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Summary

Pooled analyses integrate data from multiple studies and achieve a larger sample size for enhanced 

statistical power. When heterogeneity exists in variables’ effects on the outcome across studies, 

the simple pooling strategy fails to present a fair and complete picture of the effects of 

heterogeneous variables. Thus, it is important to investigate the homogeneous and heterogeneous 

structure of variables in pooled studies. In this paper, we consider the pooled cohort studies with 

time-to-event outcomes and propose a penalized Cox partial likelihood approach with adaptively 

weighted composite penalties on variables’ homogeneous and heterogeneous effects. We show 

that our method can characterize the variables as having heterogeneous, homogeneous, or null 

effects, and estimate non-zero effects. The results are readily extended to high-dimensional 

applications where the number of parameters is larger than the sample size. The proposed 

selection and estimation procedure can be implemented using the iterative shooting algorithm. We 

conduct extensive numerical studies to evaluate the performance of our proposed method and 

demonstrate it using a pooled analysis of gene expression in patients with ovarian cancer.
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1. Introduction

Pooled studies can achieve a large sample size and facilitate investigations on rare diseases, 

rare exposures, and topics not easily addressed in a single study. For example, Ganzfried et 

al. (2013) made a concerted effort to create a curated database consisting of clinical and 

microarray gene expression data on 2970 ovarian cancer patients from 23 studies using 11 

gene expression measurement platforms. This pooled database empowers researchers to 
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investigate the prognostic effect of genetic biomarkers on ovarian cancer survival in a 

uniform and consistent fashion. But as seen in this and many other pooled studies, inter-

study heterogeneity in the association between the biomarkers and the outcome often exists 

and its source includes differences in study populations, sampling methods, disease 

ascertainments, and measurement methods. Although harmonizing the data can alleviate this 

issue (Ganzfried et al., 2013), heterogeneity often is inherent in pooled studies. In some 

studies, heterogeneity itself is important for understanding disease disparity and progression 

at different phases (Moreno et al., 1996). Therefore, the analysis of pooled studies needs to 

properly account for heterogeneity to yield meaningful results.

To estimate covariate effects in pooled studies, the two-step procedure is commonly used, in 

which study-specific effects are first estimated using individual study data and then 

combined using a fixed-effects model (Hedges and Olkin, 1985) or a random-effects model 

(DerSimonian and Laird, 1986). However, the two-step procedure has difficulty in handling 

multiple variables. If heterogeneity exists in variables’ effects across studies we want to 

distinguish the variables with heterogeneous effects versus those without, as the effect of a 

homogeneous predictor should be modeled using a common parameter across studies to 

reduce model complexity and improve efficiency, while heterogeneous effects should be 

modeled by distinct parameters for different studies to build accurate models. Methods for 

discovering heterogeneity in variable’s effects include examining its interactions with the 

study-membership indicator variables or the heterogeneity statistics such as Cochran’s Q 

and I2, but these often have low power especially when the number of studies is small and 

the number of predictors is large (Hedges and Olkin, 1985).

In this paper, we consider the heterogeneity issue in pooled studies with time-to-event 

endpoint, and formulate the problem in the framework of group variable selection. 

Specifically, we treat a variable’s effects across studies as a group and aim to classify the 

variables into three categories according to their effects: homogeneous, heterogeneous, and 

null. Group penalty regularized methods have been proposed to select variables with pre-

specified group structure (Kim et al., 2012; Ma et al., 2007), and the composite absolute 

penalties (CAP) of Zhao et al. (2009) could accommodate complex group structures. 

Recently, Liu et al. (2013) investigated the use of adaptive CAP regularized partial 

likelihood estimation in the context of pooled nested case-control studies with heterogeneity. 

These methods, however, cannot delineate variables into the desirable categories.

Inspired by some recent developments in structure identification in the partially linear model 

(Zhang et al., 2011) and the time-varying Cox model (Yan and Huang, 2012), we employ 

the adaptively weighted L1 and L1/L2 penalties on variables’ average effects and 

heterogeneous effects respectively, and propose a penalized partial likelihood approach to 

characterize the variables’ heterogeneity and simultaneously estimate variables’ effects. We 

establish asymptotic results for the proposed estimator when the number of parameters is 

fixed and also when it diverges with the sample size. The rest of the article is organized as 

follows. We introduce the composite L1 + L1/L2 penalty regularized partial likelihood 

approach and the computation algorithm in Section 2. We also establish the theoretical 

properties of our proposed estimator, with the proofs provided in the Web Appendix. 

Cheng et al. Page 2

Biometrics. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Section 3 contains numerical simulations and real study applications in the pooled ovarian 

cancer study. Section 4 gives concluding remarks.

2. Regularized Method for Identifying Homogeneous and Heterogeneity 

Variables

2.1 Penalized partial likelihood function

We consider a pooled study consisting of K sub-studies, with nk subjects in study k and 

. Let  and Cki be the failure time and censoring time for the ith subject in 

study k. Define the observed event time , and the occurrence indicator of 

the failure event . We assume a Cox proportional hazards model for :

(1)

where λ0k(·) is the baseline hazard function, and βk = (βk1, …, βkp)′ is a p × 1 vector 

characterizing the effects of covariates Z in study k. For the pooled study data under model 

(1), the log partial likelihood is expressed as

To separate out homogeneous and heterogeneous effects, we reformulate model (1) into

where μ = (μ1, …, μp)′ denotes the average effects and αk· = (αk1, …, αkp)′ denotes the 

deviance of effects in study k from the average effects μ. To accommodate the constraint 

that, for each covariate l, l = 1, …, p, , we denote αl = (α2l, …, αKl)′ and work 

with . We classify p predictors into three mutually exclusive categories: 

(1) homogeneous effects if μl ≠ 0 and the Euclidean norm of αl: ‖αl‖ = 0; (2) heterogeneous 

effects if ‖αl‖ ≠ 0; (3) null effects if μl = 0 and ‖αl‖ = 0. To estimate this homogeneous and 

heterogeneous structure, we propose the following composite penalty regularized partial 

likelihood estimator

(2)

where ω0l and ω1l are data-dependent weights and here chosen as ω0l = 1/|μ̃
l|, ω1l = 1/‖αl̃‖, 

where (μ̃l, α̃l) are some initial root-n consistent estimators.
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2.2 Computation algorithm

We use the iterative shooting algorithm (Fu, 1998; Zhang and Lu, 2007) to minimize Qn(θ) 

in (2). Let G = −∂ℓ/∂θ, H = −∂2ℓ/∂θ∂θ′, and X′X be the Cholesky decomposition of H. By 

defining a pseudo response vector Y = (X′)−1{Hθ − G}, we can approximate −ℓ(θ) by a 

quadratic form . Furthermore, we consider the L1 norm as a special 

case of the Euclidean norm with one element and rewrite the composite penalty terms in (2) 

as an adaptive group lasso problem with 2p groups

(3)

where θg = μg and λg = λ1nω0g for g = 1, …, p and θg = αg and λg = λ2nω1g for g = (p+1), 

…, 2p.

By the Karush–Kuhn–Tucker condition, Yuan and Lin (2006) showed that the necessary and 

sufficient condition for θ to be a solution of (3) is

(4)

(5)

Note that the condition (4) is equivalent to

(6)

where , with , Idg is the identity matrix 

of dimension dg, and dg is the number of parameters in group g. Thus, our shooting 

algorithm is:

1. Initialize with θ(0).

2. For each g = 1, …, 2p, if θg = 0, then it stays at 0. Otherwise, update θg with

3. Update θ with the new θg, and repeat until convergence.

We choose the tuning parameters λ1n and λ2n over a two-dimensional grid by minimizing 

the Bayesian information criterion (BIC),
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where  is a minimizer of (2) under λ1n and λ2n, and the degree of freedom (d f) is 

defined following Yuan and Lin (2006), 

. The BIC-based tuning 

parameter selection corresponds to maximizing the posterior probability of selecting the true 

model and has been shown to be consistent for model selection in various settings (Wang et 

al., 2007; Zhang et al., 2010). Our simulation experiences also support the use of the BIC-

based selection method.

Following Fan and Li (2001), we estimate the covariance of θ̃ by

(7)

where Σ = diag{λg/‖θg‖Idg }g=1, …, 2p.

2.3 Theoretical properties

Denote the true parameters by , where we use the general notation with the subscript n to 

allow the number of parameters (pn) to go to infinity as the sample size n increases. Let qn = 

Kpn be the total number of parameters. Define 1n = {l : μl ≠ 0, l = 1, …, pn}, 2n = {l : 

‖αl‖ ≠ 0, l = 1, …, pn}, and n = 1n ∪ 2n. The total number of parameters 

corresponding to n is sn = | 1n| + (K − 1) × | 2n|. Under the regularity conditions 

specified in Web Appendix, the following asymptotic properties hold.

Theorem 1 (Estimation Consistency)—If , and , 

then .

Theorem 2 (Selection Consistency)—If λ1n/qn → ∞ and λ2n/qn → ∞, then 

.

Because the dimension of θ̂
n may diverge as sample size goes to infinity, for asymptotic 

normality property below, we consider its arbitrary linear combination Bnθ̂
n, where Bn is 

an arbitrary m × sn matrix with a finite m and  and G is positive-definite.

Theorem 3 (Asymptotic Normality)—If , λ1n/qn → 

∞, λ2n/qn → ∞, and , then

where I n is the Fisher information matrix corresponding to .

Therefore, as the sample size goes to infinity, the proposed estimator θn̂ in (2) can perform 

as well as the correct model when that correct model is known in advance. Proofs are given 

in Web Appendix.
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3. Numerical Studies

3.1 Simulations

We conducted simulations to evaluate the performance of our method under practical 

settings and compared it with four methods including the maximum likelihood estimation 

(MLE) method, the two-step method (two-step) with the random-effects model 

(DerSimonian and Laird, 1986), and the penalized partial likelihood methods with adaptive 

group Lasso (agLASSO) penalty (Yuan and Lin, 2006; Kim et al., 2012) and adaptive 

composite absolute (aCAP) penalty (Zhao et al., 2009; Liu et al., 2013). For the MLE 

method, we obtained the study-specific effects and checked whether the average effect and 

the heterogeneous effects of each variable were significantly different from 0. In the two-

step method, we used Cochran’s Q-test to examine the heterogeneity. The agLASSO method 

imposed a weighted L2 penalty on the group of coefficients consisting of each variable’s 

effects across studies. The aCAP approach imposed a weighted composite penalty as 

.

3.1.1 Example 1: fixed number of covariates—We first considered a pooled study 

with 3 sub-studies of size N = 150 or 300, and generated 11 covariates from a multivariate 

normal distribution with mean 0 and covariance cov(zi, zj) = 0.5|i−j|. The survival times were 

generated using the Cox proportional hazards model (1) with the Weibull distribution 

(shape= 10, scale = 1) determining the baseline hazard. The true θ* was specified as follows:

Thus, covariates Z1 and Z7 had homogenous effects, Z2, Z3, and Z8 had heterogeneous 

effects, and the rest were null variables. Censoring times were generated from the uniform 

distributions [0, 1.28] or [0, 1.77] to yield event rates around 25% or 45%.

Tables 1 – 4 report the simulation results. Table 1 reports the average numbers of correctly 

and incorrectly selected homogeneous and heterogeneous variables over 200 simulations. 

We use the square root of mean square errors (E‖θ̂ − θ*‖2)1/2 (rMSE) to measure the 

estimation error. Our method performs very well for identifying the correct structure in all 

scenarios and outperforms all other methods in terms of having the smallest rMSE. Its 

overall performance improves with increasing sample size. When the sample size increases 

to 300, with an event rate of 45%, the average number of correctly identified homogeneous 

variables by the proposed method is 1.96, and the average number of correctly identified 

heterogeneous variables is 3. The agLASSO method is only capable of identifying the non-

zero group of coefficients, and cannot differentiate homogenous from non-homogenous 

effects. The random-effects model gives a large estimation error as the method cannot 

estimate the study-specific effects for each variable.
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Table 2 presents the detection frequencies of each variable’s average and heterogeneous 

effects under the scenario with 45% event rate and N = 300 in each study. Our method 

identifies all variables’ structure with good accuracy. The agLASSO method cannot 

differentiate between the average effect and heterogeneous effects, and always selects the 

variable as long as it has at least one non-zero effect, e.g. Z1 and Z7. The aCAP also shows a 

reasonable performance except for variable Z8, which has zero mean effect but non-zero 

heterogeneous effects. The two-step method fails to identify the non-zero average effect of 

variable Z2, because Z2 has a small average effect size, and the heterogeneity of the effects 

of Z2 is captured with a large variance estimated by the random-effects model. Because of 

the collinearity between variables, the MLE method does not perform well for variables with 

null effects. Similar results are observed in other scenarios.

Table 3 presents the estimated standard errors for covariates Z1, Z2, and Z8 based on the 

sandwich formula (7), and compares them with the sample standard deviations calculated 

from 200 iterations. The empirical variance estimates and asymptotic estimates show some 

discrepancies in these finite-sample settings, but the overall performance improves with the 

sample size.

3.1.2 Example 2: diverging number of covariates p > N—We still considered 

pooling 3 studies, with each study size of N = 200. The number of covariates was set to be p 

= 250 or 450, and the covariate vector was generated from the multivariate normal 

distribution with mean 0 and covariance cov(zi, zj) = ρ|i−j|, ρ = 0.5 or 0.75. The survival 

times were generated from the Cox proportional hazards model with a constant baseline 

hazard function λ0(t) = 0.1 and the true coefficients θ* were specified as follows:

where am denotes a m-vector of a’s. Therefore, covariates Z1 to Z8 had homogeneous 

effects, Z9 to Z18 had heterogeneous effects, and the rest were null variables. Censoring 

times were generated from the uniform distribution U(0, 2) to yield the event rate around 

40% in each cohort. Table 4 reports the average numbers of correctly and incorrectly 

selected homogeneous and heterogeneous variables by our method and the rMSE over 200 

replicates. Our results show that the proposed method achieves good accuracy in identifying 

the homogeneous and heterogeneous effects and maintains low error rates when the number 

of covariates is greater than the sample size.

3.2 Pooled ovarian cancer study

Using the pooled data from 1676 patients from 10 studies, which had complete information 

on tumor stage and debulking surgery, Ganzfried et al. (2013) found that the expression 

level of chemokine CXCL12 was associated with patient survival, which was not detected in 

individual studies due to insufficient power. We first examined whether the three variables 

CXCL12, tumor stage and debulking were homogeneous across studies, and applied our 
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method and the meta-analysis method with random-effects model respectively. Both 

methods identified all three variables as homogeneous variables and yielded similar results 

on effect estimation. Figure 1 shows the forest plot of hazard ratios (HRs) of the variables.

To further study the association between other genetic variables and survival, we examined 

21 candidate genes related to breast and ovarian cancer according to the reports from the 

National Cancer Institute (http://www.cancer.gov/cancer topics/pdq/genetics/breast-and-

ovarian/HealthProfessional), which are CXCL12, CXCR4, RAD51C, RAD51, BABAM1, 

MLH1, MSH2, MSH6, TP53, HOXD1, CHEK2, HOXD3, CASP8, IRS1, TIPARP, 

PLEKHM1, BNC2, SKAP1, CERS6, BRCA1, and BRCA2. We also included three clinical 

variables: tumor stage, debulking, and age at initial pathologic diagnosis. The pooled 

analysis was conducted in 1053 patients from 4 studies in the database, with study size over 

100 and complete information on the genetic and clinical variables. Table 5 reports the 

estimated coefficients by our method and the meta-analysis. The proposed method identified 

no heterogeneous variables, supporting the quality of data curation by Ganzfried et al. 

(2013).We found that clinical variables age, tumor stage, and debulking still remained as 

important risk factors associated with ovarian cancer, and identified important genetic 

biomarkers including BNC2, BRCA2, CASP8, CXCL12, CXCR4, HOXD1, and IRS1 

(Goode et al., 2010; Welcsh and King, 2001; Ding et al., 2012; Kajiyama et al., 2008; Ma et 

al., 2011). The meta-analysis method also identified 6 out of these 10 variables as important 

factors with no heterogeneity, with the remaining 4 variables being non-significant, which 

resembled our findings in the simulation study that the meta-analysis can be of low power 

for small average effects. The remaining 14 variables were classified as null variables by our 

method, 11 of which were concluded the same by the meta-analysis method.

4. Discussion

In this article, we address the question of identifying variables’ homogeneous and 

heterogeneous effects on a time-to-event outcome in pooled studies using a group variable 

selection approach based on penalized regression. The proposed method requires that each 

study has the same predictors in the pooled studies. We establish the theoretical properties 

and show good numerical performances of the proposed method. In practice, to better 

estimate the variables’ effects, we could refit the data using the variables and their 

homogeneous/heterogeneous structure identified by our method, or we could randomly 

partition the data into two parts, one part of which is to detect heterogeneity and the other 

part for estimating effects. Also note that the proposed method can be easily extended to 

linear models and generalized linear models.

When the number of covariates diverges with the sample size, we establish the convergence 

rate of  following Cai et al. (2005). More recently, Huang et al. (2013) established 

the oracle inequalities in the pn ≫ n sparse Cox model setting, which may potentially be 

applicable to our context and needs further investigation.

For tuning parameter selection, it is well known that the generalized cross validation (GCV) 

and AIC-based methods may select irrelevant predictors with a non-vanishing probability as 

n → ∞ (Wang et al., 2007). The BIC-based selection of tuning parameters to select models 
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is consistent for model selection in various settings (Wang et al., 2007; Zhang et al., 2010). 

The log partial likelihood of the Cox proportional hazards model can be quadratically 

approximated so that the optimization is conducted in a similar fashion to the least-square 

setting, which supports the use of BIC for our proposed method. The cross-validation score 

approximating the Kullback-Leibler divergence can also be used to select the tuning 

parameter (Du et al., 2010), but needs further investigation when both n and p tend to 

infinity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank the editor Jeremy M. G. Taylor, the Associate Editor, and two referees for their careful review 
and constructive comments that substantially improved the presentation of the paper. This work was partially 
supported by the National Cancer Institute (R01 CA140632, R21 CA116585).

References

Cai J, Fan J, Li R, Zhou H. Variable selection for multivariate failure time data. Biometrika. 2005; 
92:303–316. [PubMed: 19458784] 

DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. 1986; 7:177–188. 
[PubMed: 3802833] 

Ding YC, McGuffog L, Healey S, Friedman E, Laitman Y, Paluch-Shimon S, Kaufman B, Liljegren 
A, Lindblom A, Olsson H, Kristoffersson U, Stenmark-Askmalm M, Melin B, et al. A 
nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in 
BRCA1 and ovarian cancer in BRCA2 mutation carriers. Cancer Epidemiology Biomarkers & 
Prevention. 2012; 21:1362–1370.

Du P, Ma S, Liang H. Penalized variable selection procedure for Cox models with semiparametric 
relative risk. The Annals of Statistics. 2010; 38:2092–2117. [PubMed: 20802853] 

Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal 
of the American Statistical Association. 2001; 96:1348–1360.

Fu WJ. Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical 
Statistics. 1998; 7:397–416.

Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, 
Birrer MJ, Parmigiani G, Huttenhower C, Waldron L. CuratedOvarianData: clinically annotated 
data for the ovarian cancer transcriptome. Database: The Journal of Biological Databases and 
Curation. 2013; 2013 bat013. 

Goode EL, Chenevix-Trench G, Song H, Ramus SJ, Notaridou M, Lawrenson K, Widschwendter M, 
Vierkant RA, Larson MC, Kjaer SK, Birrer MJ, et al. A genome-wide association study identifies 
susceptibility loci for ovarian cancer at 2q31 and 8q24. Nature Genetics. 2010; 42:874–879. 
[PubMed: 20852632] 

Hedges, LV.; Olkin, I. Statistical methods for meta-analysis. Orlando: Academic Press; 1985. 

Huang J, Sun T, Ying Z, Yu Y, Zhang C-H. Oracle inequalities for the lasso in the Cox model. The 
Annals of Statistics. 2013; 41:1142–1165. [PubMed: 24086091] 

Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F. Involvement of SDF-1α/CXCR4 
axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. International Journal of 
Cancer. 2008; 122:91–99.

Kim J, Sohn I, Jung S-H, Kim S, Park C. Analysis of survival data with group lasso. Communications 
in Statistics - Simulation and Computation. 2012; 41:1593–1605.

Cheng et al. Page 9

Biometrics. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liu M, Lu W, Krogh V, Hallmans G, Clendenen TV, Zeleniuch-Jacquotte A. Estimation and selection 
of complex covariate effects in pooled nested case-control studies with heterogeneity. 
Biostatistics. 2013; 14:682–694. [PubMed: 23632625] 

Ma S, Song X, Song X, Huang J. Supervised group lasso with applications to microarray data analysis. 
BMC Bioinformatics. 2007; 8:60–76. [PubMed: 17316436] 

Ma X, Zhang J, Liu S, Huang Y, Chen B, Wang D. Polymorphisms in the CASP8 gene and the risk of 
epithelial ovarian cancer. Gynecologic Oncology. 2011; 122:554–559. [PubMed: 21714991] 

Moreno V, Martin ML, Bosch FX, de Sanjosé S, Torres F, Muñoz N. Combined analysis of matched 
and unmatched case-control studies: comparison of risk estimates from different studies. American 
Journal of Epidemiology. 1996; 143:293–300. [PubMed: 8561164] 

Wang H, Li R, Tsai C-L. Tuning parameter selectors for the smoothly clipped absolute deviation 
method. Biometrika. 2007; 94:553–568. [PubMed: 19343105] 

Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human 
Molecular Genetics. 2001; 10:705–713. [PubMed: 11257103] 

Yan J, Huang J. Model selection for Cox models with time-varying coefficients. Biometrics. 2012; 
68:419–428. [PubMed: 22506825] 

Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the 
Royal Statistical Society, Series B. 2006; 68:49–67.

Zhang HH, Cheng G, Liu Y. Linear or nonlinear? Automatic structure discovery for partially linear 
models. Journal of the American Statistical Association. 2011; 106:1099–1112. [PubMed: 
22121305] 

Zhang HH, Lu W. Adaptive lasso for Cox’s proportional hazards model. Biometrika. 2007; 94:691–
703.

Zhang Y, Li R, Tsai C-L. Regularization parameter selections via generalized information criterion. 
Journal of the American Statistical Association. 2010; 105:312–323. [PubMed: 20676354] 

Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable 
selection. The Annals of Statistics. 2009; 37:3468–3497.

Cheng et al. Page 10

Biometrics. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Forest plot of the hazard ratio estimates of variables CXCL12, tumorstage, debulking from 

the pooled ovarian cancer study with 10 sub-studies. The study names are listed at the left 

and study sizes are given in the parentheses. Three vertical dash lines are reference lines of 

the hazard ratio being 1.
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Table 5

Estimates of the log hazard ratios of genetic and clinical variables in the pooled ovarian cancer study.

Variable Our method Two-step

age 0.022(0.004) 0.026(0.006)*

tumor stage 0.455(0.085) 0.536(0.100)*

debulking 0.248(0.071) 0.297(0.157)

BNC2 0.076(0.030) 0.145(0.058)*

BRCA2 0.140(0.036) 0.183(0.049)*

CASP8 −0.061(0.030) −0.138(0.074)

CXCL12 0.042(0.026) 0.089(0.055)

CXCR4 −0.098(0.034) −0.118(0.051)*

HOXD1 −0.011(0.015) −0.111(0.137)

IRS1 0.072(0.029) 0.158(0.057) aaaaaab

BABAM1 0(−) −0.075(0.131) +

BRCA1 0(−) 0.024(0.054)

CERS6 0(−) −0.014(0.100)

CHEK2 0(−) −0.023(0.102)

HOXD3 0(−) 0.072(0.072)

MSH2 0(−) 0.126(0.083)

MSH6 0(−) −0.159(0.072)*

MLH1 0(−) −0.018(0.051)

PLEKHM1 0(−) 0.034(0.055)

RAD51 0(−) 0.108(0.067)

RAD51C 0(−) 0.017(0.099)+

SKAP1 0(−) 0.020(0.052)

TIPARP 0(−) 0.017(0.086)

TP53 0(−) −0.014(0.058)

*
denotes nonzero average effects;

+
denotes nonzero heterogeneous effects with random-effects model; Standard errors are reported in the parentheses.
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