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Abstract

Purpose of review—To describe the potential contribution of immune activation in the 

pathogenesis of HIV-associated cardiovascular disease (CVD)—a leading cause of morbidity and 

mortality among HIV positive persons with access to antiretroviral therapy (ART).

Recent findings—We review recent literature that suggests abnormalities in both adaptive and 

innate immunity contributes to CVD risk among persons with HIV infection. In particular, 

potentially atherogenic T-cell mechanisms include persistent high-level T-cell activation (and 

associated pro-inflammatory mechanisms), as well as the presence of co-pathogens (e.g., CMV) 

providing an ongoing stimulus for cytotoxic T-cell responses. More recent data has then 

emphasized the potential impact of monocyte/macrophage-mediated inflammation and injury 

within atherosclerotic lesions. The pathology driving innate immune activation many not fully 

reverse with ART treatment, highlighting the need for interventions that target inflammation as a 

CVD prevention strategy.

Summary—Premature CVD among persons with HIV infection is due, in part, to persistent 

abnormalities in immune activation and systemic inflammation despite viral suppression. 

Prevention strategies for persons with HIV infection include those that target traditional CVD risk 

factors as well as newer candidate treatments with potential immunomodulatory benefits.
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Introduction

Soon after effective antiretroviral therapy (ART) became available in the mid-1990's, the 

first case reports of acute myocardial infarction in young HIV-infected men on combination 

ART were published in the Lancet[1]. In the nearly two decades since, we have developed a 

greater understanding of the epidemiology and mechanisms of cardiovascular disease 

(CVD) among those with HIV infection. Recent reviews in this journal have summarized 

this evolving field in terms of the epidemiology and risk factors for CVD in HIV[2] and 

whether early ART might reduce CVD risk[3].

Currently, it is now recognized that chronic HIV infection is associated with higher risk for 

a broad spectrum of cardiovascular diseases that includes not only myocardial infarction[4], 

but also stroke[5], heart failure[6], and sudden cardiac death[7]. Furthermore, the HIV-

associated risk appears to be at least as high in women as it is in men[8]. Pathogenesis 

studies of subclinical CVD suggest that individuals with HIV-infection may have a greater 

prevalence of high-risk features within coronary artery plaques,[9, 10] and potentially 

significant myocardial steatosis and fibrosis[11, 12]. Despite the relative increased CVD 

risk, absolute event rates remain low in this relatively young population—approximately 0.5 

CVD deaths per 1000 person years among 65,000 patients in Europe and North 

America[13]. Some reports have even described event rates that approach HIV-negative 

cohorts, possibly due to heightened awareness and more aggressive risk factor 

modification[14, 15]. Ultimately, CVD event rates are likely to increase, potentially more 

rapidly, as the treated HIV-infected population continues to age[2].

Traditional risk factors remain important mediators of CVD in the HIV-infected population. 

For example, smoking is highly prevalent and is associated with a higher risk of MI in HIV 

infection compared to an uninfected control population[14]. Cardiometabolic risk factors 

such as hypertension, dyslipidemia, and diabetes are also common in HIV infection, partly 

attributable to certain antiretroviral medications, and associated with cardiovascular events.

[4, 16-18] However, newer ART drugs have more favorable cardiometabolic profiles[19], 

and some data suggest ART initiation with modern regimens may reduce risk for the 

metabolic syndrome[17]. Ultimately, with availability of well-established approaches to 

target traditional risk factor modification, an important unmet need in the field remains 

understanding and targeting non-traditional risk factors. In particular, chronic inflammation 

and immune activation persist despite effective ART and appear to contribute to subclinical 

disease and CVD events, similar to what is seen in patients with inflammatory autoimmune 

diseases such as rheumatoid arthritis or psoriasis. In this review, we will explore recent 

evidence of how adaptive and innate immune mechanisms relate to CVD among individuals 

with HIV infection, as well as review potential strategies to mitigate CVD risk by reducing 

immune activation.

Adaptive Immune Mechanisms

CD4+ T-cell depletion and dysfunction, and chronic CD8+ T-cell activation, are hallmarks 

of HIV infection. Greater T-cell proliferation and turnover among HIV infected when 

individuals is a central components of AIDS pathogenesis[20]. Recent research has focused 
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increasingly on understanding the implications of changes in adaptive immunity for CVD 

and other end-organ disease risk. Figure 1 provides schematic context for how the cellular 

arms of adaptive immunity can have differential effects on atherogenesis.

Associations between CD4+ T-cell depletion and cardiovascular risk have been widely 

reported on [9, 21-28]. In the HIV Outpatient Study cohort, CD4 < 500 cells/mm3 was an 

independent risk factor for cardiovascular disease events that was as dangerous as smoking 

or high LDL[21]. Similar data show associations between lower nadir CD4 and other 

measures of preclinical CVD including higher left ventricular mass, increasing intima–

media thickness, and lower brachial artery flow-mediated dilation[9, 22]; however, the 

D:A:D (Data collection on Adverse events of Anti-HIV Drugs) study failed to show a strong 

linear relationship between current CD4 count and a broad composite of CVD outcomes, 

although most events were less frequent among those who did not experience immune 

depletion [23]. Data from the Kaiser Permanente System are consistent with this, showing 

that MI rates for HIV+ persons with CD4 counts >500 cells/mm3 were similar for HIV 

infected and uninfected persons [24]. In summary, while severe immune depletion (e.g., at 

CD4 counts <200 cells/mm3) may contribute to premature CVD, more recent literature 

suggests this relationship may be less clinically relevant among those with immune 

preservation. In support of this notion, the Strategic Timing of AntiRetroviral Therapy 

(START) trial failed to show that immediate ART treatment specifically reduced CVD 

events among ART-naïve HIV positive patients with CD4 counts >500 cells/mm3, despite 

reductions in a number of other AIDS and non-AIDS clinical events [29].

Another potentially important contributor to CVD pathogenesis relates to activation of the 

adaptive immune response. Concurrent with CD4 depletion, high-level and persistent CD8+ 

T-cell activation is a key feature of the natural history of HIV infection [30]. Both a higher 

absolute CD8+ T-cell count as well as a lower CD4:CD8 ratio, have been associated with a 

greater degree of coronary plaque by CT angiography and an increased risk of MI among 

HIV-infected individuals[28, 31]. In sentinel data by Kaplan et al, higher frequencies of 

immune activation and senescent CD8+ T-cells phenotypes were associated with higher 

prevalence of carotid artery lesions, even among patients on ART with effective viral 

suppression[32]. Mechanisms accounting for persistent CD8+ T-cell activation despite 

clinically undetectable HIV viral loads, may include both a persistent anti-HIV response as 

well as stimulation from other prevalent co-pathogens such a cytomegalovirus (CMV) [33, 

34]. In a cross-sectional comparison, Hsue et. al. reported higher carotid intima-media 

thickness (CIMT), inflammation, and T-cell activation among HIV infected versus 

uninfected persons, though only CMV-specific T-cell responses were independently 

associated with CIMT in adjusted analyses [35]. The potential importance of CMV-specific 

T-cell activation for HIV-associated CVD pathogenesis has since been supported by data 

demonstrating that CMV IgG titers predict greater carotid artery lesions, and that CMV-

specific CD4+CX3CR1+ T-cells may contribute to greater CIMT progression via 

mechanisms that induce arterial wall inflammation [36, 37].

Cumulatively, these data emphasize that ongoing abnormalities in adaptive immune likely 

contribute to increased atherosclerosis during chronic HIV infection. Research has largely 

focused on T-cell activation, associated pro-inflammatory mechanisms, and the potential 
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influence of co-pathogens (e.g., CMV) providing an ongoing stimulus for cytotoxic T-cell 

responses (CTL; Figure 1). To date, the potential loss of anti-atherogenic adaptive immune 

responses (e.g., T-regulatory and B-cell responses) has not been extensively studied as a 

potential driver of HIV-associated CVD risk. Although one recent study from sub-Saharan 

Africa demonstrated that subjects with HIV have a profile of natural auto-antibodies that has 

been associated with increased risk of cardiovascular disease in the general population and 

patients with auto-immune disorders.[38] Further research is needed to both explore these 

underlying mechanisms, as well as to identify treatment strategies that further improve 

immune recovery and normalize immune activation.

Innate Immune Mechanisms

Innate, or non-specific, immunity is well known to be a central feature of atherosclerosis 

pathogenesis (Figure 2).[39] The general sequence involves adherence of circulating 

monocytes to vessel walls with infiltration into nascent plaques, where, as tissue 

macrophages, they may perpetuate tissue injury via release of pro-inflammatory cytokines 

and/or evolve into cholesterol rich ‘foam cells’. Recent data have demonstrated that the 

spectrum of immunologic abnormalities during HIV infection, including treated disease, 

also includes activation of innate immunity (e.g., monocytes) and associated consequences 

for systemic inflammation and the development of premature CVD.[40-45]

Multiple studies have now demonstrated that HIV infection is associated with higher 

frequencies of activated monocyte subsets; i.e., so called intermediate (or ‘pro-

inflammatory’, CD14+CD16+) and non-classical (or ‘patrolling’, CD14dimCD16+) 

monocytes.[43-48] CD16+ monocyte subsets may also be more permissive to infection by 

HIV.[49] Funderburg et. al. demonstrated that the frequency of pro-inflammatory 

intermediate monocytes among HIV+ persons were correlated with viral load, CD8+ T-cell 

activation, CD4+ T-cell declines, and interleukin-6 levels.[44] Compared to HIV uninfected 

persons, the frequency of patrolling non-classical monocytes were also elevated among HIV 

infected persons, but also persisted among those with viral suppression.[44] In this study, 

the frequency of both intermediate and non-classical monocytes was similar between HIV 

viremic patients and those without HIV infection but who presented for cardiac 

catheterization with acute coronary syndrome (ACS).[44] Consistent with these data, higher 

frequencies of CD16+ monocytes (intermediate and non-classical phenotypes) among 436 

HIV+ patients (SUN Study) were associated with greater subsequent progression of 

coronary artery calcium (CAC), independent of traditional and HIV risk factors.[50]

Although the functional characteristics of CD16+ (intermediate and non-classical) monocyte 

phenotypes remain controversial, these subsets exhibit properties that promote atherogenesis 

[48, 51-53]. Specifically, the patrolling non-classical phenotype may act as a ‘patrolling’ 

subset that has greater affinity for vascular surfaces and migration into atherosclerotic 

lesions [51, 52]. The intermediate monocyte phenotype appears to be functionally more pro-

inflammatory, with greater cytokine release after stimulation.[48, 51, 53] CD16+ monocytes 

then localize to tissues sites of inflammation and fibrosis, with transendothelial migration 

facilitated by CX3CL1.[54] Epidemiologic data from HIV-uninfected participants at risk for 

CVD (n=951) also demonstrates that the intermediate monocyte phenotype independently 
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predicts higher risk for subsequent CVD events (i.e., myocardial infarction, stroke or CVD-

death).[55] Elevated levels of CD16+ monocytes among those with HIV infection, and their 

associations with CVD risk measures, suggests that innate immune activation may function 

largely to amplify key aspects of atherogenesis.

Numerous recent HIV studies of soluble plasma biomarkers have supported the notion that 

monocyte-related inflammation has CVD consequences for HIV+ patients.[42, 56-61] 

Soluble CD14 and CD163 levels, both reflecting monocyte activation, have been associated 

with greater carotic intima media thickness,[56, 57] calcified and non-calcified coronary 

plaque,[57-60] and arterial wall inflammation (estimated via FDG-PET imaging) among 

HIV-positive patients.[61] Recent non-human primate data using SIV infection further 

implicate monocyte/macrophage activation by demonstrating that cardiac pathology and 

myocardial fibrosis was associated with greater numbers of CD163+ monocytes as well as 

mycocardial macrophages overall.[62]

In summary, the current literature supports the notion that monocyte/macrophage-mediated 

inflammation and injury within atherosclerotic lesions are amplified in the context of HIV 

infection. Additional HIV associated monocyte abnormalities, related to impaired 

cholesterol efflux by foam cells and pro-coagulant effects (e.g., related to platelet-monocyte 

complexes), then further contribute to CVD risk.[63-65] For example, monocytes from HIV

+ subjects are more likely to become foam cells, have decreased expression of the 

cholesterol transporter ABCA1, and show impaired cholesterol efflux[66]. Dysfunctional 

HDL appears to further impair reverse cholesterol transport from macrophages, but this 

improves with ART[64]. The pathology driving innate immune activation and other 

monocyte abnormalities are likely related to both indirect effects from an ongoing HIV 

immune response, as well as due to permanent damage to the immune system—e.g., damage 

to mucosal lymphatic tissue and epithelial integrity leading to greater translocation of 

microbial products that drive innate immune responses.[44, 67] In this context, treatment 

interventions that target non-specific innate inflammation broadly may be more effective as 

a CVD prevention strategy.

Immune-based Strategies to Mitigate Risk

The accumulating observational evidence that immune activation is associated with CVD 

risk in persons with treated HIV infection suggests that therapies targeting these 

mechanisms—whether immunomodulatory drugs or proven CVD prevention therapies with 

anti-inflammatory effects—may have a cardiovascular benefit. Table 1 lists a number of 

completed and ongoing trials of immune targeted therapies that have included measures of 

subclinical vascular disease as surrogate outcomes of cardiovascular risk. In addition to the 

studies in Table 1, there are other trials that aim to improve outcomes such as immune 

function and tissue fibrosis, which would also be expected to influence cardiovascular risk.

Methotrexate (MTX) is a competitive dihydrofolate reductase inhibitor that modifies 

progression of rheumatoid arthritis primarily by reducing T-cell activation, but it also 

appears to have a beneficial effect on mortality in this population[72]. In light of this 

observation, the Cardiovascular Inflammation Reduction Trial (CIRT, www.thecirt.org) was 
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designed to test whether low-dose MTX will prevent CVD events in the general population. 

Similarly, a pilot study of 200 HIV-infected participants (NCT01949116) will evaluate the 

safety of low-dose MTX and its effect on endothelial function—results are anticipated in 

2016. Other “biologic” agents (i.e. monoclonal antibodies that block cytokines or cytokine 

receptors) approved for the treatment of autoimmune disease are being tested in HIV-

infected patients. Such agents include the interleukin-6 receptor antagonist tocilizumab 

(NCT02049437) and the interleukin-1 antagonist canakinumab (NCT02272946). Although 

dramatic reductions in immune activation are expected, whether the benefits will outweigh 

the significant risks is unclear. A worrisome precedent is that the tumor necrosis factor-α 

(TNF-α) antagonists etanercept and infliximab were associated with worse outcomes in 

trials to improve advanced heart failure [73, 74]. In contrast, interleukin-1 receptor 

antagonism improved heart failure outcomes in smaller studies[75, 76]. Less potent anti-

inflammatory drugs salsalate and pentoxifylline have been poorly tolerated and/or have no 

meaningful effect on endothelial function in small trials of HIV positive participants[68-70].

Many traditional CVD prevention treatments also have ‘off-target’ anti-inflammatory effects 

that may partly mediate their CVD benefits. Chief among these are the statins, whose 

‘pleiotropic’ anti-inflammatory properties are highly touted. Recent studies have reported on 

subclinical vascular outcomes of statins in the HIV-infected population and the potential 

effect modifying and mediating roles of inflammation and immune activation[77, 78]. 

Atorvastatin 20mg titrated to 40mg after 3 months reduced non-calcified plaque volume and 

high-risk coronary plaque features compared to placebo in a trial of 40 HIV positive 

participants on ART, who had evidence of subclinical coronary atherosclerosis at baseline 

and elevated vascular inflammation measured by PET-CT[77]. In the SATURN-HIV trial, 

rosuvastatin 10mg slowed progression of carotid intima-media thickness among 147 

subjects with elevated hs-CRP and/or heightened CD8+ T-cell activation. Similar to HIV 

studies of atorvastatin[79-82], rosuvastatin reduced T-cell activation and exhaustion markers 

over 48 weeks in SATURN-HIV[83]. Markers of innate immune activation such as soluble 

CD14 and the proportion of tissue factor-positive non-classical (CD14dimCD16+) monocytes 

were also reduced with rosuvastatin[83]. Furthermore, baseline interleukin-6 levels and 

CD14dimCD16+ monocytes were inversely associated with IMT change in the statin group, 

and the statin benefit on IMT progression was greatest among subjects with higher levels of 

baseline markers of inflammation and immune activation[78].

Despite being at high risk, recent data suggest that nearly 75% of HIV infected subjects with 

high risk plaque features on coronary CTA would not be recommended to receive statin 

therapy by current guidelines[84]. Thus, the Randomized Trial to Prevent Vascular Events 

in HIV (REPRIEVE; reprievetrial.org) recently began enrolling 6500 HIV positive 

participants without a current indication for a statin (10-year ACC/AHA risk <7.5%) in an 

outcomes trial of pitavastatin vs. placebo. Results are expected in 2020.

Other drugs used for CVD prevention may also have beneficial effects on inflammation. 

Aspirin reduces relative risk of CVD events by about 10-20% in the general population[85], 

and also appears to rapidly reduce immune activation in subjects on ART[86]. Ongoing 

trials of aspirin will further explore its immune and vascular effects in HIV-infected 

populations (Table 1), but whether the reduction in CVD and other (e.g. cancer) events as 
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primary prevention will outweigh the risks of bleeding remains unclear. Omega-3 fatty acids 

modestly improve markers of systemic inflammation, but do not appear to have any effect 

on endothelial function in one small study[71].

Finally, drugs that act to reduce activation of the renin-angiotensin-aldosterone system 

(RAAS) may reduce CVD events through multiple pathways including reduction of 

inflammation and tissue fibrosis. RAAS activation may be worsened by protease 

inhibitors[87] and is associated with visceral adiposity and insulin resistance in HIV-

infected subjects[88], but few clinical trials of RAAS blockade have been conducted in this 

population. Lisinopril reduced hsCRP and TNF-α despite sub-optimal adherence in one 

small pilot trial[89]. Telmisartan may ameliorate visceral adiposity in subjects on ART[90], 

but did not improve FMD in another underpowered pilot (NCT01578772). Telmisartan's 

effect on tissue fibrosis and inflammation is being tested in a 48-week open label trial of 44 

participants on ART (NCT01928927). Two ongoing larger randomized placebo-controlled 

trials (NCT02049307 and NCT01852942) will evaluate similar inflammation and tissue 

fibrosis outcomes for losartan; another will test the effect of losartan on carotid IMT 

progression (NCT01529749).

Summary and Conclusions

Chronic HIV infection is characterized by persistent abnormalities in both adaptive and 

innate immunity, despite clinically suppressed viral load with effective ART. Drivers of this 

high-level immune activation remain diverse and may differ between individuals, though the 

consequences appear to fuel systemic inflammation and amplify well-described pro-

atherogenic mechanisms. Treatment strategies with potential to mitigate HIV-associated 

CVD risk are currently an area of active investigation. Candidate interventions undergoing 

clinical trials include those that target traditional CVD risk factors, that have broad non-

specific anti-inflammatory properties, and/or that target a specific underlying mechanism 

driving HIV-associated immune activation.
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Key Points

• HIV infection is associated with excess CVD due to multiple factors, some of 

which are immunologic in nature.

• Alterations in adaptive immunity, reflected in T-cell activation and dysfunction, 

likely contribute to HIV-associated CVD.

• The CVD consequences of persistent abnormalities in innate immunity, 

commonly assessed via measures of monocyte activation, may be particularly 

relevant during treated HIV disease when adaptive immunity has recovered to 

some degree.

• While effective treatment exists for traditional risk factor modification, CVD 

prevention strategies that target inflammation and immune activation are lacking 

though a number of promising candidates are under investigation.
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FIGURE 1. Adaptive immunity in atherosclerosis
T and B lymphocytes may positively or negatively influence atherosclerotic plaque through 

direct action on lesions or through inflammatory cytokine production. Emerging 

observational data have linked CD8+ and CD4+ T-cell activation to subclinical vascular 

disease and adverse outcomes among those with HIV infection; relatively less is known 

about the role of TReg or B lymphocytes in the context of HIV disease. Reproduced with 

permission from Libby et al.[39]
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FIGURE 2. Innate immunity in atherosclerosis
Elements of the innate immune system, particularly monocytes and macrophages, drive 

atherosclerosis and the inflammation that leads to unstable atherothrombotic syndromes. 

Current literature has demonstrated that HIV infection activates monocytes, impairs reverse 

cholesterol transport from foam cells, and promotes thrombus formation through platelet-

monocyte interactions. Reproduced with permission from Libby et al.[39]
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