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ABSTRACT

Despitemuch investmentandprogress, oncology is still an area
with significant unmet medical needs, with new therapies and
more effective use of current therapies needed. The emergent
field of pharmacometrics combines principles from pharma-
cology (pharmacokinetics [PK] and pharmacodynamics [PD]),
statistics, and computational modeling to support drug devel-
opment and optimize the use of already marketed drugs. Al-
though it has gained a role within drug development, its use in
clinical practice remains scarce. The aim of the present study was
to review the principal pharmacometric concepts and provide

some examples of its use in oncology. Integrated population
PK/PD/disease progression models as part of the pharma-
cometrics platform provide a powerful tool to predict out-
comes so that the right dose can be given to the right patient
to maximize drug efficacy and reduce drug toxicity. Population
models often can be developed with routinely collected
medical record data; therefore, we encourage the applica-
tion of such models in the clinical setting by generating close
collaborations between physicians and pharmacometricians.
The Oncologist 2016;21:220–232

Implications forPractice:Thepresent reviewdetailshowtheemerging fieldofpharmacometrics can integratemedical recorddata
with predictive pharmacological and statistical models of drug response to optimize and individualize therapies. In order tomake
this routinepractice in the clinic, greaterawareness of thepotential benefits of the field is requiredamongclinicians, togetherwith
closer collaboration between pharmacometricians and clinicians to ensure the requisite data are collected in a suitable format for
pharmacometrics analysis.

INTRODUCTION

Pharmacometrics, defined as “the science of developing
and applying mathematical and statistical methods to (a)
characterize, understand, and predict a drug’s pharmacoki-
netic and pharmacodynamic behavior, (b) quantify uncer-
tainty of information about that behavior, and (c) rationalize
data-driven decision making in drug development process
and pharmacotherapy” [1], has evolved substantially in the
past four decades. The discipline is focused on the develop-
ment of pharmacokinetic, pharmacodynamic, and disease
progression models and integrates principles from the fields
of pharmacology and statistics for a better understanding of
the in vivo drug effect supporting drug development and
personalized medicine. In vitro and in vivo preclinical and
clinical data can be combined in a multiscale pharmacomet-
rics analysis for several purposes, including, among others,
drug monitoring, optimizing dose-finding studies, and

determination of suitable biomarker endpoints and optimum
dose regimens. The use of pharmacometrics in pharmaceutical
companies has increased noticeably since the beginning of the
field[2]. Inaddition,regulatoryagencieshavehighlightedtheuse
of pharmacometrics and model-based approaches to improve
drug development by reducing the attrition rate [3]. Although
pharmacometrics has gaineda rolewithindrugdevelopment, its
use in routine clinical practice remains scarce, and it is still
considered a niche discipline. A general awareness is lacking
among clinical scientists regarding the field and its potential
added value. In a recent opinion article, Bonate argued that
pharmacometricians have not sufficiently communicated their
message outside of the field [4].

Pharmacometrics has been used in a wide variety of thera-
peutic areas, including oncology, which has presented
unique challenges for the field: (a) the characterization of the
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dose-response relationship can be difficult because of the
ethical requirement to minimize the number of patients dosed
at subtherapeuticdosesandbecausecancer therapiesgenerally
have narrower therapeutic indexes; (b) regarding the charac-
terization of pharmacodynamic relationships, efficacy studies
arecomplicatedby the frequent lackofplacebodata; and (c) the
quantification of overall survival (reference standard to assess
clinical outcomes of late phase clinical trials) requires a large
number of patients and long study durations.

The aim of the present workwas to bring to the attention
of the oncology community the quantitative model-based
approach and to consider applying pharmacometrics prin-
ciples to routinely collected clinical data. To accomplish our
goal, we present the quantitative framework in a compre-
hensive manner, reducing the mathematical and statistical
aspects to a minimum. We first present the main concepts
and nomenclature in pharmacometrics, pharmacokinetics
(PK), and pharmacodynamics (PD). The concepts of disease
progression, turnover processes, and how to link biomarkers
and tumor size with clinical outcomes are then discussed,
under the successful paradigm of model-based drug devel-
opment. Finally, guidance on data collection is provided to
physicians and clinical scientists to enable and facilitate
population PK/PD modeling.

PHARMACOMETRICS

It is well accepted that humans, even with the same disease
status and physiological characteristics, can exhibit quite
different levels of response to the same treatment, a phe-
nomenon known as interpatient variability (IPV). Thus, pop-
ulation models that can explain and quantify variability in
the underlying physiological processes (PK, PD, and/or disease
related) would be ideally suited to describe the variation in
individual responses. Population models are primarily devel-
oped using mixed-effect models, in which the data from all
individualsareanalyzedsimultaneously[5–7].Theterm“mixed-
effects” means that both fixed effects (i.e., population level
trends) and random effects (i.e., individual-level parameters)
are described simultaneously. Fixed effects refer to the
parameters governing the nonlinear population level trends
(i.e., the typical individual), and random effects include IPV
(i.e., differences observed between patients), interoccasion
variability (i.e., differenceobservedbetween studyoccasions),
and residual error (i.e., difference between the observation
and the individual prediction). Because these random effects
are inferred fromthe individual dataandestimatedpopulation
level trends, the population approach is especially applicable
to sparse data sampling situations. IPV can be, in part,
explained by predictors that are specific to each patient. In the
pharmacometrics field, such predictors are termed cova-
riates. Covariates can be classified as intrinsic factors, such as
age, sex, race, and genetic information (i.e., polymorphisms),
orextrinsic factors, suchas concomitantmedication, smoking
status, or primary tumor location, and so forth. Covariates
can be continuous (e.g., age), dichotomous (e.g., sex), or
categorical (e.g., race).The influenceofcovariate information
on the model is handled via fixed-effects parameters and, as
such, amixed-effectmodel is composedofa structuralmodel,
a random effects model (which includes IPV and residual

error), and a covariate model. Figure 1 shows these basic
concepts of the population approach described.

Figure 2A represents the main components of disease
progression and PK/PD models, and in Figure 2B, the main
components involved in the drug response are presented. In
the following sections, we detail the concepts involved in such
models and provide different examples of the models applied
to oncology.

PHARMACOKINETICS

Theabsorption, distribution, andelimination (metabolismand
excretion) (ADME) of a drug is the set of processes describing
the movement of the drug through the body. These processes
are studied by a branch of pharmacology, namely PK. One of
the primary goals of population PK modeling is the character-
ization of variability in drug exposure, an important driver of
the clinical response to a treatment.

Two main approaches are available to analyze PK data: (a)
noncompartmental analysis (NCA), in which descriptive
statistics, such as the area under the plasma drug concentra-
tion versus time curve, maximum drug concentration (CMAX),
or time at which CMAX is achieved (TMAX), are summarized
directly from observed individual profiles (which implies rich
sampling strategies to achieve reliable estimates of the
descriptors); and (b) model-based compartmental analysis, in
which the parameters governing underlying pharmacokinetic
processes are inferred from the data.

NCA does not require any particular interpretation of the
data (i.e., model assumptions) and therefore is a quick model-
independentmethodofobtainingsummaryPKmetrics.During
the course of studies, suchmetrics can provide usefulmeasure
of approximate exposure; however, this approach presents
several limitations. First, because theonlyoutput isdescriptive
statistics of the data, the approach is not suitable for obtaining
insights into the underlying physiological processes. Second,
the prediction of untested dosing regimens is not generally
possible if the PK data are nonlinear or themodel or frequency
of administration is tobeadjusted, because summary statistics
will generally only be valid for that particular dose study.

NCA does not require any particular interpretation
of the data (i.e., model assumptions) and therefore
is a quick model-independent method of obtaining
summary PK metrics.

In contrast to NCA, model-based analysis quantifies
primary physiologically related parameters (i.e., first order
rate constant of absorption, apparent volume of distribu-
tion, and total clearance), enabling the use of model-based
simulations to predict drug concentrations under different
dosing administrations without the need to administer the
drug to patients.

Compartmental model-based analysis assumes that the
organism is split in one or more compartments, which, in
general, does not represent a real body entity. A compartment
is considered a simplified representation of regions of the
body inwhich thedrug is absorbed,distributed,metabolized, or
eliminated. For example, most published PK models include a
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central compartment, which has been assumed to be represen-
tative of systemic drug concentrations and represents system
circulation and well-perfused organs with nonrestrictive mem-
branes, and peripheral compartments, which often represent
extravascular less-perfused regions with restricted distribution
membranes.Typically, thewell-mixed assumption is used,which
assumes rapid distribution of a drug within a compartment.
Absorption, reversible transfer of a drug between compart-
ments, and irreversible loss owing to elimination are processes
thatgenerally follow first order kinetics, characterizedby the
corresponding first order rate constant. Clearly, this approach
represents an approximation of the complex processes in-
volved; however, these models have proved sufficient to
characterize drug exposure and establish therapeutic dosing
regimens for many compounds. In addition, the ability of
population PK modeling to explain the variability in PK with
intrinsic andextrinsic covariatesmeans thatdrugexposure can
also be predicted in different target populations. Compart-
mental PK models are, therefore, useful tools to help determine
the right dose in the right population.

In some cases, for which a more granular prediction of drug
exposure in tissue is required, physiologically based pharmaco-
kinetic (PBPK) models can be used. In these models, compart-
ments are chosen to represent thespecific organsand/or tissues
involvedinall relevantADMEprocesses.PBPKmodelscanalsobe
useful topredicthumanPKfrompreclinical toclinical settings [8].
An oncology-based example is the PBPK model developed by
Tsukamoto et al. to describe the kinetics of capecitabine and its
metabolites [9]. This model integrated tissue-specific informa-
tion about metabolic enzyme activity between tumor and
normal cells from in vitro data and enabled the prediction of the
therapeutic index in terms of exposure in target organs and
toxicity in off-target organs (i.e., gastrointestinal tract toxicity). A
weakness of this approach is that PBPKmodels typically involve
manymoremodel parameters than can beestimated using data
generated in clinical studies.Their wider use has therefore been
primarily at the preclinical stage [10].

The classic characterization of the PK of small molecules
has generally assumed that binding of the drug to its biological
target site (i.e., receptor, enzyme, transporter) will not influence

Figure 1. Fundamental principles of the population approach. A populationmodel to describe the typical time course of tumor size and
quantify the interpatient variability is built based on infrequent and sparse observations frompatients. In this example, the covariate, the
tumor type (A or B), was found to explain some of the interpatient variability and thereforewas included in populationmodel, leading to
one typical population tumor size profile foreach typeof tumor (uCOV).Thepopulation approach also allowsone todescribe the individual
profiles (hi represents the deviation from the typical tumor profile and it is assumed to follow a normal distributionwith amean of 0 and
variance ofv2) and to quantify the remaining residual error at each j observation for i patient (difference between individual prediction
and real observation explained by «i, which is a random variable from a normal distribution with a mean of 0 and variance of s2).

Abbreviations: IPV, interpatient variability;lPOP, typical value representingdisease (tumor)progression;TS0POP, typical valueof tumor
size at baseline; TS(t)i, tumor size at tmeasurement time for the ith individual.
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systemic exposure, because the fraction of drug binding to the
target is usually small [11]. However, biological compounds (e.g.,
therapeutic proteins, monoclonal antibodies) bind with higher
affinity to their biological target; thus, in many instances, the
dispositionof thedrug-target complexcan influenceoverall thePK
of the drug, as first described by Levy in 1994 as “target-mediated
drug disposition” (TMDD) [12]. In oncology, therapies based on
monoclonal antibodies (mAbs) have noticeably increased in the
past 20 years for a wide variety of cancers, which has led to
significantimprovementinpatientoutcomes[13].Generally,mAbs

bindwithhighaffinitytotheirtarget,exhibitingnonlinearTMDD. In
2001,Magerand Jusko [14]proposedageneralmechanistic-based
model,whichcombinesclassicPKaspectswithdrug-targetbinding
thermodynamics to characterize the nonlinear PK of three drugs
exhibiting TMDD. Since then, this model (either the full model or
model approximations) has been applied to a wide range of
biologicalcompounds inall therapeuticareas, includingoncology,
suchaswith cetuximab inpatientswith squamous cell carcinoma
of the head and neck [15] or with bevacizumab and VEGF165
in colorectal cancer patients [16]. As biotechnology techniques

Figure2. Principaldataandmodelcomponentsunderthecontextofthepharmacokinetic/pharmacodynamic/diseaseprogressionmodeling.
(A): Schematic representation of the main components involved in disease/pharmacokinetics (PK)/pharmacodynamics (PD) models. (B):
Components of PK/PD models, including distribution to a biophase, receptor binding, modulation of the Kin or Kout of a biosignal and
transductionoftheresponse.Systempropertiescaninfluencetheresponsebyaffectingsomeoralloftheseprocesses involvedinthedynamics
of the in vivo drug response. Adapted from Jusko et al. [92].

Abbreviations: Ce, effect site concentrations; Ce-R, drug-receptor complex; Kin, production; Koff, dissociation rate constant; Kon,
association rate constant; Kout, elimination; KTR, rate constant of transit; R, receptor.
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evolve andwe progress to higher affinity compounds,TMDDwill
remain an important part of PK characterization.

The use of drug combinations, involvingmAbs and/or classic
cytotoxicagents,representsakeyaspect intherapeuticstrategies
within oncology, although it also involves additional challenges
regarding theoptimal dose and schedule. PK/PDmodels canalso
beused toguidedoseandregimenselectionusing isobolograms,
which relate in vivo exposure to antitumor activity [17].

PHARMACODYNAMICS

Although PK is often defined as “what the body does to the
drug,” PD can be defined as “what the drug does to the body”
[11]. Derendorf et al. defined PD as “a broad term that is
intended to include all of the pharmacological actions,
pathophysiological effects, and therapeutic responses, both
beneficial and adverse, of the active drug ingredient, ther-
apeutic moiety, and/or its metabolite(s) on various system
of the body from subcellular effects to clinical outcomes” [18].
PD models allow us to establish the link between the drug
concentration and the response and, therefore, together with
PK models, aid us in understanding and predicting the time
course of the pharmacological response. Response endpoints
can involve biomarkers, surrogate endpoints, and clinical out-
comes and can be obtained as continuous measurements,
graded categories, or categorical measures, as discussed in
the following sections.

Biomarker Models
The Biomarkers Definition Working Group of the NIH has
provided a precise definition of a biomarker as “a character-
istic that is objectively measured and evaluated as an indica-
tor of normal biologic processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention” [19].
Biomarkers can potentially be used at different phases of drug
development (from preclinical to after commercialization)
for different purposes.

In oncology, many biomarkers are modulated by the total
tumor load, enabling assessment of treatment efficacy and
prediction of disease progression. The motivation to find
predictive biomarkers has been driven by the need to identify
which patients are responding to treatment and which have a
high risk of relapse. Once a biomarker has been confirmed to
strongly correlatewith outcome, it constitutes a powerful tool
to support personalized disease monitoring.

Traditionally, the predictive performance of biomarkers has
been assessed by conventional statistics (i.e., noninferential
statistics), givenasingle timepoint, andgenerallydichotomizing
a continuousvariable (e.g., baseline value, thresholdsabove the
normal range) [20–22]. However, such an analysis can hide
relationships between the biomarker response and clinical
outcome by not accounting for indirect and time-dependent
relationships, giving the impression of poor predictivity.
Recently, the current alternative use of mathematical models
to describe biomarker dynamics and their potential utility was
reviewed by Almufti et al. [23]. In addition, Almufti et al.
advocated the use of nonlinearmixed-effect (NLME)modeling
to “standardize biomarker kinetic analysis methodologies to
ensure theoptimizeddevelopment of novel serumbiomarkers
and avoid the pitfalls of traditional markers.”

Ideally, the assessment of whether a biomarker can
potentially be used as a surrogate biomarker should involve a
mechanistic PK/PD/disease progressionmodel to describe the
relevant pathways linking the target to the outcome. Such
models have typically required multiple tumor size observa-
tions, which are often not available. Because the models are
mathematical in nature, suitable approximations can be used
to describe the main processes (e.g., tumor proliferation,
biomarker production and elimination) in those cases inwhich
frequent tumor size measurements are not available. Semi-
mechanistic models to characterize biomarker dynamics are
often described using indirect response models [24]. An
indirect response model assumes that the synthesis and
degradation of the biomarker are governed by a zero and first
order rate process, respectively. Modulation of either synthe-
sis or elimination can therefore translate into delays in the
response. In oncology, it can be assumed that tumor cells
release tumor markers to the circulating blood; therefore, the
presence of a tumor in the body will indirectly upregulate
biomarker production. In contrast, decreased tumor pro-
liferation in response to target site drug exposurewill lead to a
potentially delayed decrease in tumor biomarker levels. A
schematic representation of these model assumptions is
shown in Figure 3. To build intuition in that model, Figure 4
shows the predicted time courses of drug effects, tumor size,
and biomarker levels for an example compound. Examples in
published studies of similar structural models include amodel
for cancer antigen (CA)-125 in patients with recurrent ovarian
cancer [25]. Wilbaux et al. showed that the model could be
used to relate the predicted change in CA-125 to progression-
free survival (PFS) and advocated the use of CA-125 as an early
predictive biomarker. Although tumor size measurements
should alwaysbe included, if available, frequently, they are not
reported in routinely collected clinical data. In their absence, a
model-based framework can describe the total tumor load
using an unobserved variable (underlying nonobserved vari-
able).Buil-Brunaetal. usedanunobservedvariable todescribe
the tumor size in patients with small-cell lung cancer patients,
which upregulated synthesis of lactate dehydrogenase and
neuron-specific enolase [26]. Treatment exposure modulated
the tumor size, which, in turn, resulted in downregulation of
the biomarker levels. They showed that using NLME models
to analyze multiple nonvalidated biomarkers could provide
sufficient information to predict the disease time course and
could be used to identify, at the end of first-line treatment,
patients at risk of relapse in follow-up visits [27]. Similarly,
Wilbaux et al. used an unobserved variable, influenced by
chemotherapy and hormonal therapy, to describe prostate-
specific antigen (PSA) and circulating tumor cell dynamics in
prostate cancer patients [28]. This approach could be useful
when developing semimechanistic models and longitudinal
tumor size data are not available. However, care should be
taken when using unobserved variables to ensure the model
parameters remain identifiable to avoid biased predictions.

Population biomarker models using NLME have re-
cently been reviewed [23, 29]. The different strategies have
included the use of the kineticmodeling of human chorionic
gonadotropin as an early predictor of methotrexate re-
sistance in patients with low-risk gestational trophoblastic
neoplasia [30], mathematical models to personalize vaccination
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regimens to stabilize PSA levels [31, 32], and the use of soluble
VEGF receptor 3 to monitor adverse events and clinical re-
sponse in patients with imatinib-resistant gastrointestinal
stromal tumors [33, 34].

Tumor Size Models
Tumor size can be considered the reference standard bio-
marker for clinical outcomes in oncology, because it forms the
basis of several clinical endpoints (i.e., disease-free survival,
overall response rate, time to progression, PFS, and time to
treatment failure) [35]. In the past decade, several population
models describing the time course of tumor size have been
developed to characterize drug efficacy and predict the long-
term clinical outcomes. Two recent studies have reviewed
populationtumorsizemodeling [36,37]. Inbrief, tumorgrowth
inhibition (TGI) models are based on ordinary differential
equations, inwhich thechange in tumorsize isexplainedbynet
tumor growth minus tumor shrinkage due to drug efficacy.
Tumors are often assumed to grow linearly, exponentially, or
following a Gompertz function. Tumor shrinkage is related to
some measure of drug exposure, such as the drug concentra-
tion, area under the curve, or trough drug levels.Thesemodels
have been used to derive tumormetrics (e.g., change in tumor
size 6 or 8 weeks after the start of treatment or the time to
tumor growth or regrowth), which are useful to forecast the
clinical outcome. For example, Claret et al. showed that
estimated tumor size dynamics fromaphase II clinical trial was
capable of predicting overall survival in a phase III study for
colorectal cancer patients [38].

The current research in pharmacometrics applied to
tumor growth analysis and its predictive capability for dis-
ease progression and/or survival is full of challenges and

opportunities, including, for example, (a) analysis of the time
course of individual lesions stratified by the affected organ
compared with the pooled analysis of all tumor lesions; (b)
proper accounting of the appearance of new lesions; and (c)
translation of data generated in the preclinical arena to
generate useful information in the clinical setting. The latter
represents one of the objectives within the Drug and Disease
Model Resources (DDMoRe) consortium, which was founded
in 2011 by the Innovative Medicines Initiative Joint Un-
dertaking [39] as a “European public-private partnership to
address a lack of common tools, languages, and standards for
modelling and simulation to improve model-based knowl-
edge integration” [40]. In brief, the DDMoRe consortium has
been created to improve the quality, efficiency, and cost-
effectiveness of drug development and marketed drugs through
the development of an open access library consisting of
pharmacometrics models, an interoperability framework, and
a training program for pharmacometricians.

Although TGI models rely on continuous longitudinal
tumor size measurements, clinical routine practice mainly
uses the RECIST criteria to assess clinical efficacy [41].The use
of RECIST has several disadvantages, and several investiga-
tors have argued that it should not be the basis of the
response assessment [42, 43]. RECIST categorizes continuous
tumor size measurements from a limited number of lesions
into four different grades, which leads to a loss of infor-
mation. In addition, RECIST was originally defined mainly
for cytotoxic agents, for which drug efficacy has always
involved a reduction in tumor size. Therefore, the RECIST
criteria currentlycannotbeconsideredas theexclusiveormost
appropriate method to evaluate efficacy in patients receiving
immunotherapy, antiangiogenic therapy, or targeted therapy.

Figure 3. Example of a pharmacokinetics/pharmacodynamics model. Chemotherapy is given by bolus and is assumed to show one-
compartment pharmacokinetics. Drug concentrations lead to tumor shrinkage either by inhibiting tumor proliferation or enhancing
tumor death. Tumor cells upregulate biomarker synthesis. The tumor and/or biomarker can be predictors of the clinical endpoint
(i.e., overall survival). Tumor picture modified from Servier Medical Art, http://www.servier.com, Creative Commons Attribution 3.0
Unported License.
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With such therapies, prolonged stabilizationof the disease can
be expected. It has been reported that the tumor response
obtainedwith immunecheckpoint inhibitors (e.g., ipilimumab,
pembrolizumab, nivolumab) canbeprecededby initial disease
progression according to RECIST [44–49]. Because of these
weaknesses, we strongly recommend clinicians to report, in
addition to the RECIST category, continuous tumor size mea-
surements from computed tomography scans. Nevertheless,
predictive PK/PD models can also be constructed using
noncontinuous response variables as demonstrated in the
next sections.

Analysis of continuous oncology data (i.e., biomarker
measurements, tumor size) often also involves informative
withdrawal and censored information; therefore, a simulta-
neous analysis of continuous and noncontinuous data could
be required [50]. Joint analyses have been a scarce practice
until recently owing to a lack of software implementation
availability and validated techniques for proper evaluation of
model performance.

Adverse Event Models
Although targeted agents are aimed to target a specific molecu-
lar defect, and, in principle, toxicity is expected to be reduced

compared with traditional chemotherapy, it is still common for
patientstoexperienceadverseevents.Dosereductionstoalleviate
toxicity risks the occurrence of disease relapse later. Model-based
assessment of efficacy and toxicity can provide the quantitative
methods to predict and balance the expected risk with the
expected benefit.

Model-based assessment of efficacy and toxicity can
provide the quantitative methods to predict and
balance the expected risk with the expected benefit.

The primary toxicities of concern include hematological
and organ-specific toxicities. Regarding hematological toxic-
ities, Friberg et al. [51] developed a model to characterize
the time course of myelosuppression, which has been widely
used to model this type of toxicity, including neutropenia,
leukopenia, and thrombocytopenia [52–60]. This model is
considered empirically accurate and physiologically plausi-
ble (i.e., semimechanistic) and has been applied to different
chemotherapy drugs given alone and in combination.
However, discrepancies in the parameter estimates obtained
with different administration routes [61] or with different
dosing regimens [62] have suggested that some issues
regarding the underlying physiological mechanism could be
revised. Recently, Mangas-Sanjuan et al. [63] proposed an
expanded version of this model by including one additional
physiological process resembling cell cycle dynamics (Fig. 5),
which allows the description of neutropenic effects after
different dosing schedules of diflomotecan. Just as TGImodels
are insufficiently supported by tumor size measurements
categorized according to RECIST, toxicity models should be
informed by continuous, rather than categorical, data. Although
grade IV toxicities can be life-threatening and, therefore, should
be the endpoints to quantify and predict, such predictors can be
obtainedeasily fromcontinuousdata(e.g.,neutrophilcount),and
the data set should include all information. Other hematological
drug toxic effects that havebeen characterizedandquantified via
NLME modeling include pharmacodynamic models to describe
thehemoglobin timecourse (i.e., anemia) [64], alterations in liver
enzymes such as alanine aminotransferase [65], and disruptions
in blood pressure [33, 66, 67].

Amongorgan-specific adverse events, gastrointestinal and
cutaneous toxicities are prominent. These findings are often
quantified using grades, because objective direct mea-
surement is not always possible. In these cases, NLMEmodels
can use discrete datamodels, for example, logistic regression/
proportional odds, inwhich theprobability of a certain grade is
correlated with a measure of exposure (e.g., diarrhea grades
[68] and asthenia, nausea, and vomiting grades [69]). Ad-
ditionally, Markov models can be used if the toxicity grades
between the nearby time points are correlated, which Hénin
et al. illustrated for hand-and-foot syndrome [70]. Because
thesemodels are ultimately empirical, caution should be taken
when predicting the response to untested dosing regimens.

Clinical Endpoint Models
Traditionally, overall survival (OS) has been characterized
using an empirical Kaplan-Meier estimator, in which the Cox

Figure 4. Example of simulated relationships between time
profiles of drug concentration, tumor size, biomarker levels, and
hazard (constant) and overall survival in the absence of disease
progression (blue lines), presence of disease progression (red
lines), and presence of disease progression and treatment (yellow
lines). The response model assumes that the biomarker levels are
constant over time in the absence of tumor (blue lines). In the
presence of tumor, which is assumed to grow linearly (red lines)
and toupregulate synthesis of thebiomarker, thebiomarker levels
will increase over time (red lines). With treatment (i.e., drug
effect), which we assume decreases the proliferation rate of the
tumor, the tumor increases more slowly and therefore the total
tumor size is decreased (yellow line). Consequently, synthesis of
the biomarker is reduced, and we can observe lower biomarker
levels (yellow) compared with those without treatment. The
hazard risk is assumed to be constant over time and increased by
the ratio between the tumor size and biomarkers levels with
respect to baseline. Overall survival is obtained by integrating the
hazard over time.
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proportional hazard test or log-rank test is used to compare
different Kaplan-Meier curves (i.e., placebo vs. treatment
groups). In the pharmacometrics field, parametric time-to-
event (TTE)modelsareoftenpreferred [71].Thesemodels allow
the identification of the underlying hazard function (i.e., the
instantaneous event rate), from which the survival function
(i.e.,probabilityofremaining inthestudy)canbeeasilyobtained
by integrating the hazard with respect to time [72]. The main
advantage of these types of models is that in addition to
obtaininghazard ratiosbetween twogroups, simulations canbe
performedindifferentscenarios,becausetheunderlyinghazard
distribution is estimated. In addition, both time variant and
invariant covariates can be easily introduced in the hazard
function to explain some of the variability in OS. Although TTE
models are called “overall survival” models, they are also
applicable to describing other events, including progression-
free survival, time of disease progression occurrence, time to
complete response, and time to a toxicity event.

Table 1 shows a representative example of the use of
parametric TTE analyses and population PK/PD modeling in
several cancer indications under a variety of treatments. As
shown in Table 1, the distributions most used to describe the
underlyingbaselinehazardare theWeibull, log-normal, and log-
logistic distributions. Since the first published model linking
model-based tumor size as a predictor of survival [73], the
number of publications including such analyses has increased
notably in thepast5years.Most reportedstudiesusedvariables
based on predefined time points as predictors, such as the
change intumorsizeafter6–8weeksof treatmentor the timeto

tumor growth. However, such predictors have some limitations
in their ability to accurately predict outcome, as previously
discussed by others [36, 74]. In addition, such static early
predictors are unlikely to predict PFS and OS outcomes in
treatments that involve different timeframes for the onset of
effect, such as immune modulators. Therefore, the validity of
thesepredictorsneedstobeevaluatedfurther insuchcases.The
use of a predictor’s full-time course to dynamically predict the
disease time course and therefore outcome, shown recently for
gastrointestinal stromal tumors [34], gastroenteropancreatic
neuroendocrine tumors [75], and metastatic prostate cancer
[76], has been recommended to overcome some of these lim-
itations and also to enable simulations of different scenarios
[74]. However, as discussed in previous sections, the optimal
incorporation of the course of time variant predictors into this
quantitative framework requires a joint modeling exercise.

Role of PK Information in PK/PD Analysis
The quantification of PK/PD relationships allows us to infer the
underlying causal chain among the dose-concentration-effect
such that predictions of response in new and existing patients
can be made. However, PK samples (i.e., drug concentrations in
plasma) are not always collected during clinical practice; there-
fore, alternative strategies have been developed to overcome
that design limitation, allowing the construction of PK/PDmodels.

Use of Previous Knowledge
During the past decades, population PK models have been
developed for most chemotherapy agents. Zandvliet et al.

Figure5. Semimechanistic cell cycle-basedpharmacokinetics/pharmacodynamicsmodelofchemotherapy-inducedneutropeniceffects.
This model assumes that (a) within the stem cell compartment proliferative and quiescent cells coexist, and cell cycle dynamics are
describedby firstorderprocessesgovernedbykcycle, (b)quiescentcells comprise twocompartments (Qc1andQc2), and(c)onlycells in the
proliferative condition are sensitive to drug effects and capable of following thematuration chain.The rest of themodel assumptions are
equal to those in the model reported by Friberg et al. [51]. Reprinted from [63] with permission.

Abbreviations:g, parametergoverning the rebound;Circ, circuatingneutrophils; Circ0, circulatingneutrophils at baseline; Edrug, drug
effects; kcirc, rateconstantofneutrophildegradation;kprol, rateconstantofproliferation; kTR, rateconstantof transit;MTT,mean transition
time; Prol, proliferative cells; Qc, quiescent cells; TR1-3, transit compartments.
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reviewed published clinical population analyses of anti-
cancer drugs [77]. These models can be used to simulate
individual profiles for the studied population. Details of the
dosing regimen, including dosage amounts and actual times
of dosing, are required. Individual covariate information (e.
g., serum creatinine, bodyweight) can also be used to refine

the drug time course predictions when the covariates are
present in the model.

Kkinetic-PD Model
A Kkinetic-PD model approximates the kinetics of a drug with a
one-compartment PK model, with the dosage form treated as

Table 1. Examples of parametric time-to-event models and population PK/PD modeling

Indication Treatment Outcome
Base
hazard

Predictors

Software ReferenceModel-based Other

NSCLC Docetaxel PFS, OS Weibull Cumulative AUC Disease spread, AAG NONMEM Veyrat-Follet
etal., 2000 [81]

NSCLC Various CT OS Log-normal TS0 2 TSweek8
TS0

3 100 ECOG, TS0 SAS Wang et al.,
2009 [73]

CRC Capecitabine, FU OS Log-normal TS0 2 TSweek7
TS0

TS0 S-PLUS Claret et al.,
2009 [38]

Thyroid Motesanib PFS Weibull TS0 2 TSweek8
TS0

ECOG, TS0 S-PLUS Claret et al.,
2010 [82]

GISTmRCC Sunitinib PFS, OS Weibull AUCss — S-PLUS,
NONMEM

Houk et al.,
2010 [66]

Multiple
myeloma

Lenalidomide PFS NS Mprotweek8 2Mprot0 Hemoglobin0- NS Bruno et al.,
2011 [83]OS NS Mprotweek8 2Mprot0 ECOG, albumin0,

hemoglobin0,
creatinine0

mCRC Sunitinib PFS Exponential Unbound Ct — NONMEM Kanefendt
etal., 2012 [84]

GIST Sunitinib OS Weibull sVEGF3t 2 sVEGF30
sVEGF30

SUV0 NONMEM Schlinderetal.,
2012 [85]

NSCLC C/P1bevacizumab
vs. C/P1motesanib

OSa Log-normal TS0 2 TSweek8
TS0

ECOG, TS0 S-PLUS Claret et al.,
2012 [86]

Metastatic
breast

Docetaxel,
capecitabine

PFS Log-normal TS0 2 TSweek6
TS0

ECOG, TS0, metastasis,
study effect

S-PLUS Bruno et al.,
2012 [87]

OS Log-normal TS0 2 TSweek6
TS0

ECOG, TS0, study effect

Advanced
gastric

CT1 trastuzumab
vs. CT

OS Log-logistic TTG or G ECOG, metastasis, HER2,
Asian origin, serum
albumin

R Quartinoetal.,
2013 [88]

GIST Sunitinib OS Weibull Baseline TS
sVEGFR3t 2 sVEGFR30

sVEGFR30

— NONMEM Hansson et al.,
2013 [34]

mCRC CT1 bevacizumab
vs. CT

OS Weibull TTG EGOC, Metastasis R Claret et al.,
2013 [89]

NSCLC C/P1bevacizumab
vs. CT1
bevacizumab

PFS Log-normal — DCR, bevacizumab effect R Claret et al.,
2014 [90]OS Log-normal — DCR, albumin0

SCLC C/E or Cis/E PFS Log-logistic DISSCAN 2DISSCAN2 1

DISSCAN2 1

— NONMEM Buil-Bruna
etal., 2014 [26]

Recurrent
ovarian

C/pegylated
liposomal
doxorubicin vs. C/P

PFS Log-logistic CA1250 2 CA125week6
CA1250

— NONMEM Wilbaux et al.,
2014 [25]

NSCLC Erlotinib OS Exponential — FDGSUVpeak0
FDGSUVpeak0 2 FDGSUVpeakweek1

FDGSUVpeak0

NONMEM Sulemainetal.,
2015 [91]

GEP-NET Placebo vs.
lanreotide autogel

PFS Weibull CgAt /CgA0 Hepatic load, tumor
location

NONMEM Buil-Bruna
etal., 2015 [75]

Metastatic
prostate

NS OSa Weibull PSAt — MONOLIX Desmée et al.,
2015 [76]

aSimulation exercises.
Abbreviations:—, nodata;AAG,a1-acidglycoprotein;AUCss, areaunder thecurveatsteadystate;C/E, carboplatin/etoposide;CgA0, chromograninAat

baseline; CgAt, chromogranin A; C/P, carboplatin/paclitaxel; Cis/E, cisplatin/etoposide; CRC, colorectal cancer; CT, chemotherapy; Ct, concentration time
course; DCR, disease control rate; DIS, disease levels; ECOG, Eastern Cooperative Oncology Group; FDGSUVpeak, 2´-deoxy-2´-[18F]fluoro-D-glucose
standarized uptake value peak; FU, fluorouracil; G, tumor growth rate; GEP-NET, gastroenteropancreatic neuroendocrine tumor; GIST, gastrointestinal
stromal tumor; mCRC, metastatic colorectal cancer; Mprot, M protein; mRCC, metastatic renal cell carcinoma; NS, not specified; NSCLC, non-small-cell
lungcancer;OS,overall survival;PFS,progression-freesurvival; PSAt,prostate-specific antigen,total; SCLC, small-cell lungcancer;SUV, standarizeduptake
value; sVEGFR3, soluble vascular endothelial growth factor receptor; TS, tumor size; TTG, time to growth; X0, baseline values.
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a bolus administration. The compartment is treated as an
unobserved variable informed only by the pharmacodynamic
data. This approach allows PK-driven time dependencies
between drug administration and target site exposure to be
accounted for empirically and without PK data [78].

DATA SETS
Throughout the present review, we have highlighted the
importance of obtaining, when possible, longitudinal, contin-
uous data measurements, rather than categories or data
summaries. Another aspect that is fundamental and often
ignored by nonpharmacometricians is to collect the exact time
of dosing administration and exact time of observation. Actual

dosing and observation times can differ significantly from the
planned times, and this can affect the analysis and interpre-
tation of the results. Similarly, the actual dosage amounts
(and durations in the case of infusions) rather than the
planned amounts should be recorded for each patient to
allow accurate characterization of the dose-exposure-response
relationship. One advantage of using NLME models is that the
observationtimesanddosingamountsdonotnecessarilyneedto
be at the same time for all patients to generate robust models.

In addition, regarding time-to-event models, one point to
considerwhenconstructingdatasets isthattheinformationshould
include theactual timeof the startof the studyand theactual time
and nature of the events. Monitored event types that had not

Figure 6. Example of available data corresponding to patients 1 and 2. Note that the drug amount and frequency of observations differ
between the twopatients.Models aredeveloped todescribe theDVdynamics for each typeofobservation (i.e., FLAG). Patient 1haddied
(DV5 1 and FLAG5 1, vertical solid line in lower panel) and patient 2 was alive at the end of the period studied (DV5 0 and FLAG5 1,
vertical dashed line in lower panel). Vertical arrows in the lower panel correspond to the time of drug administration, and numbers
indicate the drug amount administered. Abbreviations: AMT, amount (mg); ANC, absolute neutrophil count; DV, dependent variable
(i.e., observation); FLAG, identification column; ID, patient identification; NA not applicable; OS, overall survival.

Table 2. Summary of pharmacometrics applications

Pharmacokinetics

Target engagement/
pharmacodynamics Clinical endpoints

Personalized medicineBiomarkers and tumor size Efficacy Toxicity

Covariate
identification [1]

Establishing the relationship
between PK and BMK and/or
TS dynamics (extensively
reviewed in [23, 29, 36, 37]

Establishing the relationship
between different
(model-based) predictors
and OS and PFS (Table 1)

Establishing the relationship
between drug exposure and
toxicity in

Dose optimization [77]

PBPK [8–10] Hematological toxicities
[51–59]

CTmeasurement
optimization [27]

TMDD [12–16] Nonhematological toxicities
[65–70]

Drug selection [17]

Abbreviations: BMK, biomarker; CT, computed tomography; OS, overall survival; PFS, progression free survival; PBPK, physiologically based
pharmacokinetic model; PK, pharmacokinetics; TMDD, target-mediated drug disposition; TS, tumor size.
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occurred in individuals by the end of the study (or observational
period) should be recorded as censored information.

Figure 6 shows an example of a data set compatible with
common NLME tools [79, 80], which we hope will provide a
template toensuresufficient information iscollectedtoenable
pharmacometrics model building to occur. This example
includes data sufficient for a complete PK/PD analysis of bio-
marker levels, tumor sizemeasurements, and overall survival.

CONCLUSION
Themain objective of the present reviewwas to highlight the
potential benefits of pharmacometrics techniques, not only
as a valuable component within the current paradigm of
model-based drug development, but also as a successful and
accessible aid for clinical scientists in the optimization of
current oncology therapies. We have discussed the basic
concepts and provided examples of existing PK/PDmodels in
use in the field of oncology. These have been summarized in
Table 2. Integrated population PK/PD/disease progression
modelsprovideapowerful tool topredict outcomes such that
the right dose can be given to the right patient to maximize

drug efficacy and reduce drug toxicity. As such, pharmaco-
metrics is ideally suited to offering patients “personalized
medicine.”

Wehaveshownthatpharmacometrics tools canbeapplied
using routinely collected medical record data, without the
financial burdenof a formal studyandwithout compromisinga
clinician’s primaryobjective of treating patients.Therefore,we
encourage the application of population models in hospitals
by generating close collaborations between physicians and
pharmacometricians.
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Trocóniz
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