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Abstract

We propose a nanomedical device for the classification of lung cancer (LC) histology. The device 

profiles volatile organic compounds (VOCs) in the headspace of (subtypes of) LC cells, using gold 

nanoparticle (GNP) sensors that are suitable for detecting LC-specific patterns of VOC profiles, as 

determined by gas chromatography–mass spectrometry analysis. Analyzing the GNP sensing 

signals by support vector machine allowed significant discrimination between (i) LC and healthy 

cells; (ii) small cell LC and non–small cell LC; and between (iii) two subtypes of non–small cell 

LC: adenocarcinoma and squamous cell carcinoma. The discriminative power of the GNP sensors 

was then linked with the chemical nature and composition of the headspace VOCs of each LC 

state. These proof-of-concept findings could totally revolutionize LC screening and diagnosis, and 

might eventually allow early and differential diagnosis of LC subtypes with detectable or 

unreachable lung nodules.

Keywords

Sensor; Gold nanoparticle; Lung cancer; Histology; Volatile organic compound

*Corresponding author: Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute 
of Technology, Haifa 32000, Israel. hhossam@technion.ac.il (H. Haick).
1These two authors contributed equally to this work.

The topic of this invited contribution has been presented at the 4th IEEE International Conference on Nano/Molecular Medicine and 
Engineering (IEEE-NANOMED 2010), December 5–9, 2010, Hong Kong SAR, China.

O.B., N.P., U.T., P.B., and H.H. have no conflict to declare related to the study. F.H is a member of the consultant/advisory boards of 
AstraZeneca, Roche, Lilly, Pfizer, Boehringer-Ingelheim, Merck Serono, Ventana-Roche, Glaxo Smith Kline, BMS/Imclone, and 
Syndax.

All authors designed the research; O.B. and N.P. performed the research; U.T., O.B., N.P., and H.H. analyzed data, and U.T. and H.H. 
wrote the article.

Appendix A. Supplementary data
Supplementary data to this article can be found online at doi:10.1016/j.nano.2011.10.001.

HHS Public Access
Author manuscript
Nanomedicine. Author manuscript; available in PMC 2016 February 08.

Published in final edited form as:
Nanomedicine. 2012 July ; 8(5): 580–589. doi:10.1016/j.nano.2011.10.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.nano.2011.10.001


Lung cancer (LC) is the leading cause of cancer-related mortality, with 159,390 deaths in 

the United States during 2009 and more than 1 million deaths each year globally.1 Small cell 

LC (SCLC) represents approximately 15% of lung cancers and is the fifth leading cause of 

cancer mortality. SCLC is distinguished from non–small cell LC (NSCLC) by its rapid 

growth rate and rapid metabolism, early dissemination to regional lymph nodes and distant 

sites, and sensitivity to chemotherapy and radiation therapy. Both types of LC occur in a 

similar population of heavy smokers but require different disease management. Surgery is 

performed on many of the NSCLC patients (stages I, II, and some of IIIA), whereas 

chemotherapy and radiation therapy are the backbone of SCLC treatment, except in the very 

early stage (IA).2 For advanced NSCLC, the recommended treatment approach depends on 

the subhistology. For example, pemetrexed is favored for the treatment of large cell 

carcinoma and adenocarcinoma; bevacizumab is avoided when treating squamous cell 

carcinoma.3 Currently, the diagnostic steps for lung nodule evaluation include an invasive 

procedure that yields a tissue specimen. However, such procedures are not always available, 

and their sensitivity might be limited due to small nodule size and difficult access.4 

Therefore, a simple and highly sensitive test would be extremely valuable for the 

classification and early screening of lung cancer.

Analysis of volatile organic compounds (VOCs) is a new frontier in noninvasive medical 

diagnostics.5–18 This approach is based on the fact that the cell membrane consists primarily 

of amphipathic phospholipids, carbohydrates, and many integral membrane proteins that are 

distinct in different cell types.19,20 Tumor growth is accompanied by gene changes and/or 

protein changes that may lead to oxidative stress and peroxidation of the cell membrane 

species, thus leading to the emission of VOCs.21–23 Some of these VOCs appear in 

distinctively different mixture compositions, depending on whether a cell is healthy or 

cancerous.5,6,8,24 These VOCs can be detected either directly from the headspace of the 

cancer cells or via the exhaled breath. The rationale in the latter case is that cancer-related 

changes in blood chemistry are reflected in measurable changes in the breath through 

exchange via the lung.5–7

Recently, we have developed an array of gold nanoparticle (GNP) sensors in conjugation 

with pattern recognition methods for noninvasive discrimination between healthy and LC 

states via exhaled breath samples5,6,17 as well as in vitro samples.8 In this study we have 

adapted this GNP sensor technology for in vitro differentiation between subtle differences in 

the VOC profiles of various LC subtypes. Using the GNP sensors we have demonstrated the 

ability to discriminate between LC and control states, between SCLC and NSCLC, and 

between subtypes of NSCLC. The chemical nature and composition of the associated VOCs 

was determined by gas chromatography–mass spectrometry (GC-MS) analysis, allowing the 

tracking of the metabolic pathways of the cells.

Methods

Collection of the headspace samples

The headspace samples were collected from commercially available cell lines. Fourteen 

NSCLC cell lines, subcategorized into 10 adenocarcinoma cell lines and 4 squamous cell 

carcinoma cell lines, as well as four SCLC cell lines (Table 1), were obtained from the 
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Colorado cell bank registry. The cell lines were grown in 100-mm cell culture dishes from 

seeding (~2 × 106 cells) up to 95% confluency (7 × 106 cells), using a two-dimensional 

medium (medium 1) under standard conditions (RPMI 1640 medium + 10% fetal bovine 

serum;5%CO2 environment). Several of the cell lines were grown in two or three replicates, 

as indicated in Table 1. Seven replicates of an immortal bronchial epithelium (IBE) cell line 

(Table 1) were grown likewise in 100-mm cell culture dishes from seeding (~2 × 106 cells) 

up to 95% confluency (7 × 106 cells), using another two-dimensional medium (medium 2) 

under standard conditions (BEBM 1640 medium + 10% fetal bovine serum; 5% CO2 

environment). Seven replicates of medium 1 served as a baseline control for the LC cell 

lines, and five replicates of medium 2 served as a baseline control for the IBE cell lines 

(same incubation time and conditions, but without the cells). Each cell culture was placed in 

a 150-mm dish. Two Ultra II SKC badges with Tenax TA as a sorbent (265 mg; SKC Inc. 

Eighty Four, Pennsylvania) were placed above the dish for absorbing the headspace 

atmosphere during the total growth time (median time 68 hours; range 60–72 hours), as 

shown in Figure 1, A. Two headspace samples per cell line were obtained for identifying the 

headspace VOCs. For analyzing the samples, the LC histology– specific VOC patterns were 

obtained by heating the Tenax sorbent material in stainless-steel thermal desorption 

chambers (350 mL and 750 mL, respectively) that were preheated to 270°C and kept at that 

temperature for 10 minutes.

Headspace analysis with GC-MS

The headspace VOCs were identified using GC-MS (GC HP 6890; MS-5973; Agilent 

Technologies, Santa Clara, California); H5-5MS capillary column (5% phenyl methyl 

siloxane; 30 m in length, 0.25 mm internal diameter, 0.25 mm in thickness, column pressure 

8.22 psi, column flow rate 1.0 mL/min); splitless mode; oven profile as described 

previously.8 The GC-MS analysis was preceded by solid-phase microextraction (SPME) for 

preconcentrating the headspace VOCs (Figure 1, D). A manual SPME holder with a 

divinylbenzene/carboxen/polydimethylsilox-ane-coated extraction fiber (Sigma-Aldrich, 

Rehovot, Israel) was inserted for 30 minutes into the thermal desorption device containing 

the headspace sample before being delivered to the GC-MS (Figure 1, E). The fiber was then 

inserted into the GC injector (direct mode) for thermal desorption at 270°C. The molecular 

structures were determined by a spectral library match using the Automated Mass Spectral 

Deconvolution and Identification System (ADMIS) software (Gaithersburg, Maryland). The 

data were processed using the open-source XCMS (V. 1.22.1) package (http://

metlin.scripps.edu/download/), which provides m/z and retention times. Statistical analysis 

was carried out using SAS JMP, V. 8.0 (SAS Institute, Cary, North Carolina, 1989– 2005) 

for Wilcoxon/Kruskal-Wallis tests.

Headspace analysis with the GNP sensors

The headspace samples were analyzed using cross-reactive chemiresistors that were based 

on spherical GNPs (3- to 4-nm core diameter) coated with organic ligands, where the 

organic ligands provided the broadly cross-selective adsorption sites for the breath 

VOCs.5,6,18 The GNPs were synthesized as described elsewhere.6,18,25–27 and dispersed in 

chloroform. Supplementary Figure S1 (available online at http://www.nanomedjournal.com) 

shows a representative transmission electron microscopy image of the GNPs in solution. The 
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metallic cores, appearing as dark dots in Supplementary Figure S1, are separated from each 

other by their capping organic ligands, which appear as a bright medium between the 

adjacent dark dots. Macroscopically continuous chemiresistive layers were formed by drop-

casting the solution onto semicircular microelectronic transducers (Figure 1, C, inset). The 

baseline resistance of the devices ranged from 0.1 MΩ to 24 MΩ with typical values of 

several MΩ (Supplementary Table S1). The device was dried for 2 hours at 23–25°C and 

then baked overnight at 50°C in a vacuum oven. The microelectronic transducers consisted 

of 10 pairs of circular interdigitated gold electrodes that were deposited by an electron-beam 

evaporator TFDS-870 (Vacuum Systems & Technologies, Petah Tikva, Israel) on a piece of 

silicon wafer capped with 1 µm thermal oxide (Silicon Quest International, Reno, Nevada). 

The outer diameter of the circular electrode area was 3 mm (Figure 1, C, inset), and the gap 

between two adjacent electrodes and the width of each electrode were both 20 µm.

Eighteen GNP sensors with different organic functionalities (Supplementary Table S1) were 

mounted on a custom polytetrafluoroethylene circuit board inside a stainless-steel test 

chamber with a volume of 100 cm3, as shown in Figure 1, B, C. The sampling system 

delivered pulses of the headspace sample from the thermal desorption device to the sensors. 

The chamber was evacuated between exposures. An Agilent multifunction switch 34980 

was used to measure the resistance of all 18 sensors simultaneously as a function of time. 

Typically, the sensors’ responses were recorded for 5 minutes in vacuum, followed by 5 

minutes under breath exposure, followed by another 5 minutes in vacuum. The cycles were 

repeated two or three times to test reproducibility. The most suitable sensors were selected 

for each studied problem from the reservoir of 18 available sensors as described in the 

Results section under “Identification of LC histology–specific pattern using GNP sensors” 

(Table 2).

Statistical analysis

LC histology–specific patterns were determined from the collective response of the GNP 

sensors by applying support vector machine (SVM) analysis as a statistical pattern 

recognition algorithm.15,16 SVM analysis is a supervised learning method that finds the best 

separating line (or plane) between two data sets, through computerized analysis of the 

sensing signals and automatic choice of the most suitable set of sensing features. It can be 

used as a heuristic to select the most suitable sensing features from a multidimensional data 

set for data classification and pattern establishment, and does not require normal distribution 

of the data points around the average value.28 The subpopulations were compared by 

building a multiclass classifier based on a linear nu-SVC SVM classifier.29 In this study, 

SVM was also used as a heuristic to select from the chemical compounds identified by GC-

MS those compounds that contribute most to the distinction between the compared groups.

Cross-validation was used to evaluate the classification success in terms of specificity, 

sensitivity, and accuracy by randomly dividing each subpopulation into two sets, which 

were then used as the training set and the test set. Cross-validation has a training stage 

followed by a test stage. A new test set that is blinded against the model was created each 

time before the training stage. The model was built based on the remaining samples (i.e., the 

training set). Thus, the method is less biased toward any group that is initially selected as a 
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test set. Cross-validation tries to remove that bias by generating all possible test sets, giving 

a stronger statistical result and making it superior, in the case of a relatively limited sample 

size, to the choice of fixed training and test sets. All possible combinations of divisions into 

test sets and training sets were tested, and the results were averaged. The results were stable 

against changing the number of folds in the cross-validation.

Study design

The present study was conducted in three phases. The first phase aimed to discriminate 

between LC and healthy cells through (i) chemical analysis of the substances in the cell line 

headspace, and through (ii) LC-specific patterns that were obtained from the collective 

responses of one to three GNP sensors. Headspace samples were obtained in duplicates for 

the chemical analysis and the pattern identification. The IBE cell line without other cancer-

specific modifications was chosen as a model for the healthy lung cells (Table 1). The 

majority of the LC headspace samples were collected from NSCLC cell lines. Because 

NSCLC originates from epithelial cells, and epithelial cells made up the majority of the lung 

tissue, the IBE cell line is an adequate control for the identification of LC states. The second 

phase aimed to discriminate the NSCLC and SCLC, which account for the vast majority of 

LCs. The third phase aimed to discriminate between histologically different subtypes within 

the NSCLC group (i.e., adenocarcinoma and squamous cell carcinoma).

Results

Chemical analysis of the headspace LC cell lines

Our GC-MS/SPME analysis identified over 700 different VOCs in each headspace sample. 

Nonparametric Wilcoxon/K-ruskal-Wallis tests could identify several VOCs from the 

families of aldehydes, alkanes, ketones, alcohols, and benzene derivatives that were on 

average significantly elevated or reduced in the LC subtypes studied, as compared to the 

empty medium (Table 3).

Marked differences were observed between the average headspace composition of all LC 

cell lines and of their simulated healthy controls (i.e., the replicates of the IBE cell line; 

compare Table 1). The headspace of the IBE cell lines was almost identical to the headspace 

of medium 2, with only slightly elevated levels of 1,3-dimethyl-benzene. In contrast, the LC 

cells caused on average more significant changes to the head-space environment, as could be 

expected from their faster metabolism. For direct comparison between the LC and IBE 

states, a correction of the VOC concentrations due to the differences in their related growth 

medium (see “Collection of the headspace samples” in the Methods section) was carried out. 

For this purpose the average VOC concentrations in the headspace of medium 1 and 

medium 2 were subtracted from the headspace concentrations of the LC and IBE cell lines, 

respectively. Under consideration of the experimental error, only decanal showed a 

significant difference between the LC and the IBE states (Table 3). In this regard, SVM 

analysis and cross-validation showed that the decanal concentration in the headspace of the 

LC cells was so strongly decreased with respect to the IBE control cells that LC and IBE 

states could be completely separated, with an accuracy of 100% (Table 4).
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Twelve VOCs showed significant differences in the concentration between SCLC and 

NSCLC (Table 3). Among these VOCs, SVM analysis identified three substances [decanal, 

acetophenone, and 1,3-bis(1,1-dimethylethyl)-benzene] as chief contributors to the 

separation between the two groups, which allowed distinguishing NSCLC from SCLC with 

100% sensitivity and 75% specificity.

Nine VOCs (aldehydes, one alkane, two ketones, one alcohol, and three benzene 

derivatives) showed differences between the subtypes of NSCLC (i.e., between 

adenocarcinoma and squamous cell carcinoma). Among these VOCs, SVM identified 2-

ethyl-1-hexanol, 1,3-dimethyl-benzene, and 1,3-bis(1,1-dimethylethyl)-benzene as key 

distinguishing VOCs, which are all found at higher concentration in the headspace of 

adenocarcinoma than in the headspace of squamous cell carcinoma. Using these three 

VOCs, adenocarcinomas could be distinguished from squamous cell carcinomas with 100% 

sensitivity, 67% specificity, and 90% accuracy.

Identification of LC histology–specific pattern using GNP sensors

The choice of suitable sensors was the most crucial step for identifying patterns that are 

specific for the LC subtypes. Each of the 18 GNP sensors of the reservoir responded to all 

(or to a certain subset) of the VOCs found in the samples, because the organic ligands of the 

GNPs provided only a moderate chemical selectivity. The ligands of the cross-reactive 18 

GNP sensors were selected based on their ability to absorb certain (classes of) VOCs that are 

typically emitted from cell membranes as metabolic products. So far, GNP sensors 

developed by Haick and co-workers have been shown to be sensitive to typical headspace 

VOCs such as aldehydes, alkanes, ketones, alcohols, and benzene derivatives, with typical 

detection limits for the separate VOCs of 1–5 parts per billion, and device-to-device 

variations between sensors based on the same type of GNP within ±15%.6 Some of the GNP 

sensors showed a very low response to water.6 This is an important feature, because 

otherwise a sensor’s response to the high background humidity in the headspace of cell lines 

could easily mask the signal to the much lower concentrations of the VOCs that indicate a 

specific LC histology.14

The histologically different types of LC were characterized by subtle differences in the 

concentration of a multitude of metabolites. On the other hand, the concentrations of many 

other metabolites remained unaffected. Some of the GNP sensors were especially sensitive 

to the classes of LC histology–specific VOCs, thus adding to the discrimination between the 

subtypes. Nevertheless, the majority of the sensors were more sensitive to the VOCs that 

were unaffected by the LC histology, and hence added mostly noise. Therefore, the 

identification of the sensors that contributed most to the separation was crucial for 

identifying the LC subtype patterns. However, a priori knowledge of the VOC profiles of the 

different LC subtypes was not necessary for the choice of the sensors, because SVM was 

used as a heuristic approach to identify the most suitable GNP sensors in each phase of this 

study (Table 2).

Each sensor underwent a rapid and fully reversible change in electrical resistance upon 

exposure to the sample, which could be either an increase (i.e., positive resistance change) 

or a decrease (i.e., negative resistance change) (Figure 1, F). For example, the sensors 1 and 
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3 that were selected for this study showed negative resistance changes, whereas sensors 2 

and 4 showed positive resistance changes for all cell types examined. Several sensing 

features were extracted from the time-dependent resistance responses that related to (i) the 

net resistance change upon exposure, ΔR, at the start of the exposure signal (ΔRstart); (ii) ΔR 

at the midrange of exposure signal (ΔRcenter); (iii) ΔR at the end of the exposure signal 

(ΔRend); (iv) the resistance response normalized with respect to the baseline resistance, 

ΔR/Ro at the start of the exposure signal; and/or (v) the area under the resistance-vs.-time 

response curve, A.

LC-specific patterns were obtained from the collective response of the GNP sensors by 

applying SVM analysis as a statistical pattern recognition algorithm.5,6,27,30 In this way, 

sensing features of one single sensor were selected through SVM to distinguish between the 

LC states and the IBE controls. The number of input parameters was kept low enough to 

avoid overfitting during the SVM analysis. The pseudo-3D representation of the three 

sensing features in Figure 2, A, shows that the two states could clearly be distinguished. 

Table 5, lists the classification success that was determined through cross-validation, in 

terms of correct and false classifications. From this classification success, we estimated 96% 

sensitivity, 86% specificity, and 93% accuracy for the identification of LC from headspace 

samples. Note that medium 1 was used to grow the LC cell lines and medium 2 was used to 

grow the IBE cell lines, so that the sensing features had to be corrected to enable the direct 

comparison. Because the response signals of many GNP sensors were additive, the sensing 

features were corrected by subtracting from the measured responses the mean responses to 

the corresponding measured medium. To verify that the influence of the medium on the 

headspace composition was effectively excluded, the sensing features that were collected 

from the headspaces of medium 1 and of medium 2 were compared. The results showed a 

total overlap of the sensing features, and SVM analysis could not distinguish between the 

corrected signals of the two media (Supplementary Figure S2 and Table S2).

Figure 2, B shows that NSCLC could be well distinguished from SCLC, using one feature 

each from the sensors 1–3 (Table 2). No correction of the sensing features was necessary in 

this case, because all LC cell lines were grown on medium 1. SVM and cross-validation 

yielded 100% sensitivity, 75% specificity, and 96% accuracy. The headspace atmospheres 

of the NSCLC subtypes (adenocarcinoma and squamous cell carcinoma) were distinguished 

using three features from sensors 1, 2, and 4 (Figure 2, C). SVM and cross-validation 

analysis yielded 86% sensitivity, 100% specificity, and 90% accuracy.

Discussion

The design of this study followed the hierarchical order of a possible future test for the 

screening and subsequent differential diagnosis of LC. In the first phase of such a test, a 

wide population would be screened for LC, using a test that can distinguish between LC and 

healthy states. In the second phase, the histological LC type would be determined in the LC-

positive subjects, using a test that can distinguish between the two most prevalent 

histological types: NSCLC (80.4%) and SCLC (16.8%).31 In the third phase the 

subhistology in the NSCLC-positive population would be identified, using a test that can 

Barash et al. Page 7

Nanomedicine. Author manuscript; available in PMC 2016 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distinguish between the two most prevalent types of NSCLC: adenocarcinoma (44%) and 

squamous cell carcinoma (38%).32

Studying the metabolic activity of isolated in vitro cancer cells by analyzing their headspace 

VOCs avoids the organism’s confounding factors (e.g., variations in patient age, gender, 

lifestyle, medication, and other chronic diseases). Cell lines provide an almost unlimited 

supply of cells with similar genotypes and phenotypes, avoiding variation between 

individuals and bypassing ethical issues associated with animal and human experiments. 

However, in vitro studies may fail to replicate the precise cellular conditions of an organism, 

because they disregard the synergetic effect of cancer on the whole organism (immune 

system, hepatic, etc.). Furthermore, with time the cell lines might undergo additional 

mutations and might no longer reflect the properties of the cell from which they were 

derived.

Eighteen different SCLC and NSCLC cell lines having different subhistologies were used 

(Table 1), rather than replicates of a single cell line, to simulate the natural diversity of LC. 

An IBE cell line served as a model for the healthy state, because epithelial cells make up 

most of the lung tissue. GC-MS was chosen as a powerful tool for detecting the LC-marker 

VOCs and their concentrations. However, the GC-MS analysis required expensive 

equipment and as well as high levels of expertise required to operate it; moreover, the 

analysis of the results was time-consuming and required significant expertise. In addition, 

the samples must be dehumidified and preconcentrated by SPME, to achieve the necessary 

sensitivity. To this end, using GNP sensors offers several advantages over GC-MS: it is 

faster and easier to perform, it does not require any pretreatment for the samples, and the 

technology is potentially more cost-effective.

Chemical composition of the LC cell headspace

Previous in vitro studies33–36 of LC cell headspace samples identified a number of LC-

characteristic VOCs, using various MS techniques. In contrast, the natural diversity of the 

different SCLC and NSCLC cell lines studied here has reduced the variety of the LC-

specific VOCs and singled out decanal for the majority of LC states, compared to the IBE 

samples. A possible cause for the decrease of decanal in the LC headspace samples could be 

an impairment of the oxidation phosphorylation process due to mitochondrial defects in LC 

cells. This mitochondrial defect could result in a decrease in reactive oxygen species in the 

microenvironment of the cells and consequently, to a decrease in lipid peroxidation products 

such as aldehydes and ketones.37 On the other hand, exposure to carcinogens could cause an 

upregulation of aldehyde dehydrogenase in the lung, which could also contribute to the 

observed decrease in decanal. Studies have shown that this enzyme is overexpressed in 

NSCLC cell lines, especially in adenocarcinoma and squamous cell carcinoma, from which 

the majority of the LC headspace samples studied were taken.38

SCLC is distinguished from NSCLC by its rapid growth rate and rapid metabolism (Table 

3). A greater quantity and variety of metabolites released by the SCLC would not be 

surprising. This is because SCLC cells are rapidly dividing cells that require more adenosine 

triphosphate, nucleotides, fatty acids, membrane lipids, and proteins.39 The observed 

difference of the headspace atmosphere could be taken as an indication of these metabolic 
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differences. Note, however, that the relatively large number of substances is more probably 

due to the small sample size of the SCLC group. SVM analysis identified decanal, 

acetophenone, and 1,3-bis(1,1-dimethylethyl)-benzene as the key VOCs distinguishing 

between the SCLC and NSCLC groups. The marked decrease of the decanal concentration 

in the headspace of the NSCLC cell lines can be understood in terms of the increased 

aldehyde dehydrogenase expression in NSCLC cells, compared to SCLC.38 Acetophenone 

and benzene derivatives occur in tobacco smoke and/or can be found among environmental 

toxins, but no connection to LC subhistology has yet been established.40 SCLC occurs 

almost exclusively in smokers, whereas NCCLC affects both smokers and nonsmokers.32,41 

Therefore, the observed increased concentration of these substances in the headspace of the 

SCLC cells might result from different smoking habits of the donors of the tumor tissue 

from which the cell lines were derived. However, a larger study would be necessary to 

establish reliable concentration profiles.

Two benzene derivatives [1,3-dimethyl-benzene and 1,3-bis(1,1-dimethylethyl)-benzene] 

and 2-ethyl-1-hexanol were identified by SVM as the key VOCs for distinguishing between 

adenocarcinoma and squamous cell carcinoma, from the group of seven compounds that 

showed significant differences between the NCLC subtypes. These three dominant VOCs 

were found in elevated concentrations in the headspace of adenocarcinoma, compared to 

squamous cell carcinoma. An increase of 2-ethyl-1-hexanol and in 1,3-bis(1,1-

dimethylethyl)-benzene has been reported in the literature in the headspace of NSCLC 

adenocarcinoma cells,8,36 but the biochemical cause for the different VOCs levels in 

adenocarcinoma and squamous cell carcinoma is still unclear.

Classification of the LC histology with GNP sensors

We found that the organic ligands of the GNP sensors that were selected using a statistical 

algorithm were closely correlated to the key separating VOCs identified by complementary 

GC-MS. The superior discrimination of sensor 1 between LC and IBE cell lines can be 

understood in terms of the structural similarity between the decanethiol coating of the GNPs 

and the decanal that appears as the key separating VOC in the headspace of the LC cell 

lines. It is reasonable to assume that decanal would form van der Waals interactions with the 

decanethiol ligand, because similar chemical structures tend to stabilize each other. The 

separation between NSCLC and SCLC could not be achieved with sensor 1 alone but 

required an additional GNP sensor with hexanethiol ligands (sensor 2) and a GNP sensor 

with butanethiol ligands (sensor 3). This can be understood in terms of the larger variety of 

VOCs that contribute to the separation of the LC subtypes. Decanal, which would have a 

particular affinity to sensor 1, was found among the key separating compounds, but two 

other VOCs [benzene-1,3-bis(1,1-dimethylethyl) and acetophenone] have important roles as 

well. The steric hindrance between these two VOCs and the decanethiol ligands of sensor 1 

could impede the effective sensor-analyte interaction. It can be assumed that benzene-1,3-

bis(1,1-dimethylethyl) and acetophenone are more likely to be absorbed on hexanethiol and 

butanethiol, which are less steric molecules and less hydrophobic than decanethiol. Effective 

separation between adenocarcinoma and squamous cell carcinoma was achieved by 

replacing the chemiresistive butanethiol-GNPs (sensor 3) with 2-mercaptobenzoxazole-

GNPs (sensor 4). This could be related to the observed increase of benzene derivatives 
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among the key separating VOCs. The 2-mercaptobenzoxazole ligands of sensor 4 would 

have a particular affinity to the two benzene derivatives among the dominant headspace 

VOCs due to their structural similarity. Moreover, GNPs coated with benzene derivatives 

have many vacant metal sites on the surface due to strong steric effects of the large ligand 

molecules. These metal surface sites are more likely to absorb polar analytes such as the 

third separating VOC (i.e., 2-ethyl-1-hexanol), which would have a strong effect on the 

conductivity of the GNP films.42 2-Ethyl-1-hexanol is also easily absorbed by the 

structurally similar hexanethiol ligands of sensor 2, because they share a similar hexane 

chain, and to a lesser extent, to the longer decanethiol ligands of sensor 1. Finally, the 

nonpolar alkane ligands of sensors 1 and 2 are generally likely to absorb nonpolar VOCs 

such as the dominant benzene derivatives in the studied headspace samples.

In summary, analyzing the VOCs in the headspace of LC cells with GNP sensors allowed 

significant discrimination between LC and IBE cells, as well as between two major LC 

subtypes, NSCLC and SCLC, and between two subtypes of NSCLC that both occur in 

similar populations of smokers. The results presented here should be considered a proof of 

concept. A wider study would be necessary to confirm the criteria for distinguishing the 

different lung cancer subtypes. It is reasonable to expect that the clusters for a larger sample 

size would be less defined, and some overlap could occur. In turn, cluster separation could 

be improved again by further refining the GNP sensors. The iterative improvement of the 

sensors while expanding the sample size would eventually yield an optimized method. The 

use of organically functionalized GNPs allows tailoring the properties of the constituent 

sensors to tune their sensitivity to the particular classes of molecules that are of interest here

—that is, the LC histology–specific VOCs. Arguably, measuring the volatile metabolites 

could be potentially useful for detection the full spectrum of the cancerous metabolic 

transformation, as each cancer type has its own metabolic specificity.43 This potential might 

totally revolutionize LC screening and diagnosis, and might eventually make early, 

differential diagnosis of LC subtypes with undetectable or unreachable lung nodules 

possible. Although similar classifications could conceptually be achieved by spectrometry 

methods, these techniques are impeded by the need for expensive equipment and the 

considerable expertise required to operate such instruments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the experimental procedure that was used in the in vitro studies for sampling 

lung cell line headspace. (A) The cell culture dish and two Ultra II SKC badges with Tenax 

TA (265 mg; SKC) sorbent material were placed together in a bigger cell culture dish for 

headspace sampling during the growth time from seeding to 95% confluence. When cells 

reached ~95% confluency, the Tenax TA material was transferred from the badges into 

sealed vials and analyzed by both the GNP sensors (B, C, F) and GC-MS (D, E, G). (B) The 

headspace sample was fed via a gas flow system into an exposure cell. (C) GNP sensors 

used for the diagnosis of the headspace samples. See inset for a scanning electron 

microscopy image of the sensor’s interdigitated microelectrodes. (D) SPME for 

preconcentrating the headspace sample. (E) GC-MS for the preconcentrated headspace 

sample. (F) Typical signal output of the GNP sensors and (G) typical GC-MS 

chromatogram.
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Figure 2. 
Sensing features selected by SVM analysis from the GNPs’ multidimensional data output 

for optimal separation between headspace samples from: (A) LC and IBE cells; (B) SCLC 

and NSCLC; and from (C) subcategories of NSCLC (i.e., adenocarcinoma and squamous 

cell carcinoma cells). The pseudo-3D representation of the selected features illustrates the 

separation between histologically different LC subtypes. F1 is the ΔRstart, F2 is the ΔRmid, 

F3 is the ΔRend, F4 is the ΔR/R0, and F5 is the are under the normalized response signal 

(NOTE: ΔR is the net resistance change upon exposure and R0 is the baseline resistance). 

S1-S4 refers to the sensors defined in Table 2.
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Table 2

Organic ligands of the GNP sensors

Sensor no. Organic ligand LC–IBE SCLC–NSLC Adenocarcinoma–squamous cell carcinoma

1 Decanethiol X X X

2 Hexanethiol X X

3 Butanethiol X

4 2-Mercaptobenzoxazole X

IBE, immortal bronchial epithelium; LC, lung cancer; NSCLC, non–small cell lung cancer; SCLC, small cell lung cancer.
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Table 4

Classification success of the GC-MS chemical analysis, as expressed by number of correct and incorrect 

sample classifications estimated by support vector machine (SVM) and cross-validation

(A) Lung cancer (LC) and immortal bronchial epithelium (IBE) cell lines

Classified as LC Classified as IBE

LC* 24 0

IBE*   0 7

(B) Non–small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines

Classified as NSCLC Classified as SCLC

NSCLC 20 0

SCLC   1 3

(C) Adenocarcinoma and the squamous cell carcinoma cell lines

Classified as
adenocarcinoma

Classified as squamous
cell carcinoma

Adenocarcinoma 14 0

Squamous cell carcinoma   2 4

A: Using only the abundance of decanal. Note that different media were used to grow the LC and IBE cell lines, so that the sensing features had to 
be corrected to enable the direct comparison.

B: Using the abundance of decanal, 1,3-bis(1,1-dimethylethyl)-benzene, and acetophenone.

C: Using the abundance of 1,3-dimethyl-benzene, 1,3-bis(1,1-dimethy-lethyl)-benzene, and 2-ethyl-1-hexanol.

*
The abundance of decanal was corrected by subtracting the mean value in the corresponding medium.
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Table 5

Classification success of the GNP sensors, as expressed by the number of correct and incorrect sample 

classifications estimated by supportive vector machine (SVM) and cross-validation

(A) Lung cancer (LC) and immortal bronchial epithelium (IBE) cell lines

Classified as LC Classified as IBE

LC* 22 1

IBE*   1 6

(B) Non–small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines

Classified as NSCLC Classified as SCLC

NSCLC 19 0

SCLC   1 3

(C) Adenocarcinoma and the squamous cell carcinoma cell lines

Classified as
adenocarcinoma

Classified as squamous
cell carcinoma

Adenocarcinoma 12 2

Squamous cell carcinoma   0 5

A: Using three sensing from sensor 1. Note that different media were used to grow the LC and IBE cell lines, so that the sensing features had to be 
corrected to enable the direct comparison.

B: Using one feature each from sensors 1–3.

C: Using one feature each from sensors 1, 2, and 4.

*
The sensing features were corrected by subtracting the mean value of the corresponding medium.
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