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SUMMARY

Dose-finding methods aiming at identifying an optimal dose of a treatment with a given schedule 

may be at a risk of misidentifying the best treatment for patients. In this article we propose a phase 

I/II clinical trial design to find the optimal dose-schedule combination. We define schedule as the 

method and timing of administration of a given total dose in a treatment cycle. We propose a 

Bayesian dynamic model for the joint effects of dose and schedule. The proposed model allows us 

to borrow strength across dose-schedule combinations without making overly restrictive 

assumptions on the ordering pattern of the schedule effects. We develop a dose-schedule-finding 

algorithm to sequentially allocate patients to a desirable dose-schedule combination, and select an 

optimal combination at the end of the trial. We apply the proposed design to a phase I/II clinical 

trial of a γ-secretase inhibitor in patients with refractory metastatic or locally advanced solid 

tumours, and examine the operating characteristics of the design through simulations.
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1 Introduction

In oncology, a treatment plan usually consists of: 1) the amount of medication to be given to 

a patient; 2) how the medication will be given and the times when it will be given. The 

former is known as the dose and the latter is known as the schedule of the treatment. In a 

dose-schedule-finding trial, the investigators aim to identify an optimal combination of dose 

and schedule of an investigational drug that is both tolerable and sufficiently active to 

warrant further testing of its anti-tumour efficacy.

In a motivating trial of a γ-secretase inhibitor as a single agent in patients with refractory 

metastatic or locally advanced solid tumours conducted at The University of Texas MD 

Anderson Cancer Center, dose is defined as the total dose of the study drug given to the 

patients during a 21-day treatment cycle, and schedule is defined by how the fixed total dose 

will be split and when the split dose will be given within each treatment cycle. The four 
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specific doses of interest are 210 mg, 273 mg, 336 mg, and 395 mg. The three specific 

schedules of interest are a continuous 3-day administration with a 4-day rest, a continuous 7-

day administration with a 14-day rest, and a continuous daily administration. The goal is to 

identify an optimal combination of dose and schedule that is both tolerable and demonstrates 

sufficient anti-tumour response based on pre-specified criteria.

Preclinical studies and clinical trials have demonstrated schedule-dependent toxicity and 

anti-tumour effects of many anti-cancer drugs (Slevin et al., 1989; Blomqvist et al., 1993; 

Gervais et al., 2005; Hirsh et al., 2007; Shah et al., 2008a; Gyergyay et al., 2009; Lonial et 

al., 2010; Wagner et al., 2010, among others). For example, the clinical development of 

dasatinib for treating chronic myelogenous leukemia (CML) initially proceeded using a 70 

mg twice-daily dosing schedule due to its relatively short half-life, with the goal of 

achieving sustained kinase inhibition while avoiding toxicity (Shah et al., 2008b). This 

dosing regimen was approved by the U.S. Food and Drug Administration in June 2006. 

However, a phase III trial of dasatinib in 670 chronic phase CML patients later on 

demonstrated that the clinical benefit of dasatinib was equivalent when dosed once daily, 

and, importantly, tolerability was superior to the twice-daily schedule, with significantly 

reduced incidences of key treatment-related adverse events (Shah et al., 2008a). This 

example highlights the importance of dose-schedule-finding trials and potentially complex 

schedule effects (e.g., in the sense of contradicting to the physicians’ prior hypotheses). It 

demonstrates that the conventional dose-finding methods, which focus only on dosage with 

a pre-specified schedule, may be at risk of prematurely claiming a lack of therapeutic effect 

or excessive toxicity in the drug development process, or identifying a sub-optimal treatment 

for the patients in the end.

Despite the importance of the schedule effects on the treatment outcomes, very limited 

literature exists on the design of dose-schedule-finding trials. Depending on the goal of the 

trial, two different definitions of schedule have been used in the dose-schedule-finding 

literature. When the investigators are interested in identifying an optimal number of cycles 

to treat patients along with the dose given to the patients per cycle, schedule has been 

defined as the number of treatment cycles (with a pre-specified method of administration of 

the study medication within each cycle). Under this definition, Braun et al. (2005) proposed 

a method to determine a maximum-tolerated schedule of a cytotoxic agent, which was 

further extended to simultaneously optimize dose and schedule (Braun et al., 2007). The 

other definition of schedule, on which we will focus here, is the method and timing of 

administration (which in our motivating trial refers to the frequency of and dose per 

administration) within a cycle with a given total dose per cycle. Based on our experience at 

MD Anderson Cancer Center, the latter definition of schedule seems more practically 

relevant in dose-schedule-finding trials. This is because in practice, as long as patients show 

benefit from the treatment, physicians typically will continue treatment cycles until patients 

achieve complete remission or experience dose-limiting toxicities (DLTs). What is of more 

interest to the physicians is how to administer the treatment agent within each treatment 

cycle to achieve low toxicity and high efficacy. Li et al. (2008) proposed a dose-schedule-

finding method to address this issue. However, their method makes a strong assumption that 

a prolonged administration of the study drug would not increase the rate of DLT in the 

patients, which may not always hold (Shah et al., 2008a).
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The goal of this article is to propose a clinical trial design to find the optimal dose-schedule 

combination that is safe and has the highest efficacy. We propose a Bayesian dynamic 

model for a trinary patient outcome in a probit model framework to model the joint effects 

of dose and schedule. The proposed model allows us to borrow strength across dose-

schedule combinations without making overly restrictive assumptions on the ordering 

pattern of the schedule effects. Specifically, our proposed model centers the parameter 

associated with each dose-schedule combination in the outcome distribution on that of the 

next lower dose with the same schedule, when applicable, plus an “average” dose effect, 

while allowing random variation. We develop a dose-schedule-finding algorithm to 

sequentially allocate patients to a desirable dose-schedule combination, based on the 

posterior distribution of toxicity and efficacy at each dose-schedule combination. At the end 

of the trial, an optimal dose-schedule combination is selected. We examine the operating 

characteristics of the proposed design through simulations.

The remainder of this article is organized as follows. In Section 2, we present the probability 

model, including the likelihood, priors, and posteriors. We describe the decision criteria and 

dose-schedule-finding algorithm in Section 3. In Section 4, we apply the proposed design to 

the motivating trial and evaluate the operating characteristics of the design through 

simulation studies as well as sensitivity analyses. We provide concluding remarks in Section 

5.

2 Probability Model

Consider a dose-schedule-finding trial with J doses of an investigational drug, d1 < d2 < ··· < 

dJ, and K schedules, denoted as s = 1, …, K. We refer to schedule as the method and timing 

of administration (e.g., frequency and timing of dosing) with a given total dose during a 

treatment cycle. In our motivating trial example, each of three different schedules involves a 

different frequency of administration of the study drug with a fixed total dose during a 

treatment cycle (see Section 4). We define a dose-schedule combination (j, k) as dose level j 

(with dose being dj) administered under schedule k, j = 1, …, J, k = 1, …, K, resulting in a 

dose-schedule matrix with J rows and K columns. For simplicity, we standardize the dose by 

dividing it by the maximum dose under investigation, so that all doses fall in the range of (0, 

1]. To characterize a patient’s response to the treatment, we collapse the bivariate binary 

toxicity and efficacy outcomes into a trinary outcome Y, namely: [Y = 0] = [no efficacy and 

no toxicity], [Y = 1] = [efficacy and no toxicity], and [Y = 2] = [toxicity]. The use of this 

collapsed trinary outcome is often appropriate in assessing the effect of the drug because 

DLT is typically unacceptable in practice, making potential efficacy irrelevant in the 

presence of DLTs.

Let θljk denote the probability of Y = l for a patient treated with dose-schedule combination 

(j, k), i.e., θljk = pr(Y = l | dj, s = k) for l = 0, 1, 2. Because , we only need to 

model two out of the three probabilities (θ0jk, θ1jk, θ2jk). We here choose to model a 

transformation of θ1jk and θ2jk, namely,
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where η(·) is a transformation mapping (0, 1) to (−∞,∞), e.g., logit or probit 

transformation.

To appropriately model αjk and βjk, some considerations on the potential pattern of the 

schedule effects are warranted. We note that although it is generally true that toxicity and 

efficacy monotonically increase with an increasing dose, the pattern of the effects of 

schedule on treatment outcomes is complicated. For some agents, given the same total dose, 

a more frequently administered (or prolonged) schedule is associated with lower toxicity. 

For example, in treating metastatic breast cancer, Blomqvist et al. (1993) found that the 

toxicity of the combination of uorouracil, epirubicin and cyclophosphamide (FEC) was 

reduced when the conventional every-4-week dosing regimen was divided into four weekly 

doses. The same trend had been observed for doxorubicin in treating the same patient 

population (Blomqvist et al., 1993). Similarly, when treating metastatic renal cell cancer 

patients with sunitinib, Gyergyay et al. (2009) showed that a 2-week on and 1-week off 

schedule is more tolerable than a 4-week on and 2-week off schedule. However, for 

dasatinib, a prolonged schedule can lead to higher toxicity in treating CP-CML patients 

(Shah et al., 2008a). The effect of schedule of an anti-cancer agent on efficacy is similarly 

complex. Clark et al. (1994) suggested that for treating small-cell lung cancer patients, a 

prolonged exposure to low concentrations of etoposide may improve the therapeutic ratio of 

this drug, whereas Blomqvist et al. (1993) showed for treating metastatic breast cancer 

patients with FEC, a prolonged schedule was associated with a lower efficacy.

Based on the above considerations, we propose a exible Bayesian dynamic model for the 

dose-schedule effect on the trinary treatment outcome Y as follows:

(1)

for j = 2, …, J, k = 1, …, K, where γ > 0 represents an “average” dose effect, σ2 is a fixed 

variance, and α0k and  are hyperparameters. This Bayesian dynamic model is exible in the 

sense that it specifies the effects of dose-schedule combinations (as represented by αjk) 

without making overly restrictive assumptions on the ordering pattern of the schedule 

effects, in contrast to the monotonicity assumption made in Li et al. (2008). In addition, this 

model allows us to borrow strength across dose-schedule combinations by centering the 

parameter in the outcome distribution associated with each dose-schedule combination on 

that of the next lower dose with the same schedule, plus an “average” dose effect, while 

allowing certain degree of random variation as characterized by the variance σ2. Such 

random variation, or non-constant αjk − αj−1,k − γ(dj − dj−1) across schedules, implies a 

dose-schedule interaction effect, with σ2 controlling for the magnitude of the effect. This 

would be desirable, especially when the compound has slow clearance or a long half-life 

(Simon, 1997; Legezda and Ibrahim, 2000). By tuning the value of σ2 via simulation with 

pre-specified scenarios, our proposed model can achieve an appropriate level of strength 
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borrowing, and result in desirable operating characteristics of the design. We choose σ2 as a 

tuning parameter because typically the small amount of data from phase I/II trials does not 

provide sufficient information to reliably estimate σ2. Hyperparameters α0k and  can be 

determined by consulting with clinical investigators. As α1k = η(θ21k), where θ21k is the 

probability of toxicity at the lowest dose level of schedule k, and α0k is the prior mean of 

α1k, we can pick α0k based on the investigators’ best guess of the toxicity probability at the 

lowest dose of each schedule, while the value of  reflects the uncertainty of this prior 

guess.

To model βjk, we follow the spirit of proportional odds model and take

(2)

with δ > 0. Under this model, if a dose-schedule combination increases the probability of 

toxicity compared to another combination, then it also increases the probability of efficacy 

or toxicity (thus decreasing the probability of no efficacy and no toxicity). In addition, such 

increases remain the same after taking a η−1(·) transformation. Note that η−1(αjk) = θ2jk = 

pr(Y > 1 | dj, s = k) and η−1(βjk) = θ1jk + θ2jk = pr(Y > 0 | dj, s = k). When η(·) takes a form of 

the logit transformation, the above model specification leads to the proportional odds model. 

In this article, we use the probit transformation, i.e., η(·) = Φ−1(·), to facilitate the use of the 

method of Albert and Chib (1993) to sample the posteriors of unknown parameters.

Suppose n patients have been treated in the trial, with the ith patient being treated at dose-

schedule combination (ji, ki), i = 1, …, n, yielding data D = (y1, …, yn). Let α = {αjk}. The 

likelihood is given by

Let f(δ) and f(γ) denote the prior distributions of δ and γ, respectively. In our motivating trial 

example, we take f(δ) and f(γ) to be uniform distributions U(0, Uδ) and U(0, Uγ), 

respectively, with Uδ and Uγ being hyperparameters. The posterior distribution of θ = (α, δ, 

γ) is given by

where ϕ(x; μ, σ2) represents the density of the normal distribution with mean μ and variance 

σ2. We sample the posteriors using the Gibbs sampler.
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3 Dose-Schedule-Finding Algorithm

We propose a design that adaptively allocates patients to dose-schedule combinations that 

are safe and efficacious. Suppose we treat patients in cohorts of size c. In our trial example 

we use c = 2. After we observe the efficacy and toxicity outcomes of each cohort of patients, 

a Gibbs sampler is run to update the posterior distributions of all parameters. Using the 

updated dose-response curves, a new cohort of patients is assigned to a dose-schedule 

combination with the estimated toxicity and efficacy probabilities satisfying certain criteria 

defined below.

Let  and  be physician-specified lower limit for efficacy and upper limit for toxicity, 

respectively. We define a target dose-schedule combination to be the combination (j, k) with 

the highest efficacy probability θ1jk among combinations satisfying both  and 

. To find the target combination, we first define acceptable efficacy and toxicity of 

a combination as follows:

• A combination (j, k) has acceptable efficacy if

(3)

• A combination (j, k) has acceptable toxicity if

(4)

where (π1n, π2n) are cutoffs that depend on n, the current number of patients whose 

efficacy and toxicity outcomes are observed. Because the posterior distribution of 

{θljk} is much less concentrated, thus less informative at the beginning of the trial 

when only a small amount of data are available, and becomes increasingly 

concentrated when more data accumulate over the course of the trial, it is desirable 

to allow the cutoffs adaptively change with the sample size, such that the criteria 

are liberal at the beginning of the trial and become more stringent at a later stage of 

the trial (Cai et al., 2014; Riviere et al., 2015; Guo and Li, 2015). Let M denote the 

minimal sample size at which we start to apply criteria (3) and (4), N denote the 

total sample size, and n denote the number of patients currently treated in the trial. 

We propose the following adaptive cutoffs for toxicity and efficacy

which linearly increases from πla to πlb when the current sample size n increases 

from M to N, where 0 < πla < πlb < 1, l = 1, 2.

We say a dose-schedule combination is admissible if it has both acceptable toxicity and 

efficacy. Let  denote the set of all admissible dose-schedule combinations at which at least 

one cohort of patients have been treated. We propose the following adaptive dose-schedule-

finding algorithm:
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1. During the course of the trial, a dose is never skipped under a given schedule in 

escalation.

2. Treat one cohort of patients at each combination (1, k), k = 1, …, K, i.e., the lowest 

dose of each schedule. If for any k = 1, …, K, the lowest dose level is unacceptably 

toxic, then the trial is terminated. The K cohorts can be randomized to the K 

combinations in any reasonable manner. For example, each patient can be 

randomized to one of the combinations (1, k), until c patients are assigned to each 

combination (1, k), k = 1, …, K. Consistent with this proposed step, we define our 

minimum trial sample size M to be equal to cK, i.e., the product of the cohort size c 

and the number of schedules K.

3. a. If the highest tried doses under all schedules are either J, or have 

unacceptable toxicity, then the next cohort of patients is treated at the dose-

schedule combination in  that has the largest , or the trial is terminated 

and declared inconclusive if  is empty.

b. Otherwise, there are l (1 ≤ l ≤ K) schedules under which the highest tried 

doses, say combinations (hk1, k1), …, (hkl, kl), with max(hk1, …, hkl) < J, 

have acceptable toxicity. We will treat the next cohort of patients at 

combination (hkm + 1, km) with probability , 1 ≤ 

m ≤ l. For example, suppose doses 1–3, doses 1–2, and dose 1 have been 

used to treat at least one cohort of patients under schedules 1, 2, and 3, 

respectively, and furthermore, all these combinations have acceptable 

toxicity. Thus, l = 2, and we can define (hk1, k1) = (2, 2) and (hk2, k2) = (1, 

3). Correspondingly, (hk1 + 1, k1) = (3, 2) and (hk2 + 1, k2) = (2, 3). We will 

treat the next cohort of patients at combination (3,2) or (2,3) with probability 

 and , respectively. Note that in the special 

case of l = 1, we will treat the next cohort of patients at combination (hk1 + 

1, k1).

4. The trial is terminated when the maximum sample size N is reached. The dose-

schedule combination in  with the maximum  is selected as the recommended 

combination.

4 Numerical Studies

4.1 Operating Characteristics

We applied the proposed methodology to the phase I/II metastatic or advanced solid tumour 

clinical trial described previously. The investigators were interested in identifying an 

optimal combination of dose and schedule that was both tolerable and showed promising 

anti-tumour response based on certain pre-specified criteria. The four specific doses of 

interest were 210 mg, 273 mg, 336 mg, and 395 mg as the total dose during a 21-day 

treatment cycle. The three specific schedules of interest were a continuous 3-day 

administration with a 4-day rest, a continuous 7-day administration with a 14-day rest, and a 

continuous daily administration. The DLTs include non-hematologic toxicity of grade 3 or 
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above according to the National Cancer Institute (NCI)-CTCAE version 3.0, with a few 

specified exceptions, grade 4 nuetropenia lasting ≥ 7 days, febrile neutropenia and/or 

documented infection with absolute neutrophil count (ANC) < 1.0 ×109/L, and 

thrombocytopenia grade 4 or any thrombocytopenia requiring platelet transfusion. The 

efficacy will be assessed by the Response Evaluation Criteria in Solid tumours (RECIST), 

and defined by complete remission (CR) or partial remission (PR). The physician-suggested 

efficacy (i.e., efficacy without toxicity) lower limit and toxicity upper limit were  and 

, respectively.

On the basis of the motivating trial, we specified eight scenarios with different true 

probabilities of toxicity and efficacy across 12 dose-schedule combinations with J = 4 and K 

= 3. We chose the maximum sample size to be 40 for the simulation studies. Given the small 

sample size in reference to the number of dose-schedule combinations, we used a cohort size 

of c = 2. We assigned δ and γ uniform priors δ ~ U(0, Uδ) and γ ~ U(0, Uγ). Uδ = 4 was 

chosen so that a reasonable range of βjk (or equivalently, Pr(Y = 1 | dj, s = k) + Pr(Y = 2 | dj, 

s = k)) that might be encountered in practice was covered. For example, when the toxicity 

probability Pr(Y = 2 | dj, s = k) = 0.1, the support for Pr(Y = 1 | dj, s = k) + Pr(Y = 2 | dj, s = 

k) is (0.1, 0.99) under this prior. Similarly, we chose Uγ= 8 to reflect a reasonable range of 

toxicity probability increase between adjacent doses. The results of the sensitivity analysis 

(see Section 4.2) suggested that the operating characteristics of the design were not sensitive 

to the choice of Uδ and Uγ. Based on the physicians’ prior knowledge, we set α01 = α02 = 

α03 = −1 such that the prior average toxicity probability at the lowest dose level of each 

schedule was about 0.15, and set  to reflect the uncertainty of this prior specification. 

The variance σ2 = 0.5 and cutoff probabilities πla = 0.05 and πlb = 0.18 for l = 1, 2 were 

tuned through simulations to obtain desirable operating characteristics of the design.

The 12 scenarios are summarized in Table 1. In any scenario, given the same schedule, the 

toxicity probability, denoted as “pr(tox)”, increases with an increasing dose, and the 

probability of efficacy without toxicity, denoted as “pr(eff & no tox)”, either increases or 

first increases and then decreases with an increasing dose. Some dose-response curves are 

rather at (e.g., efficacy of schedule 3 in scenario 7) while some are steep (e.g., toxicity of 

schedule 1 in scenario 3). In the first four scenarios, there is only one target dose-schedule 

combination. In the next three scenarios, there are two target combinations. In scenario 7, 

both toxicity probabilities and efficacy probabilities increase across both dose and schedule. 

The eighth scenario has three target combinations. We considered different situations where 

the targets are at different locations in the dose-schedule matrix. Therefore, these eight 

scenarios were constructed only to ensure the diversity of the pattern of the dose and 

schedule effects and the number and location of the target dose-schedule combinations 

(rather than constructed based on model (2)). To assess the sensitivity of the performance of 

the proposed design to the misspecification of model (2), we purposely constructed 

scenarios 9–11 that violate model (2) (see Table 1 in the Supplementary Material for a 

demonstration of how these scenarios violate model (2)). Finally, scenario 12 is considered a 

slight modification of scenario 4 to allow the target dose-schedule combination to have an 

even lower probability of toxicity. Under each scenario, we simulated 1,000 trials. Posterior 

inferences were based on 2,000 posterior samples after 1,000 burn-ins.
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To show the benefits of our proposed design, which borrows strength across schedules, we 

compared the performance of our design with a design that runs an independent trial for 

each schedule, using the following proportional odds model (i.e., equation (1) in Thall and 

Russell, 1998) for the trinary outcome:

where d is dose under a given schedule, γj,k(d) = Pr(Y ≥ j | dose = d, schedule = k), αk > 0, 

βk > 0, j = 1, 2, k = 1, 2, 3. We used the following relative vague priors in our 

implementation: π(αk) ~ Unif(0, 4), π(βk) ~ Unif(0, 8), π(μk) ~ N(−1.7, 4), k = 1, 2, 3. We 

assumed a maximum sample size of 14 in each independent trial in this design (hereafter 

denoted as the TR design), which yielded a larger maximum total sample size than our 

proposed design (thus favoring the TR approach). For a fair comparison, we used decision 

criteria in the spirit of our proposed design, yet adapted to the single-schedule settings with 

appropriately tuned cutoff design parameters through simulations. We recommended a target 

dose (unless it was inconclusive) for each independent trial. If at least one trial was not 

inconclusive at the end of the study, we then selected the target dose that corresponded to 

the largest observed probability of efficacy and no toxicity as the recommended 

combination. In cases where more than one combination corresponded to the largest 

observed probability of efficacy and no toxicity, all were selected as the recommended 

combinations.

The selection percentage and number of patients treated at each dose-schedule combination 

for the 12 scenarios using both designs are summarized in Table 2. In all scenarios, the 

percentages of inconclusive trials using the proposed design were very low with a maximum 

of 3.2% (results not shown). The combination used to treat the highest average number of 

patients was a target combination in every scenario. In the first four scenarios, the target 

combinations are at locations (3, 1), (2, 2), (1, 1), and (4, 3), respectively. The selection 

percentages of the targets were 48.3%, 48.9%, 40.2%, and 63.6%, respectively. The average 

patient allocations of the targets were 8.2, 9.1, 6.8, and 10.8, respectively. In scenario 5, the 

selection percentages of the two target combinations (4, 1) and (3, 3) were 17.1% and 

44.1%, respectively, with the sum being 61.2%. The numbers of patients treated were 4 and 

8.1, respectively. In scenario 6, the selection percentages of the two target combinations (3, 

1) and (2, 2) were 39.1% and 45%, respectively, with the sum being 84.1%. The numbers of 

patients allocated at the two targets were 8.4 and 9.1, respectively. In scenario 7, the two 

target combinations (2, 1) and (1, 3) were selected 31.5% and 21.1% of the times, 

respectively, with the sum being 52.6%. The average patient allocations were 6.4 and 4.6. In 

scenario 8, the selection of each of the three targets ranged from 22.8% to 30.8% with an 

average allocation of 6.0. In scenarios 9, 10, and 12, the single target combinations are at 

(3,2), (2,3), and (4,3), respectively, with the selection percentages of 58.8%, 33.7%, and 

56.6%, respectively. The numbers of patients treated at these combinations were 9.4, 6.3, 

and 9.9, respectively. In scenario 11, the two target combinations are at (3,2) and (2,3), with 

the selection percentages being 40.9% and 42.3% and the patient allocations being 8.8 and 

9.2, respectively.
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The performance of the TR design was worse than that of our design in most scenarios, in 

terms of both the selection percentages and numbers of patients treated at the target 

combinations. The only exceptions were in scenarios 5 and 12. In scenario 5, the TR design 

resulted in more balanced selection percentages and patient allocations, being 35.9% and 

25.5%, and 6.7 and 4.9 patients, at the two target combinations (4,1) and (3,3), respectively. 

The total selection percentage of 61.4% and the total number of patients treated of 11.6 

across the two target combinations, however, were similar to those of our design. In scenario 

12, the TR design selected the target combination 71.8% of the times, higher than 56.6%, 

the corresponding selection percentage under the proposed design, yet allocated 7.5 patients 

to the target combination, lower than the 9.9 patients allocated using our proposed design.

4.2 Sensitivity Analysis

We carried out sensitivity analyses to assess the operating characteristics of the proposed 

design by varying the upper bounds of the prior uniform distributions of δ and γ:

• δ ~ U(0, 6); γ ~ U(0, 6)

• δ ~ U(0, 8); γ ~ U(0, 6)

• δ ~ U(0, 6); γ ~ U(0, 10)

• δ ~ U(0, 8); γ ~ U(0, 10)

The results from these four additional sets of prior distributions are very similar to those in 

the original simulations. In Table 3, we report the operating characteristics of our approach 

for scenarios 1–3 under the first set of priors, scenarios 4–6 under the second set of priors, 

scenarios 7–9 under the third set of priors, and 10–12 under the last set of priors. The rest of 

the results are shown in Tables 2–5 in the Supplementary Material.

We carried out additional sensitivity analyses of the effect of the choice of σ2 on the 

performance of our design. The results (summarized in Tables 6 and 7 in the Supplementary 

Material) suggest that the performance of our design is robust when σ2 ranges from 0.2 to 1.

5 Discussion

We have proposed a Bayesian adaptive design for phase I/II clinical trials to identify an 

optimal dose-schedule combination satisfying both toxicity and efficacy requirements. A 

probit model is implemented for a trinary patient outcome, and a Bayesian dynamic model is 

used to borrow strength across dose-schedule combinations. To allow for flexibility, we 

assume non-monotonic relationships between the probabilities of efficacy and toxicity and 

schedule. Through simulation studies and sensitivity analyses, we demonstrate that our 

model can reliably identify the target dose-schedule combinations and allocate a large 

number of patients to the target combinations.

The Bayesian dynamic model we used for modeling the efficacy and toxicity probabilities at 

different dose-schedule combinations yields a moderate level of interaction effects between 

dose and schedule, using an appropriately tuned variance parameter (i.e., σ2). This appears 

desirable as it is difficult to envision that the dose effect may be dramatically different 

across schedules in practical scenarios.
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The proposed method requires that both efficacy and toxicity outcomes be observed shortly 

after the initiation of the treatment to allow for adaptive dose and schedule assignment. 

However, in some phase I studies, either the efficacy or toxicity outcome may need a long 

time to observe. In the presence of such late-onset toxicity or efficacy, our model would not 

be appropriate. In that case, we can extend our method by modeling the time-to-event 

efficacy or toxicity outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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