spectrum of natural compounds with high-affinity agonist activities have been screened. 

Among these are some familiar compounds—resveratrol, honokiol, and 6-hydroxydaidzein

—but their safety and efficacy have not been tested rigorously in clinical trials.
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Retinoid Metabolism in Endometriosis

In addition to critical regulation by steroid hormones and other known ligands for nuclear 

receptors as mentioned above, studies have shown that retinoids also play fundamental roles 

in the normal maintenance of the endometrium and particularly with respect to 

endometriosis.87–89 To this end, the action of RA, produced by metabolic conversion of 

retinol (ROL), has long been recognized as being necessary for endometrial cell 

differentiation and function.90,91 This activity is mediated by the expression of nuclear and 

cytoplasmic retinoid receptors and localized RA synthesis within endometrial and 

endometriotic stromal cells92,93 (Fig. 1). During the human menstrual cycle, expression of 

retinoid receptors and synthesis of RA are influenced by the changing patterns of ovarian 

steroid exposure. Among the numerous aspects of cell behavior pertinent to endometriosis 

and regulated by local RA production are matrix metalloproteinase (MMP) secretion, gap 

junctional intracellular communication, and the expression of a variety of cytokines 

involved in cell differentiation and immune regulation.94,95 Some examples of such RA-

regulated genes are IL-6, MCP-1, TNF-α, VEGF, connexin 43, various integrins, and fas 

ligand,96–99 genes which are also known to be aberrantly expressed in endometriotic 

lesions.100 Thus, several seemingly discordant features of endometriosis, including 

repression of apoptosis, increased growth and migration, inflammation, and enhanced 

invasive properties of intraperitoneally seeded endometrial cells, could be accounted for by 

dysregulation of RA synthesis.

The group of Serdar Bulun was among the first to investigate the role of retinoid action in 

endometriosis.101 Those studies showed altered expression of several genes involved in 

retinoid biosynthesis and signaling in lesion cells from endometriosis patients, compared 

with normal eutopic endometrium from patients without endometriosis. Although their study 

did not measure RA levels directly, the results were consistent with decreased retinoid 

uptake, metabolism, and action within endometriotic lesions. Subsequent work by 

Pierzchalski et al102 utilizing matched samples from subjects with endometriosis (i.e., 

lesions vs eutopic tissue from the same person) directly quantified RA levels and metabolic 

conversion of ROL to RA in stromal cells derived from the corresponding biopsies; these 

cells are the primary source of RA biosynthesis in endometrial tissue.103 The studies 

confirmed that RA biosynthesis is impaired in ectopic endometriotic implants versus their 

normal eutopic counterpart. A major defect noted was the reduced expression of cellular 

retinol-binding protein type 1 (RBP1), an ROL chaperone protein that serves as the 

preferred substrate for retinol dehydrogenase enzymes and the rate-limiting step in RA 

biosynthesis.104 Thus, reduced RBP1 results in significantly less efficient metabolism of 

ROL to retinal and its subsequent oxidation to RA. In addition to endometriosis, RBP1 has 

been shown to be aberrantly expressed in certain mammary, cervical, and ovarian 

cancers,105–109 as well as some developmental diseases of the brain, bone, and skin.104,110 

These studies suggest that defects in RBP1 gene expression in endometriotic stromal cells 

result in abnormal retinoid biosynthesis and could play a role in the etiology and/or 

progression of endometriosis.

Two possible scenarios to account for aberrant retinoid metabolism in ectopically growing 

endometrial cells have been suggested, based on the histogenic mechanisms we provided 
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above. (1) Among the cells that reach the peritoneal cavity via retrograde menstruation, 

those with intrinsically defective RA synthesis preferentially populate the ectopic sites 

because of downstream effects of reduced RA levels (e.g., proliferative effects on cell cycle 

dynamics, increased MMP production, immune cell activation, and proinflammatory 

cytokine synthesis). (2) A hypothesis in keeping with the metaplastic theory of 

etiopathogenesis posits that the peritoneal milieu provides environmental cues that induce 

defects in RA synthesis in metaplastic foci, as opposed to impaired retinoid metabolism 

being an intrinsic characteristic of the cells. Evidence from studies showing alterations in 

cytokine and MMP profiles in eutopic endometrium from some women with endometriosis 

supports the former possibility.30,111 However, support for the latter hypothesis comes from 

the observation that oxidative stress and prostaglandin (PG)E2, known to be elevated in 

peritoneal fluid from patients with endometriosis,112 can inhibit biosynthesis of RA109,113 

and induce transcriptional repression of RBP1.114,115 Indeed, quite a rich literature supports 

a critical role for PGE2 as a master regulator of endometriosis. It has been demonstrated to 

modify a variety of pathophysiological features of the disease, including cell proliferation, 

antiapoptosis, inflammation, and angiogenesis.116 Using direct, metabolic labeling of 

purified endometriotic stromal cells with [3H]arachidonic acid in vitro, we could 

demonstrate that PGE2, along with PGF2α, is a major prostanoid product of these cells (Fig. 

2).

It has also been reported that cellular RA-binding protein 2 (CRABP2), which delivers RA 

to RA receptor α (RARα),117 is reduced in endometriosis, potentially as a consequence of 

progesterone resistance.30,101,103 Whereas it is unknown whether CRABP2 loss precedes 

RBP1 reduction, it is likely significant to the persistence of reduced RBP1 expression, 

because loss of CRABP2 function can result in heritable chromatin repression of multiple 

loci downstream of RARα, including RBP1.114

RA and Inflammation

The cause and effect relationship between impaired RA synthesis and the development of 

endometriosis is unknown. However, numerous papers indicate that the effects of RA on 

inflammatory processes suggest that reduced levels in endometriosis can promote some of 

the abnormal immunological changes that are thought to contribute to its etiology and/or 

progression. In model systems involving activated monocytes/macrophages, RA decreased 

proinflammatory cytokines while increasing anti-inflammatory proteins such as interleukin- 

(IL)10.118 In a variety of cell types, RA has been shown to profoundly affect IL-6-driven 

events through down-regulation of IL-6 ligand and/or IL-6 receptor production.119,120 One 

of the most striking in vivo demonstrations showing the ability of retinoids to alter IL-6 

levels came from a trial of 13-cis RA (Accutane, Hoffmann-La Roche Ltd., Nutley, NJ) in 

patients with common variable immunodeficiency (CVI).119 These patients have elevated 

levels of circulating IL-6 thought to be due to reduced sensitivity and failure of CVI B cells 

to mature in an IL-6-dependent fashion. The IL-6 concentrations in four of five CVI patients 

fell to the normal range while on Accutane treatment. This change in circulating IL-6 levels 

was thought to have resulted from direct effects of the retinoid on monocytes/macrophages, 

the main identified source for the IL-6 produced in CVI.121 Endometriotic stromal cells also 

are a rich source of IL-6.122 Studies demonstrated that RA suppresses IL-6 from human 
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endometrial cells through functional antagonism with the nuclear factor IL-6 binding site 

located in the IL-6 gene promoter.99 In addition to altering the cytokine profile of activated 

macrophages, RA has been shown to upregulate the CD36 type-B scavenger receptor in 

cells of the monocyte lineage.123,124 This receptor has been implicated in the uptake and 

degradation of apoptotic cells and other debris,125 and is regulated by RA in human 

monocytes/macrophages by a novel mechanism of action that does not require cell 

adherence.123,124 Thus, treatment of human monocytes/macrophages with RA results in 

markedly increased protein and mRNA levels of CD36 that occur in the absence of cellular 

adhesion and differentiation. This fact is important, as multiple studies have demonstrated 

that women with endometriosis show an increased number of nonadherent macrophages in 

their peritoneal cavity.36,37 In addition to increasing the ability of peritoneal macrophages to 

“clear” ectopic endometrial cells, upregulation of CD36 would also cause an increased 

scavenging of oxidized lipoproteins (e.g., oxLDL) in peritoneal fluid, effecting a net 

reduction of reactive oxygen species (ROS).126,127 ROS, and other consequences of 

oxidative stress in the peritoneal fluid of endometriosis patients, has been suggested to play 

an active role in exacerbating the growth of endometriotic lesions.128 Thus, the failure of 

adequate RA biosynthesis to selectively upregulate CD36 expression in the monocyte/ 

macrophage lineage would predict impaired scavenging function of peritoneal macrophages, 

allowing both the initiation and progressive growth of endometriotic implants. Furthermore, 

in primary murine astrocyte cultures, pretreatment with RA suppressed the production of 

chemokine (CCL2, CCL3, CCL5, CXCL1, and CXCL2) mRNAs and proteins in response to 

lipopolysaccharide endotoxin. Based on experiments using RAR and RXR inhibitors, it is 

hypothesized that both receptors are likely to be involved in RA’s anti-inflammatory 

effects.129

Therapeutic Implications

Although it has yet to be determined that the abnormal immune functions associated with 

endometriosis are caused directly by impaired retinoid action, there is mounting evidence 

that treatment modalities that target the retinoid metabolic pathway may have therapeutic 

utility. An example of this possibility was shown by the ability of statins to reduce the 

number and size of lesions in animal models of endometriosis.130–132 A mechanistic and 

genetic analysis of this effect indicated that statins modulate the expression of genes 

involved in the regulation of synthesis and actions of RA,133 suggesting that this action may 

play a role in their therapeutic efficacy. To directly test this possibility, studies by our group 

utilizing an immunocompetent mouse model of endometriosis demonstrated that in vivo RA 

treatment suppressed the establishment and growth of ectopic peritoneal implants along with 

inhibiting peritoneal fluid accumulation of IL-6 and MCP-1.38 In addition, RA treatment 

modulated the differentiated state of the murine peritoneal macrophages, as reflected by 

increased expression of CD38, CD11b, and F4/80. This observation may have important 

implications in terms of understanding the therapeutic mechanism of RA treatment. On a 

quantitative basis, both F4/80 and CD11b increase as monocytes differentiate to 

macrophages and with inflammatory reactions that are associated with mature macrophage 

function, such as phagocytosis.134–137 The type II transmembrane glycoprotein, CD38, is 

widely recognized as a marker of lymphocyte and macrophage activation and 
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differentiation.138 RA transcriptionally activates CD38 expression in immune cells via an 

RA response element located in the first intron of the CD38 gene.139 In macrophages, RA 

induction of CD38 is associated with increased differentiated functions, including antigen 

presentation and cell adhesion.138,140 Together, these findings suggest that RA-induced 

inhibition of endometriotic implants in the mouse model was due, at least in part, to 

suppression of IL-6 and MCP-1, and promotion of peritoneal macrophage differentiation. In 

a rat model of endometriosis, where lesions were induced by autotransplantation of uterine 

pieces into the peritoneal cavity,141 the therapeutic effects of RA were compared with 

known antiangiogenic agents (bevacizumab and sorafenib). All three compounds induced a 

significant reduction in the size of the endometriotic implants. However, while the other two 

agents demonstrated antivascular effects that accompanied a reduction in endometriotic 

volumes (e.g., decreased VEGF and microvessel density), RA showed the most effective 

therapeutic benefits without affecting angiogenic parameters. The fact that host immune 

responses play a primary role on the growth of lesions in this model system142 suggests an 

immunologically mediated mechanism of RA action. Interestingly, RA was the only 

compound to concomitantly promote an increase in primordial follicle number, indicating a 

favorable effect also on ovarian reserve, which has been documented to be impaired in cases 

of endometriosis.143 Finally, a recent analysis of retinoid levels in the plasma and follicular 

fluid from women with endometriosis undergoing IVF showed a significantly lower mean 

concentration of RA, but not ROL, in both compartments compared with similar infertile 

subjects without endometriosis (women with unexplained, tubal, or male factor 

infertility).144 Although RA levels were within the reported normal concentration 

range,145,146 these data support the hypothesis that women whose overall retinoid 

metabolism is in the low normal range of activity are at higher risk for endometriosis. Such a 

possibility may help us gain insight into two quintessential questions: (1) Why do only some 

women develop endometriosis, in spite of the fact that retrograde menstruation seeds the 

peritoneal cavity with endometrial cells in almost all women?147 (2) What are the 

mechanisms that predispose women with endometriosis to peritoneal inflammation and 

immune cell dysfunction?

Conclusion and Future Directions

While the etiology of endometriosis remains obscure, scientific and clinical contributions 

over the past 95 years have progressively illuminated its pathophysiology. Surgery, 

particularly laparoscopic excision and bipolar electrocauterization of pelvic implants, 

remains a mainstay for the treatment of pain and infertility symptoms in affected women. 

With our advancing understanding of the cell biology of endometriosis, medical therapeutics 

are increasingly evolving from strategies that focus on the suppression of the hypothalamic–

pituitary–ovarian endocrine axis148 to approaches that target alternative pathways, for 

example, oxidative stress and inflammation.149 As we have summarized in this review, 

activation of retinoid signaling in endometriosis tissues is predicted to have several salutary 

effects on the resident cells within these lesions. We propose that adjuvant medical therapies 

should be developed based on these concepts and predict that their pharmacological actions 

and anticipated low side-effect profiles will provide women with endometriosis more 
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treatment options for the long-term management of a chronic and debilitating gynecologic 

disease.
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Fig. 1. 
Endometrial vitamin A (retinol) metabolism and retinoic acid (RA) signaling. Uptake of 

retinol (ROL) bound with circulating plasma “retinol binding protein 4” (RBP4) is 

controlled by the membrane receptor, “stimulated by retinoic acid 6” (STRA6). Intracellular 

chaperone “cellular ROL-binding protein type 1” (RBP1) physically interacts with STRA6 

to pick up ROL, protect ROL from nonspecific metabolism, and deliver it to retinol 

dehydrogenase enzymes which reversibly catalyze conversion of ROL to retinal. RBP1 then 

chaperones retinal-to-retinal dehydrogenases (ALDH1A2) which irreversibly convert retinal 

to RA. RA is then chaperoned by a distinct set of RA-binding proteins (CRABP1, CRABP2, 

FABP5), which are known to be expressed in endometrial stromal cells (ESC).101,103 Once 

formed, RA can be: (1) transported to the nucleus of the RA biosynthesizing ESC where it 

binds to nuclear receptors (RAR) and initiates gene transcription; (2) transported to adjacent 

epithelial cells (EEC) or secreted into the microenvironment to affect gene transcription in 

other cells such as peritoneal fluid macrophages (PFM); or (3) degraded. Genes known to be 

affected in PFM include various proinflammatory cytokines (IL-6, MCP-1, TNFα), which 

are downregulated by RA and the CD36 type-B scavenger receptor which is upregulated by 

RA. The consequence of this activity in PFM is a reduction in the inflammatory and 

oxidative status of the peritoneal environment and increased clearance of ectopic 

endometrial cells.
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Fig. 2. 
Endometriotic stromal cells effectively metabolize [3H]arachidonic acid to PGE2 and 

PGF2α in vitro. Metabolic labeling of endometriotic stromal cell prostanoid production was 

performed as described by de Groot et al.150 Briefly, the cultures were incubated with 3 nM 

[3H] arachidonic acid (AA) for 24 hours and the spent media were extracted with 

chloroform:methanol:acetic acid (180:20:1) and subjected to high-performance liquid 

chromatography using a 3.9 × 150 mm Nova-Pack C18 reverse phase column on a Waters 

Model 204 liquid chromatograph. Unlabeled PGE2 and PGF2α standards eluted at 32 and 

38 minutes, respectively, under these conditions. Radioactive counts per minute (cpm) were 

detected with a Radiometer FLO/ONE-β Model A250 detector.
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