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For a number of years, scientists have been trying to develop aids that can make visually impaired people more independent and
aware of their surroundings. Computer-based automatic navigation tools are one example of this, motivated by the increasing
miniaturization of electronics and the improvement in processing power and sensing capabilities. This paper presents a complete
navigation system based on low cost and physically unobtrusive sensors such as a camera and an infrared sensor. The system is
based around corners and depth values from Kinect’s infrared sensor. Obstacles are found in images from a camera using corner
detection, while input from the depth sensor provides the corresponding distance. The combination is both efficient and robust.
The system not only identifies hurdles but also suggests a safe path (if available) to the left or right side and tells the user to stop,
move left, or move right. The system has been tested in real time by both blindfolded and blind people at different indoor and
outdoor locations, demonstrating that it operates adequately.

1. Introduction

A navigation system for a person with visual impairment
involves identifying the layout of the 3D space around them
and then helping them negotiate their way around obstacles
en route to their destination. The traditional aid for this
is a white cane, swept from side to side in front of the
person; however, computer technology has the potential to
provide less obtrusive and longer-range aids. To acquire this
information, a variety of sensors could be used; some of the
commonly used ones are summarized in Table 1. Sonar and
laser strippers are able to provide the distance to objects and
therefore have been previously used in developing automated
navigation solutions for robots and humans. However, all
of these sensors have limitations, such as the poor angular
resolution of sonar because of its wide beamwidth [1] and the
cost of laser strippers.There is no clear winner in the choice of
sensor; but the cheapness, small size, and ease of integration
of cameras make them attractive if one can overcome the
difficulties of segmenting objects and so forth. Arguably,

the most appealing way to produce such a system is to
use a body-mounted video camera combined with computer
vision.As a single camera is unable to detect distance, a pair of
cameras is normally used as they allow computational stereo
to determine the distance to obstacles/humans [2].

An even more attractive solution would be to detect
distance directly, a capability offered by the Microsoft Kinect
and similar devices. Though developed initially as a gaming
input device for the Xbox 360, the Kinect has become popular
among vision researchers because of both its low cost and
the availability of software to acquire and work with data
from it [3]. The Kinect features both a conventional colour
camera and a depth sensor, the latter operating by projecting
an infrared structured light pattern and using a camera
sensitive in the infrared to capture where it falls on objects
and then comparing the captured pattern with a reference
one to determine disparity and hence depth. In principle, one
should be able to determine the placements of obstacles using
only the depth sensor; however, in practice, there are distance
estimation and structural and noise problems [4] whichmake
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Table 1: Commonly used sensory aids for visually impaired persons.

Sensor Cost Type Usability
Guide dog High Genesis Not easily available; needs carer
White cane Low Mechanical Slow and can only find obstacles through touch
Ultrasonic sensor High Electronic machine Signal reflection or absorption may result in false information
Camera Low Electronic machine Needs proper installation
Infrared sensor Low Electronic machine Can only be used for short distances
Laser High Electronic machine Sensitive to sunlight
GPS Low Electronic machine Can only be used in outdoors
Mobile robots High Electromechanical Can only be used on plain and smooth surfaces

it difficult to obtain distance information from some objects
because they are not reflective at infrared wavelengths. For
example, occlusion results in shadows, creating blind spots
which cannot be used to obtain distances. Nevertheless,
researchers have already employed the Kinect to produce
navigation systems [5–8]. In [5], the Kinect was integrated
with an array of vibrotactile elements to build an assistant for
blind navigation. Similarly, [7, 8] used the Kinect to identify
the distances to objects, though in that work the sensor is
static and the system uses only the distance sensor’s data to
determine an obstacle’s distance from user.

This research also uses a Kinect sensor but processes
data acquired by both its depth sensor and its camera.
An attempt has been made to utilize the strength of both
sensors by detecting obstacles using corner detection and
then estimating their distance using depth map of the same
scene. The focus is to overcome the limitations of vision
algorithms in detecting and matching features subject to
geometric and photometric transformations [9].

The rest of the paper is structured as follows. Section 2
introduces Kinect and its working and its sensors’ calibra-
tion and provides context concerning the computer vision
processing and reviews briefly some local image features
that can be used for vision-based navigation. Furthermore,
it presents the complete, working navigation system, results
from which are presented in Section 3. The accuracy of this
kind of systems is more important than its speed; hence, the
system is tested on two people, one blindfolded and the other
visually impaired. Section 3.3 describes how a blindfolded
person responded to the system’s guidance and then how
well the system guided a person with visual impairment. The
section also includes reaction time analysis of blindfolded
and blind person. Based on this feedback, Section 4 examines
the current limitations of the system and how these can
be addressed in the future. Finally, Section 5 gives some
concluding remarks.

2. Material and Methods

2.1. Microsoft Kinect for Xbox 360. The Kinect was a sensor
developed by Microsoft to capture human motion for the
Xbox 360 gaming console, shown in Figure 1. It has two sen-
sors, a camera, and an infrared sensor designed to estimate a
user’s motionwhile playing games. Soon after its SDK release,
researchers have used it not only for developing 3D games but
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Figure 1: Microsoft Kinect for Xbox 360.

also for a number of other interesting applications, including
face tracking, picture frame, and digital mirror [3].

However, one has to be careful while using Kinect to
develop navigation systems as the sensor is not flawless and
has some limitations. For example, it projects infrared light
and uses its reflection to calculate the depth image. These
reflections may sometimes be sensed incorrectly or may be
absent due to irregular or nonreflective surfaces. Similarly,
the infrared light can be swamped by strong light sources
such as sunlight; and, most importantly, depth values from
the sensors are not stable even if it is stationary [4]. These
inaccurate depth data reduce the accuracy of the system.
Furthermore, reflections from the complete field of view,
for example, floor, are also obtained, so obstacle detection
becomes difficult without understanding the image content.

Calibrating the Kinect Sensor. The Kinect sensors are located
at a short distance apart, so the first step in using the
Kinect in a vision system is to calibrate them individually
and to determine their separation; the latter is particularly
important for this application as poor measurement of the
separation is manifested as disparity between the colour and
depth sensors.

To calibrate the Kinect, one can either use a dedicated
Matlab toolbox [10] or identify corners in both the colour
and depth images as described in [11, 12]. The latter method
was used here as it is similar to the algorithms used in
the navigation system, allowing it to be integrated into
its initialisation phase rather than as a once-only, offline
calibration. To perform the calibration, one captures images
of a calibration target using both Kinect sensors and then
identifies the same corner points in the colour and distance
images manually. From these values, camera distortion coef-
ficients and transformation matrices can be calculated using
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Table 2: Calibration parameter values of the Kinect sensor used
in this work. 𝑓

𝑥
, 𝑓
𝑦
and 𝑓

𝑥𝑑
, 𝑓
𝑦𝑑

are the focal lengths in 𝑥 and 𝑦
(to accommodate astigmatism of the lens systems) of the colour
camera and depth sensor, respectively.𝑝

1
and𝑝

2
are radial distortion

parameters, while 𝑘
1
, 𝑘
2
, and 𝑘

3
are tangential distortion parameters.
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= −1.9922 × 10−3
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= −8.3991 × 10−1 𝑝

2
= 1.4372 × 10−3

𝑘
3
= 9.1192 × 10−1

the process described in [11, 12]. The various parameters
involved are summarised in the following formulae, while
their calibrated parameters are shown in Table 2:

SensorRGB =
[
[

[

𝑓
𝑥
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0 0 1
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,

SensorDepth =
[
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,

Distortion Coefficients = [𝑘
1
𝑘
2
𝑝
1
𝑝
2
𝑘
3
] .

(1)

The rotation matrix 𝑅 and translation matrix 𝑇 that result
from these are

𝑅 = (

9.99 × 10−1 1.26 × 10−3 −1.75 × 10−2

−1.48 × 10−3 9.99 × 10−3 −1.23 × 10−2

1.75 × 10−2 1.23 × 10−2 9.99 × 10−1

),

𝑇 = (

1.9985 × 10−2

−7.4424 × 10−4

−1.0917 × 10−2

).

(2)

The Kinect distance sensor returns a depth “image” in which
each pixel corresponds to the distance of the object in a
colour image pixel, with some translation and rotation due
to the physical separation of the two sensors on the device.
Therefore, to find the depth of colour image pixels, one
projects each depth image point in real world by calculating
each colour image pixel’s 3D coordinates using

𝑃3D = (

𝑝
𝑥

𝑝
𝑦

𝑝
𝑧

) =(

𝑥𝑡
𝑥𝑑

𝑑
𝑚
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𝑦𝑡
𝑦𝑑

𝑑
𝑚

𝑓
𝑦𝑑

𝑑
𝑚

), (3)

where 𝑑
𝑚
is the distance in metres calculated using

𝑑
𝑚
= 0.1236 ∗ tan( 𝐷

2842.5
) + 1.1863, (4)

where𝐷 is the rawdepth value obtained from theKinect.This
conversion is important because the rotation and translation
matrices 𝑅 and 𝑇 are calculated in metres in the real world.
From these 3D coordinates, 2D projections onto the colour
image can be computed using

𝑃2D = (

𝑝
𝑥2D

𝑝
𝑦2D

𝑝
𝑧

) = 𝑅 𝑃3D + 𝑇,

𝑃
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𝑃
𝑥2D

𝑃
𝑧

,

𝑃
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𝑃
𝑦2D

𝑃
𝑧

,

(5)

so that the colour image pixel corresponding to a depth
estimation can be determined. To speed up the process, a 2D
lookup table can be generated, indexed on 2D projections of
depth image pixels.

2.2. Low-Level Image Features for Navigation Systems. Image
understanding and matching have been long-standing,
important research areas in devising safe navigation systems
for both robots and humans [13]. Vision-based navigation
systems commonly use feature-based matching in video
frames. These image features can be blobs, edges, corners, or
regions. A blob is an image area with a significant intensity
difference from its neighbourhood, for example, a dark spot
in a bright region or a bright spot in a dark region [14].
An edge is the boundary between image regions, usually
identified in terms of colour or intensity difference, and is
important when segmenting image regions [15]. Similarly,
image regions are also used as features to be matched for
segmentation tasks [16]. Finally, corner points are the image
areas that correspond to sharp changes in the direction of
boundaries [17].

Although any of these local image features can be used
for this application, the sensitivity of infrared sensor to
reflective materials means that the use of blobs for depth
calculation can degrade the system’s performance, particu-
larly outdoors. Furthermore, extracting regions takes more
time than corners but gives less information about image
content. Figure 2 shows that if the detected features are edges
or blobs, the result is every textured area in the image.
This might be useful for applications where identification of
the whole image content is required, such as segmentation,
panorama stitching, and homography estimation; however,
in this navigation application, meaningful image areas such
as obstacles are important, and the result in Figure 2(c) shows
that the corner points identify important image content.

Furthermore, corners are particularly attractive because
they are fast to compute and lie on the boundaries of
obstacles. Consequently, corner points have been chosen to
find image locations that can correspond to obstacles.

After detecting corner points in images,matching them in
subsequent video frames is required for a navigation or track-
ing application.The best-knownmethods in the literature for
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(a) Original image (b) Edges detected using Sobel edge detector

(c) Corners detected usingHarris & Stephens detector (d) Blobs detected using SIFT detector

Figure 2: Results of local image feature detectors that can be used to develop a vision-based navigation system.

tracking features are homography-basedmatching [18], visual
odometry, optical flow, and particle filtering. Visual SLAM
[19] and related systems have also been developed using
matching of local image features [20] or corners [21]. Despite
all these efforts, there are limitations of vision algorithms to
detect and match features under geometric and photometric
transformations [9], resulting in low repeatability scores
and unstable responses at different scales, which makes it
difficult to obtain consistent, continuous information for
safe navigation. This research explores whether one possible
solution is to combine the image information from different
sensors, such as the Kinect camera and its infrared sensor.

2.3. A Kinect-Based Navigation System. The navigation sys-
tem described here requires a standard Kinect sensor, a
battery, and a laptop/processor, all of which are carried in a
backpack or shoulder bag by the user. The Kinect is powered
by a sealed lead acid 12V, 7A battery shown in Figure 3,
the output of which is fed through a DC to DC converter
to ensure a stable 12V supply. The capacity of the battery is
enough to power both Kinect and a potable CPU for 3 hours.
The Kinect sensor is carried in front of the user using a strap
around their neck; though manageable, this is bulky and the
authors would expect a production system to repackage the
sensors into a unit that is physically smaller and easier to
manage, perhaps shoulder mounted.

Software Issues. Figure 4 describes the algorithms developed.
The proposed system uses the Harris & Stephens corner

Kinect

Battery On/off switch

Figure 3: Components of the navigation system, excluding the
laptop or equivalent on which all processing is performed.

detector to find corners in RGB images acquired by Kinect’s
camera, with their depth being obtained from the depth
lookup table constructed from 2D projections of depth image
pixels using the measurements described in Section 2.1.

It is important to bear in mind that not all values from
the Kinect distance sensor are correct due to the problems
alluded to in Section 1. Figure 5 shows depth map of an RGB
image where black pixels are no depth areas and, therefore, if
the detected corner point is one of these pixels then its depth
value cannot be used for distance calculation. To overcome
this problem, the system searches for a sensible depth value in
a 10× 10-pixel neighbourhood around colour image corners.

To enable a partially sighted person to navigate freely,
the entire image is divided into regions (masks), shown in
Figure 6. The white pixels in each region need to be obstacle-
free for the person to move in that direction, and there are
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Kinect
(infrared sensor)

RGB
camera

Sensors calibration

Corner detection

Reading depth of corners 
inside safe window from 
corresponding depth map

No warning Check for consistent 
occurrence of corners 

inside safe range

If left and right 
windows have 
close corners

Stop

Turn towards 
left or right

Depth > 2 m

Depth < 1.85m

2m < depth > 1.85m

Figure 4: Algorithm describing the conversion of input data into sensible verbal feed for visually impaired person.

separate mask images for (from left to right in the figure)
turning to the left, walking straight ahead, and turning to
the right. These white regions are termed “safe navigation
regions.”Thewidth of the safe navigation region in the centre
mask image is set to match the area which an average sized
person occupies in real world coordinates, so it is wider near
the person andnarrower at greater distances.Theproportions
of threemasks in the image are 80%, 10%, and 10% for central,
left, and right masks, respectively. The minimum depth of
each window is kept the same, that is, 1.85m more than
the average length of a white stick (1.42m), and within the
maximum working range of infrared sensor.

Processing.The system checks for two types of obstacles, those
that can completely block progress and smaller ones such as
chairs that can be avoided by changing direction. For the
former, the image feature detector may fail if the surface
is featureless so the system checks all depth values inside
the safe navigation region (Figure 6) and if the mean depth

becomes less than a threshold the user is notified to stop using
voice synthesis. Otherwise, the feature detector finds corner
points and, depending on the depth of corners, warningsmay
be issued to change directions to the right or left. The system
employs the processed depth (𝐼

𝑑
) and colour (𝐼

𝑐
) images from

the Kinect in a three-stage processing algorithm described in
the following paragraphs:

(1) Preprocessing. Calibration parameters are applied to
both input images (𝐼

𝑑
and 𝐼
𝑐
) so that distortions can be

removed from them.Then, corner points are found in
the colour imagewhile the depth image’s data are con-
verted into meters, from which the 2D projection of
all points is found and the 2D lookup table described
in Section 2.1 calculated. For fast processing, this stage
works in separate threads because calculations on 𝐼

𝑐

and 𝐼
𝑑
are independent of each other.

(2) Navigation Processing. The central safe navigation
region is scanned for wall-like obstacles by averaging
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(a) RGB image from Kinect camera (b) Depth map from Kinect sensor of circular region in RGB
image

(c) Values inside the circled region in depth map

Figure 5: Kinect output: an RGB image and its corresponding depth map; colours in the depth estimated map represent distance from the
sensor based on distance threshold: green color shows possible hazard, whereas blue color represents potential hazard and black points are
the areas from which the sensor is unable to get sensible depth and the values are 2047.

Left
Centre mask 

Right
 mask  mask

Figure 6: Imagemasks showingwhich parts of the colour and depth
images are processed (in white) for a user travelling straight ahead
(center mask). These white regions are termed “safe navigation
regions.”The equivalent masks used to assess whether to turn to the
left or right are shown to the sides of the center mask.

the depth values. If the mean depth is less than
a threshold (1.85m in this work, based on sugges-
tions by white cane user), the system activates the
alarm-generation module and warns the user to stop.
Otherwise, the system looks for each corner point’s
depth within the central safe navigation region. If
one or more corner points appear to be close to the
person (their distance is less than the threshold),
the system starts counting frames for which these
points remain a hazard. The walking speed of a blind

person is typically 2 to 3 miles/hour (0.6m/s) [22]
so if hazardous corner pixels remain in the active
region for five frames, it checks the right and left
safe navigation regions for a clear route, selecting
the one with no wall-like obstacle and where the
nearest corners are further from the user. Once the
left or right window is selected, the system initiates
the alarm-generationmodule to inform the user. If no
obstacle is found, the system remains quiet.

(3) Alarm. If an alarm is triggered during processing,
voice synthesis is used to alert the user, generating, for
example, “stop,” if there is an obstacle in the way. For
a left or right movement, the system generates “left”
or “right.”

Figure 7 illustrates three different scenarios. Corner points
are presented in five different colours:

(i) Yellow points are nonhazard corner outside the safe
navigation regions.

(ii) Green points indicate potential hazards (𝑑
𝑚
> 2m

inside the safe navigation regions).
(iii) Blue points are potential hazards (2.0m > 𝑑

𝑚
>

1.85m inside the safe navigation regions).
(iv) Red points are hazards (𝑑

𝑚
< 1.85m inside the safe

navigation regions).
(v) Black pixels indicate a blind spot in depth image.
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(a) Left region (b) Right region

(c) Middle region

Figure 7: Navigation from analysing data in the image masks of Figure 6. In (a), the user is asked to move to the left; in (b), the user is given
an alarm and encouraged to move to the right; and in (c), the user can move forward.

In Figure 7(c), the systemdoes not find anywall or obstacle so
all the corner points are green and there will be no warning to
the user. In Figure 7(a), there are some points which lie inside
central safe navigation region and cross the safe distance
threshold (red-coloured corners), so the system checks right
and left safe navigation regions and finds the left one to be
the safer and so prompts the user to move left. Conversely,
Figure 7(b) shows where, after finding an obstacle in the
central safe navigation region, the system identifies the right
as being safer and prompts the user to move that way.

Although Kinect sensor is attached to the subject’s body
and therefore does not remain stationary during motion,
however, due to the installation of both sensors at the same
axis, their calibration compensates the jittering effects.

3. System Testing

The proposed system aims to provide navigation assistance
to visually impaired people, so testing by its probable users
was crucial. To circumvent any potential problems, two test
cases have been used. In the first case, a blindfolded person
was asked to use the system to navigate in an unknown
environment containing obstacles, while in the second case
a visually impaired person was requested to try the system
and assess its accuracy in real time.

Figure 8 shows the hardware setup used to perform these
experiments. The durations of the experiments were kept
short because the equipment was bulky and heavy, though

a belt through waist was also used to provide some extra
support and to distribute the equipment’s weight evenly.
The Kinect and a touchscreen monitor were mounted on a
portable CPU and all of the three devices (CPU, Kinect, and
monitor) were powered by the battery shown in Figure 3,
which was placed in a backpack. The results of the experi-
ments are given below.

3.1. Test Case 1: A Blindfolded User. Figure 9 shows how a
person with proper visual sense tries to sense the environ-
ment using the Kinect-based system instead of his own eyes.
The system was required to be calibrated according to the
user’s height, setting the distance threshold and the number
of frames per response to match their walking speed.

Theuser was able tomove in different indoor and outdoor
locations with good confidence of the system’s guidance.
However, as expected, the user found the system response
time to be slow. This appears to be because a person with
good visual sense does not naturally walk as slowly as a
blind person walks, and has difficulty walking at that pace.
This became quite obvious when the same user was asked to
use a white cane as mobility assistant (shown in Figure 10).
His stress level was high during this experiment, with the
user keeping his other arm close to his body to save himself
from collisions. Similarly, the walking speed was significantly
slower, showing that using an unfamiliar mobility aid affects
the user’s confidence.
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Earphone Battery in backpack 

CPU

Kinect

Touchscreen 

Figure 8: Hardware setup for testing the system.

Figure 9: System testing by a blindfolded person.

3.2. Test Case 2: A Visually Impaired User. Dr. Keith Currie,
a born blind man, participated in the experiment to test the
Kinect-aided navigation system. Keith was enthusiastic and
optimistic about the whole experiment because of his interest
in such kind of mobility aids.The authors admire his courage
and bravery for testing a development system. Figure 11 shows
him using the system along with a white cane, allowing him
to familiarize himself with the system and to calibrate it
according to his needs.

In order to increase his comfort level with the system, the
system was tuned to communicate at every alternate frame,
by saying “ok” during first attempt, even if no obstacle was
detected. In this way, the user was able to know that the
system was working and he can take further steps without
bumping into an obstacle. Furthermore, letting him use white
cane alongwith the automated systemhelped identify the best
distance threshold for a blind person. Initially, the distance
threshold was set to 0.3m, less than his white cane which
was approximately 1.42m long. As a consequence, Keith was

able to sense obstacles before the system and therefore did not
find it helpful. However, after changing the distance threshold
to 1.85m, the system was able to notify the user before the
white cane, improving its usefulness. Figure 12 presents the
locations where Keith tested the system: different indoor and
outdoor locations.

3.3. Analysis of the Proposed System. The current system can
process Kinect data at 8 to 10 frames per second (on an
Intel Core 2 quad 2.83GHz processor), which is fast enough
to warn the trial subject of any collisions, who is walking
with an average speed of 0.65m/s (blind). Figures 13–15 are
used to show system’s processing at selected frames along
with simulated navigational path recorded at each location. In
each of Figures 13–15, the frames in the rows show gradually
decreasing distances from obstacles.

The colour of the corner points indicates whether they
are potential hazards or not, using the annotation scheme
described in the previous section. Each row contains a
sequence of three frames of video showing a gradual decrease
in distance from obstacle. The system’s response at indoor
locations was found to be more appropriate and better timed
than in outdoor locations. This was not unexpected because
strong sunlight and shadows create blind spots in the depth
images captured by Kinect and these affect the system’s
accuracy.

Table 3 gives analysis of obstacle detection and walk-
ing speed of blindfolded and blind person. The speed of
blindfolded person appeared to be less than of blind person.
As mentioned before, a blindfolded person does not feel
comfortable using a mobility aid and therefore walks slowly.
Furthermore, thewalking speed of a blind person is very close
to his natural walking pace. Therefore, the system shows its
potential in becoming a good navigational aid for visually
impaired people.
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Figure 10: A blindfolded person using white cane as mobility aid.

Figure 11: Calibrating Kinect-aided navigation system by letting a
visually impaired person walk using it along with white cane.

Table 4 gives a comparison of the proposed system with
previously proposed navigation systems in the last decade.
Although sonar and camera are cheap sensors, however,

Table 3: Obstacle detection rate and comparison of blind and
blindfolded persons.

Blindfolded Blind
Obstacle Detection Speed Detection Speed

time (sec) (m/sec) time (sec) (m/sec)
Wall (corridor) 0.25 0.4 0.25 0.6
Pillar (open square) 0.3 0.3 0.3 0.5
People (open square) 0.28 — 0.25 —
Noticeboard 0.3 0.3 0.3 0.5
Obstacles (lab) 0.25 0.3 0.25 0.4
No obstacle (open
square) 0.25 0.4 0.25 0.55

increasing the number of sensors as in [23, 24], the systems
becomes costly and needs proper calibration. Therefore,
instead of using a number of similar sensors, the proposed
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(a) Lab (b) Lab

(c) Open square (d) Stairs

(e) Corridor (f) Corridor

(g) Robotics Lab (h) Robotics Lab

Figure 12: Keith Curie walking at different locations using Kinect-aided navigation system.
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Corridor

Wall

(a) Navigating through corridor

(b) Distance < 1.8m (c) Distance < 1.8m (d) Distance < 1.8m

(e) Distance < 1.8m (f) Warning: right (g) Distance < 1.8m

(h) No hazard (i) No hazard (j) No hazard

(k) Distance < 1.8m (l) Distance < 1.8m (m) Distance < 1.8m

Figure 13: The navigation system’s visual output on an indoor video sequence of walking through a corridor coming in front of a wall. Here,
(a) describes the navigational path by the subject (blind person). The system counts frames for consistent presence of hazard (b) till (e) and
then generates voice signal “right” on frame (f). Similarly, the system starts counts on frame (g) but then no warning is generated because it
loses red points in subsequent frames till frame (l).
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(a) Navigating towards noticeboard: a dead end

(b) No hazard (c) No hazard (d) No hazard

(e) No hazard (f) No hazard (g) No hazard

(h) No hazard (i) Distance < 1.8m (j) Distance < 1.8m

(k) Distance < 1.8m (l) Distance < 1.8m (m) Warning: stop

Figure 14: The navigation system’s visual output on an outdoor video sequence, walking towards a wall with noticeboard. (a) presents the
complete navigation of the subject (blind person). Images in (b–m) show system’s processing. The system finds red points in frame (i) and so
starts counting and generates verbal warning to stop on frame (m).
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(a) No hazard (b) No hazard (c) No hazard

(d) No hazard (e) No hazard (f) No hazard

(g) Distance < 1.8m (h) Distance < 1.8m (i) Distance < 1.8m

(j) No hazard (k) No hazard (l) Distance < 1.8m

(m) Distance < 1.8m (n) Distance < 1.8m (o) Distance < 1.8m

Figure 15: The navigation system’s visual output on an outdoor video sequence with people walking around the subject (blindfolded) as
dynamic obstacles. In frame (g), system starts sensing hazard shown with red points but loses it after 3 frames; therefore, no warning is
issued.
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system exploited the advantages of two cheap sensors and
produced good results, a concept also used in [25, 26].

4. Current Limitations and Future Directions

The system is capable of identifying obstacles at reasonable
distances and speeds; however, it was suggested by the blind
user that if an automated navigation system can be combined
with a white cane, one can have a safe and reliable mobility
aid. This is mainly because surface terrain and low-level
obstacles can be identified easily using a white cane, whereas
an automated navigation system can help locate head-level
obstacles and identify obstacles blocking one’s path.

All the problems experienced with the current system
appear to be due to the infrared sensor as it starts giving blind
spots (no depth values) under strong sunlight. In the future,
replacing it with some other depth sensor, such as a laser
strippers, might yield more accurate responses. However, the
concept of combining vision with sensed imagery proves to
work well. Android mobile phones are equipped with GPS,
inertial sensor, and an RGB camera, a combination that may
well be worth exploring for this kind of systems.

5. Conclusion

A navigation system for visually impaired people has been
designed, implemented, and assessed in both indoor and out-
door environments. Input from Kinect’s camera and distance
sensor compensates for limitations of each individual sensor.

The system was tested on both a blindfolded person and
a visually impaired person. Both users found the system to
be promising and highlighted its potential in becoming a
good navigational aid in the future. Although some problems
were experienced with the Kinect in outdoor locations, it
was found to be reasonably reliable indoors. The proposed
solution also provides strong justification for using hybrid
technologies, because of the inability of all sensors to work
under all environmental conditions (sunlight, rain, etc.).
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