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Abstract

High Angular Resolution Diffusion Imaging (HARDI) demands a higher amount of data 

measurements compared to Diffusion Tensor Imaging (DTI), restricting its use in practice. We 

propose to represent the probabilistic Orientation Distribution Function (ODF) in the frame of 

Spherical Wavelets (SW), where it is highly sparse. From a reduced subset of measurements 

(nearly four times less than the standard for HARDI), we pose the estimation as an inverse 

problem with sparsity regularization. This allows the fast computation of a positive, unit-mass, 

probabilistic ODF from 14–16 samples, as we show with both synthetic diffusion signals and real 

HARDI data with typical parameters.

1 Introduction

Diffusion Magnetic Resonance Imaging (MRI) provides an unparalleled tool to probe the 

connectivity of the nerve fibers within the white matter of the brain in vivo. At the core of 

this technique is the relationship between the signal E(q), acquired by the MRI scanner 

when a pulsed gradient encoded by the wave-vector q is applied, and the random process 

P(R) driving the restricted diffusion of water molecules. Such relationship is modeled as the 

following Fourier transform [1]:

(1)

The obvious way to recover P(R) is to sample E(q) and approximate eq. (1) as a discrete 

Fourier transform, what is known as Diffusion Spectrum Imaging [2]. The main drawback of 

this technique is the need to sample the entire space of wave-vectors q, since each of them 

implies the acquisition of a whole MRI volume. Though it has been recently shown [3] how 

this amount of data can be drastically reduced using Compressed Sensing (CS, [4]), this 

approach still requires several hundreds of samples to attain a reliable reconstruction.

High Angular Resolution Diffusion Imaging (HARDI, [5]) permits reduction of the 

measurements to a sampling of the space of orientations with constant ‖q‖. This is achieved 

at the expense of losing the radial information in P(R), computing some sort of projection or 

Orientation Distribution Function (ODF) [2]:
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(2)

There are some other alternative definitions for the orientation function (see [6] for an 

excellent review on this topic), but eq. (2) has the advantage of being a true probability law 

[7]. HARDI typically requires 60–100 wave-vectors q, but considerations similar to those in 

[3] allow relaxation of this requirement to a few tens (16–30) [8, 9], whenever a sparse 

representation of E(q) may be achieved. This condition is met by representing E(q) in a 

suitable vector frame, namely Spherical Ridgelets (SR), whose components closely resemble 

the shape of E(q) at different scales. This frame is adequate in [8] since the object of interest 

is the diffusion signal. Unfortunately, these plate-like functions do not fit the cigar-shaped 

appearance of the probabilistic ODF, Φ(r), and cannot be expected to provide a sparse 

representation of it.

In section 2, we postulate Spherical Wavelets [10] as a suitable frame to sparsely represent 

the Φ(r) in eq. (2), as depicted in Fig. 1. In section 3 we formulate the estimation of the 

ODF as an inverse problem, by relating the SW functions to their counterparts in the q-

space. We propose two alternative solutions based on either ℓ1 or ℓ2 regularization, 

justifying that non-negative ℓ2 provides sparse representations analogous to ℓ1. Finally, the 

results in section 4 illustrate how positive, unit-mass, probabilistic ODFs can be recovered 

from as few as 14 gradient directions. With ℓ2 regularization, the minimization problem can 

be solved with Newton-like methods, becoming computationally efficient.

2 Spherical Wavelets to Sparsely Represent Φ(r)

The shape of the ODF in Fig. 1 implies that a combination of a few Spherical Wavelets (SW, 

[10]) with different widths and orientations may accurately represent Φ(r) for an arbitrary 

ensemble of diffusion compartments, i.e. the coefficients of Φ(r) in its SW expansion are 

sparse. The domain of definition of SW is the set Ω ≡ {r ∈ ℝ3 : ‖r‖ = 1} of unit directions 

(i.e. diffusion gradients). Their definition is founded on the basis of Spherical Harmonics 

(SH), for which the following summation formula holds:

(3)

where  is the real SH basis function of degree l ≥ 0 and order −l ≤ m ≤ l, and Pl is the 

Legendre polynomial of degree l. Note Pl(u · v) is a rotation of  to an auxiliary system 

for which the ‘z’ axis is aligned with v. Any symmetric (i.e. f(u) = f(−u)), square-integrable 

function , can be written as [10]:

(4)
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where Θv(u) is a spherical convolution kernel. To achieve a scale-space representation of 

f(u), the following scaling kernel Kv,j(u) and semi-discrete frame , that 

spans , are introduced in [10]:

(5)

(6)

where we choose κρ(x) = e−ρx(x + 1). When the resolution j → ∞, κρ (2−j l) → 1 for each l, 

and we have the exact recovery in eq. (4). When j → −∞, κρ (2−jl) → 0 for l ≠ 0, and we 

have the DC component of f(u). This reasoning clarifies the multiscale nature of Kv, j, from 

coarse (j → −∞) to fine details (j → ∞).

3 ODF Reconstruction from Sparse Representations

From the representation provided by SW as described in the previous section, we aim to 

estimate the ODF, Φ(r), as the sparsest combination of SW that can explain the data 

acquired in the q-space, E(q). Therefore, we need to compute the q-space response of each 

SW defined in r ∈ Ω (section 3.1), and then discretize the problem to account for the 

discrete nature of the measurements (section 3.2).

3.1 Response of SW Ψv, j(r) in the Space of Wave-Vectors q

We are interested in probabilistic ODF estimators [7], so that the response pursued obeys the 

following form:

(7)

Among the chances provided in [7], we choose ζ(·) = −Ei(−log(·)) as it seems to be a trade-

off between angular resolution and noise sensitivity. Also, the unit-mass constraint comes 

for free with this model, since the Beltrami operator Δb eliminates all DC components so 

that we keep only the 1/4π factor. We denote by  the Funk-Radon Transform (FRT, [5]).

Since SH are eigenfunctions for both  and Δb, it is straightforward to prove this property 

holds also for the rotated versions of , i.e. Pl(u · v). If we insert eqs. (5) and (6) into 

(7), we get the following duality between the SW, Ψv,j(r), and their counterparts in the q-

space, Ξv,j(q) (see Fig. 1):
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(8)

where λl and −l(l + 1) are respectively the eigenvalues for  and Δb. Note we drop the DC 

term l = 0 from the sums, according to our previous statement.

3.2 Optimization Problem with ℓp Regularization

Like in [8], we need a fully discrete version of the frame we use for sparse representation: 

let  be the set of wave-vectors in the HARDI data-set; let  be the set of 

directions for which the ODF is computed; let  be a collection of discretizations 

of Ω for each resolution level −1 ≤ j ≤ J. The estimation of x ≡ Φ(r) is arranged as the ℓp 

inverse problem:

(9)

In brief, we discretize the responses Ξv,j(q) into a N × K sampling matrix A to find that a 
best describing the N × 1 vector y ≡ E(q). These coefficients are used to recover x from the 

discretized M × K sparsifying matrix B. We deliberately choose the same names used in [4], 

given the formal similarity of eq. (9) with CS for p = 1. Typically, N ≪ K, so that Aa = y is 

highly underdetermined. This is the reason why a has to be assumed sparse a priori. Though 

sparsity is only enforced in case p ≤ 1 [4], we also consider here the case p = 2 for the 

reasons detailed below. Note the ℓ2 problem has a closed-form solution for eq. (9):

(10)

3.3 Positivity Constraints on the Probabilistic ODF

Since Φ(r) is a probability law, it has to be positive for all r. Given a set of directions 

, we add M′ additional linear constraints to eq. (9):

(11)

Two important remarks arise here regarding the ℓ2 problem: 1) the solution in eq. (10) no 

longer holds, but eq. (9) becomes a quadratic program which is still very efficient to solve 

compared to ℓ1. 2) Non-negative least squares in fact provide sparse solutions [11], so that 

we may reasonably hypothesize (see [9]) that the solution of the constrained ℓ2 will 

approach that of the constrained ℓ1.
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4 Results

Synthetic Experiments

We generate a two-tensor model simulating two fibers crossing in angles 45°, 60°, or 90°. 

The results are the average for 300 trials with random rotations of the tensor ensemble, with 

the diffusion signal generated as:

(12)

for eigenvalues of Dn: [1.7, 0.3, 0.3] · 10−3 mm2/s, b = 2, 000 s/mm2, nc,s ~ (0, 1), and 

Signal to Noise Ratios (SNR): 1/σ =100, 40.

All the methods are coded in MatLab®, using the ℓ1-magic library (http://

www.acm.caltech.edu/l1magic/) to solve ℓ1 and quadprog to solve ℓ2.

The parameters are fixed following the guidelines in [8]: a width ρ = 0.75 of the kernel in 

eq. (5) is chosen by trial and error for best performance, and so it is the error threshold η in 

eq. (9) (its value depends on the scenario). For the directions r, r′, and q, we choose regular 

samplings of Ω in all cases, with respective set sizes M = 214, M′ = 50, and N (the number of 

HARDI measurements) ranging from 12 to 28. For the discretization of the SW frame, we 

uniformly sample Ω at each level −1 ≤ j ≤ J, taking (2j+1m0 + 1)2 evenly spaced samples, 

with m0 = 4 and J = 1.

For the sake of comparison, we have adapted the approach in [8] (namely, SR) to interpolate 

ζ(E), and used eq. (7) to evaluate the probabilistic ODF. We have also adapted the method 

described in section 3 by alternatively representing the ODF in the basis of SH with l ≤ 4, 

where Φ(r) is not sparse1. The comparison is based on the relative Mean Squared Error 

(rMSE) between the recovered ODF and the ground-truth, computed using eq. (7) over a SH 

fitting (l ≤ 8) of 214 noise-free q-space samples, see [7, Table 2] for details.

Discussion

Numerical results are shown in Fig. 2, using the optimal parameters in each case. It is worth 

to stress the following remarks:

1) With ℓ1 regularization, our approach (SW) provides the lowest reconstruction 

errors (see Fig. 2.a, top). Though this numeric difference may seem subtle, the 

ODFs reconstructed in Fig. 2.c suggest it might be critical to correctly resolve 

the fiber crossings in poor SNR scenarios.

2) As the number of gradients acquired increases, the rMSE with SW and SR 

rapidly decreases, but not with SH. Since the ODFs are not actually sparse in the 

SH basis (see Fig. 2.b), the a priori sparse behavior does not hold.

1We cannot reproduce the respective derivations due to space limits, but they are straightforward by updating eq. (8) using that SH are 
eigenfunctions of , Δb.
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3) From Fig. 2.a, bottom, our SW approach provides very similar rMSE (and 

visually identical ODFs, see Fig. 2.c) with either ℓ1 or ℓ2 regularization. As 

stated before, non-negative ℓ2 yield sparse solutions [11], close to those with ℓ1 

in the space of coefficients. We show in Appendix A that SW, as used here, 

nearly meet the Parseval property: if the ℓ1 and ℓ2 solutions are alike, the 

Euclidean distance between the corresponding ODFs will also be small. The SR 

in [8] do not exhibit this feature. Moreover, according to eq (7), a differential 

operator Δb is applied to compute Φ from ζ(E), so the difference in the 

reconstruction of ζ(E) (which is not bounded by the distance between the ℓ1 and 

ℓ2 solutions) is amplified when computing the ODF. Accordingly, the 

corresponding errors in Fig. 2.a, bottom (ℓ2) for [8] are far larger compared to 

the ℓ1 case.

4) The minimum number of gradients to attain a reliable ODF reconstruction seems 

to be 14–16 (Fig. 2.a, top and bottom), and below this threshold the rMSE 

blows. With SW, this range coincides with the minimum number of non-zero 

coefficients of the solution (see remark 5), so we may hypothesize that a 

minimum of 3% of the SW coefficients are required to properly describe ODFs.

5) Our method, SW, provides also the sparsest solution (Fig. 2.b). As the number 

of measurements grows, we have more information on the ODF, so the solution 

may be refined with more SW coefficients and it becomes less sparse.

In vivo Experiments

A HARDI data set with 8 unweighted T2 baseline images and 16 evenly spaced gradients (b 

= 3, 000 s/mm2) is used in this section.

Fig. 3 shows an axial slice intersecting the corpus callosum (red lobes aligned with the ‘x’ 

axis) and the uppermost part of the cingulum (green lobes, ‘y’ axis).

We are able to correctly resolve the crossings between these structures in the top row, or 

even the complex three-compartment crossings in the bottom row (blue lobes along the ‘z’ 

axis correspond to the corona radiata).

While for ℓ1 the improvement with our method over [8] is not dramatic, the reconstructed 

ODFs are still sharper (see blue square), according to remark 1.

With ℓ2 regularization, the method in [8] completely fails, while our method outputs 

accurate ODFs, and even the three-compartment crossings are better resolved than with ℓ1 

(see green square).

This is in agreement with remark 3. Our final remark is that:

6) ℓ1-based reconstruction takes ~200 s, while ℓ2-based takes ~1.5 s, for Fig. 3 (the 

speedup is ~130), which is an additional argument supporting ℓ2.
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5 Conclusion

We have shown that as few as 14–16 diffusion directions suffice to obtain accurate 

probabilistic ODFs estimates. Positivity constraints, which are not considered in [7], can be 

easily incorporated into our model. Although sparse regularization has been previously used 

in [8] to fit the diffusion signal, our approach is, to our knowledge, the very first to use this 

technique to reconstruct the ODF from HARDI data with reduced measurements. Though 

we have discussed in the results section a work-around to compute the ODF from the 

diffusion signal provided by [8], the results with our own approach are clearly better with ℓ1, 

and the only usable at all with ℓ2. This is specially important, since ℓ2 reconstruction is two 

orders of magnitude faster than ℓ1: for this latter approach, the overwhelming duration of the 

estimation for an entire volume (in the order of 100 days with our Matlab implementation) 

makes the overall acquisition/reconstruction time unattractive. Our ℓ2 approach provides 

virtually identical results as ℓ1 with reasonable reconstruction times, while allowing an 

acquisition speedup in the order of 4.
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Appendix

A Parseval Property in the Semi-Discrete SW Frame

A frame is said to be tight or Parseval if the projections of a vector f in each frame element 

conserve the energy of f. If C is the frame bound,  the coefficient of f(u) for the SH basis 

function , and fl(u) the orthogonal projection of f(u) in the subspace of SH of degree 

l, this condition reads:

(13)

for the semi-discrete frame of SW. From its definition in eq. (6), eq. (13) reads:

(14)

The condition (13) is equivalent to  (see eq. (8)) being constant for all l. 

Fig. 4 shows the partial sums for the first few l. SW are near Parseval (i.e. the curves 
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approach the same value when j → ∞) if l = 0 is ignored, but this is the DC component, 

unnecessary for our derivations.
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Fig. 1. 
Examples of: a) the true Φ(r) when P(R) is Gaussian; b) its corresponding diffusion signal 

E(q); c) a SW, Ψv,j (r). These wavelets aim to sparely represent signals of the type a), which 

seems quite reasonable; d) the response Ξ(q) to Ψv,j (r) in the space of measurements; e) a 

SR, which in [8] aims to sparsely represent signals of the type b). Note this shape prevents 

the use of SR to represent ODFs like a).
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Fig. 2. 
Results obtained with our approach (SW), our adaptation of [8] to estimate ODFs (SR), and 

an implementation of our method based on SH. a) Mean and variance of the rMSE for ℓ1 

(top row) and ℓ2 (bottom row). b) Sparsity of the solutions for a 60° crossing. c) Examples 

of the ODFs reconstructed for SNR=40 and a 60° crossing.
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Fig. 3. 
Axial slice of a real data set with 16 gradients. The ODFs field has been recovered with our 

method. The highlighted regions have been further analyzed with both our method (SW) and 

the method in [8] (SR), with either ℓ1 or ℓ2 regularization.
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Fig. 4. 

Partial sums  for different degrees of l (for l = 0, the curve is a line with 

constant value 1). We use ρ = 0.75 as in all the experiments throughout the results section 

(this behavior does not hold for all ρ).
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