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Abstract
Two-dimensional stretched flow of Jeffrey fluid in view of Cattaneo-Christov heat flux is

addressed. Effects of homogeneous-heterogeneous reactions are also considered. Suit-

able transformations are used to form ordinary differential equations. Convergent series

solutions are computed. Impact of significant parameters on the velocity, temperature, con-

centration and skin friction coefficient is addressed. Analysis of thermal relaxation is made.

The obtained results show that ratio of relaxation to retardation times and Deborah number

have inverse relation for velocity profile. Temperature distribution has decreasing behavior

for Prandtl number and thermal relaxation time. Also concentration decreases for larger val-

ues of strength of homogeneous reaction parameter while it increases for strength of het-

erogeneous reaction parameter.

Introduction
Importance of non-Newtonian fluids in boundary layer flow has increased. It is because of
their extensive industrial and technological applications. The usual Navier-Stokes equation
fails to describe the behavior of these kinds of flows. Mathematical formulation for such flows
is in general complex. Such fluids cannot be examined by a single constitutive relationship
between shear stress and rate of strain. The non-Newtonian materials are employed in applica-
tions related to biological sciences, geophysics and chemical and petroleum processes. Materi-
als such as drilling muds, apple sauce, foams, soaps, sugar solution pastes, clay coating,
ketchup, lubricant, certain oils, colloidal and suspension solutions are the non-Newtonian flu-
ids. There are three types of non-Newtonian fluids e.g. differential, integral and rate types. Rate
type fluids depicts the impact of relaxation and retardation time. Jeffrey fluid is one of the rate
type materials. It shows the linear viscoelastic effect of fluid which has many applications in
polymer industries. There are many examples of Jeffrey fluid including dilute polymer solution.
Hayat et al. [1] analyzed the power law heat flux and heat source with Jeffrey fluid, radiation
and porous medium. Hayat et al. [2] described the magnetohydrodynamic stagnation point
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flow of a Jeffrey nanofluid with Newtonian heating. Farooq et al. [3] examined the Newtonian
heating in MHD flow of Jeffrey fluid. Hamad et al. [4] studied the thermal jump effects on
boundary layer flow of a Jeffrey fluid near the stagnation point with stretching/shrinking sheet
and variable thermal conductivity. Tripathi et al. [5] studied the MHD Jeffrey fluid with MHD
effect on a cylindrical tube of finite length. Das [6] discussed the impact of MHD flow of Jeffrey
fluid in the presence of slip and heat transfer through porous channel. Abbasi et al. [7] exam-
ined influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid.
Reddy et al. [8] analyzed the flow of Jeffrey fluid between torsionally oscillating disks.

Homogeneous and heterogeneous reactions are involved in many chemically reacting sys-
tems. Some of the reactions progress slowly or absolutely not, except in the presence of catalyst.
The correlation between homogeneous and heterogeneous reactions is very difficult involving
the production and consumption of reactant species at different rates both within the fluid and
on the catalytic surfaces. Especially the chemical reaction effect is quite significant in food pro-
cessing, hydrometallurgical industry, manufacturing of ceramics and polymer production, fog
formation and dispersion, chemical processing equipment design, crops damage via freezing
and groves of fruit trees. Merkin [9] analyzed the viscous fluid passing through a flat plate with
homogeneous-heterogeneous reactions. Chaudhry and Merkin [10] studied boundary layer
flow of viscous fluid in presence of homogeneous-heterogeneous reactions. Bachok et al. [11]
analyzed homogeneous-heterogeneous reactions in stagnation point flow towards a stretching
sheet. Khan and Pop [12] investigated effects of homogeneous-heterogeneous reactions in the
flow of viscoelastic fluid towards a stretching sheet. Kameswaran et al. [13] discussed the flow
of nanofluid over a porous stretching sheet with homogeneous-heterogeneous reactions. New-
tonian heating in presence of carbon nanotube and homogeneous-heterogeneous reactions are
illustrated by Hayat et al. [14]. MHD flow of nanofluid with homogeneous-heterogeneous reac-
tions and velocity slip is analyzed by Hayat et al. [15].

In industrial and engineering processes the heat transfer mechanism is very useful including
nuclear reactor for cooling, energy production space cooling, biomedical applications such as
heat conduction in tissues and magnetic drug targeting etc. Mechanism of heat transfer has
been extensively described by classical Fourier heat conduction law [16]. However it has a
major limitation that it yields a parabolic energy equation which indicates that initial distur-
bance is instantly experienced by the medium under consideration. This feature is referred in
literature as “Paradox of heat conduction”. To overcome this situation, various researchers
have proposed modifications in the Fourier's heat conduction law. Cattaneo [17] modified this
law through the inclusion of relaxation time for heat flux which is defined as a time required
establishing heat conduction once the temperature gradient is imposed. Equation of motion of
a phonon gas and non-Fourier heat conduction has been obtained by Cao and Guo [18]. Chris-
tov [19] further modified the Cattaneo's model by replacing the ordinary derivative with the
Oldroyd's upper convected derivative. Tibullo and Zampoli [20] examined the incompressible
fluids reactions for Cattaneo-Christov heat conduction model. Straughan [21] applied Catta-
neo-Christov thermal convection in horizontal layer of incompressible Newtonian fluid under
the effect of gravity. Ciarletta and Straughan [22] studied the Cattaneo-Christov equations
structural stability and uniqueness. Dong et al. [23] examined dynamical analysis of non-Fou-
rier heat conduction and its application in nanosystems. Numerical studies on damping of
thermal waves have been derived by Zhang et al. [24]. Han et al. [25] described the Cattaneo-
Christov heat flux model in flow of Maxwell fluid. Mustafa [26] discussed the upper convected
flow of Maxwell fluid in presence of rotation and Cattaneo Christov heat flux.

The main purpose of present paper is to investigate the steady two-dimensional flow of
Jeffrey fluid over a linearly stretching sheet. Effects of Cattaneo-Christov heat flux and
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homogeneous-heterogeneous reaction are clearly focused. Here we develop series solutions
using homotopy analysis method [27–33]. Convergent series solutions are determined. Graphs
are plotted and examined for the effects of interesting parameters on the velocity, temperature,
concentration and skin friction coefficient.

Problems Formulation
We consider steady two-dimensional flow of Jeffrey fluid in the presence of Cattaneo-Christov
heat flux. Fluid flow is induced by a linear stretching sheet. Sheet is at constant temperature Tw
and temperature far away from the sheet is T1 (i.e Tw � T1) Flow analysis is carried out sub-
ject to homogeneous—heterogeneous reactions. Homogeneous reaction for cubic autocatalysis
can be expressed as follows:

Aþ 2B ! 3B; rate ¼ kcab
2; ð1Þ

while first order isothermal reaction on the catalyst surface is presented in the form

A ! B; rate ¼ ksa: ð2Þ

Here a and b are the concentrations of the chemical species A and B and kc and ks are the
rate constants. We assume that both reaction processes are isothermal. The conservation laws
of mass, momentum, energy and concentration governing the present flow can be written
below:
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¼ 0; ð3Þ
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where (u, v) are the velocities along (x, y) directions respectively, ν for kinematic viscosity, T
for temperature, cp for specific heat, ρ for fluid density, α for ratio of relaxation to retardation
times, λ1 for retardation time and q the heat flux satisfying the relation

qþ l2
@q

@t
þV:rq� q:rVþ ðr:VÞq

� �
¼ �krT; ð8Þ

in which λ2 is the thermal relaxation time and k the fluid thermal conductivity. Following

Impact of Cattaneo-Christov Heat Flux in Jeffrey Fluid Flow with Homogeneous-Heterogeneous Reactions

PLOS ONE | DOI:10.1371/journal.pone.0148662 February 9, 2016 3 / 16



Christov [19], we omit q by using Eqs (5) and (8) and obtain
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The subjected boundary conditions are

u ¼ Uw ¼ cx; v ¼ 0; T ¼ Tw; DA

@a
@y

¼ ksa; DB

@b
@y

¼ �ksa at y ! 0;

u ! 0; T ! T1; a ! a0; b ! 0when y ! 1;

ð10Þ

where DA and DB are the diffusion coefficients and a0 is positive dimensional constant.
Employing transformations

Z ¼
ffiffiffi
c
n

r
y; u ¼ cxf 0ðZÞ; v ¼ � ffiffiffiffi

cn
p

f ðZÞ; y ¼ T � T1
Tw � T1

; a ¼ a0gðZÞ; b ¼ a0hðZÞ; ð11Þ

continuity equation is satisfied automatically and Eqs (4), (6), (7), (9) and (10) take the forms:

f ‴ þ ð1þ aÞðff @ � f 0
2Þ þ bðf 002 � ff 0000Þ ¼ 0; ð12Þ

1

Pr
y@ þ y0f � gðf 2y@ þ ff 0y0Þ ¼ 0; ð13Þ

1

Sc
g@ þ fg 0 � k1gh

2 ¼ 0; ð14Þ

d
Sc

h@ þ fh0 þ k1gh
2 ¼ 0; ð15Þ

f 0ð0Þ ¼ 1; f 0ð1Þ ! 0; f ð0Þ ¼ 0; yð0Þ ¼ 1; yð1Þ ! 0; g 0ð0Þ ¼ k2gð0Þ; dh0ð0Þ
¼ �k2gð0Þ; ð16Þ

where Pr is for Prandtl number, β for Deborah number, γ for thermal relaxation time, Sc for
Schmidt number, k1 and k2 for measure of strength of homogeneous and heterogeneous reac-
tions respectively and δ for ratio of diffusion coefficient. These parameters are defined as fol-
lows:
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rcpn
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kca

2
0
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Here it is assumed that diffusion coefficients of chemical species A and B are of a compara-
ble size. Through this we assume that DA and DB are same, i.e. δ = 1 and thus:

gðZÞ þ hðZÞ ¼ 1: ð18Þ

Now Eqs 14 and 15 yield

1

Sc
g@ þ fg 0 � k1gð1� gÞ2 ¼ 0; ð19Þ
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with boundary conditions

g 0ð0Þ ¼ k2gð0Þ; gð1Þ ¼ 1: ð20Þ

Skin friction coefficient in dimensional form is

Cfx ¼
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y¼0

; ð21Þ

where τw is the shear stress. Skin friction coefficient in dimensionless form along the x – direc-
tion is defined as follows:

CfxRe
0:5
x

2
¼ 1

1þ a
½f @ð0Þ þ bðf 0ð0Þf @ð0Þ � f ð0Þf ‴ð0ÞÞ�: ð22Þ

Exact analytical solution of Eq (12) is [31]

f ðZÞ ¼ 1� expð�AZÞ
A

; ð23Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
1þ b

s
: ð24Þ

So Eqs (13) and (19) takes the form
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Homotopic Solutions

3.1. Zeroth-Order Deformation Equations
Since exact solution for velocity is given in Eqs (23) and (24). However the exact solutions for
the temperature and concentration related systems (Eqs (25), (26) and conditions (16), (20))
are not possible. Thus homotopy analysis method is implemented to get analytical solution of
considered problem. Initial guesses and auxiliary linear operators are taken as follows:

y0ðZÞ ¼ expð�ZÞ; g0ðZÞ ¼ 1� 1

2
expð�k2ZÞ; ð27Þ

Ly ¼ y@ � y; Lg ¼ g@ � g; ð28Þ

with

Ly½c1eZ þ c2e
�Z� ¼ 0;

Lg ½c3eZ þ c4e
�Z� ¼ 0;

ð29Þ

in which ci (i = 1 − 4) are the constants.
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If q 2 [0,1] indicates the embedding parameter and ℏθ and ℏg are the non-zero auxiliary
parameters then the zeroth order deformation problems are

ð1� qÞLy½WðZ; qÞ � y0ðZÞ� ¼ qℏyNy½WðZ; qÞ�; ð30Þ

ð1� qÞLg ½GðZ; qÞ � g0ðZÞ� ¼ qℏgNg ½GðZ; qÞ�; ð31Þ

Wð0; qÞ ¼ 1; Wð1; qÞ ¼ 0; ð32Þ

G0ð0; qÞ ¼ k2Gð0; qÞ; G0ð1; qÞ ¼ 1; ð33Þ

where the nonlinear differential operators Ng and Nθ are given by
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3.2. mth Order Deformation Equations
The mth order deformation equations are

Ly½ymðZÞ � wmym�1ðZÞ� ¼ ℏyRy;mðZÞ; ð36Þ

Lg ½gmðZÞ � wmgm�1ðZÞ� ¼ ℏgRg;mðZÞ; ð37Þ

yð0Þ ¼ yð1Þ ¼ gmð1Þ ¼ @gmð0Þ
@Z

� k2gmð0Þ ¼ 0; ð38Þ
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where the functions Rθ,m(η) and Rg,m(η) have the following forms:
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(

The general solutions (θm, gm) comprising the special solutions (y�m, g
�
m) are

ymðZÞ ¼ y�
mðZÞ þ c1e

Z þ c2e
�Z;

gmðZÞ ¼ g�mðZÞ þ c3e
Z þ c4e

�Z;
ð42Þ

where the constants ci (i = 1 − 4) through the boundary conditions (38) have the values

c2 ¼ �y�
mð0Þ; c4 ¼

1

1þ k2

@g�mð0Þ
@Z

� k2g
�
mð0Þ

� �
; c1 ¼ c3 ¼ 0: ð43Þ

Convergence Analysis
The method of homotopy analysis gives us opportunity and a simpler way to adjust and control
the convergence of the series solutions. The auxiliary parameters ℏθ and ℏg have much impor-
tance for the series solution convergence. For that purpose the ℏ – curves at 10th order of
approximations are plotted (see Fig 1). Admissible values of auxiliary parameters are −1.2�
ℏθ � −0.5 and −2� ℏg � −0.5. Also the HAM solutions converge in the full range of η (0�
η�1) where ℏθ = −1 and ℏg = −1.5.

Fig 1. ℏ – curves for θ0(0) and g0(0) when α = 0.2, β = 0.1, Pr = γ = 0.7 = k1 = k2 and Sc = 1.

doi:10.1371/journal.pone.0148662.g001
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Table 1 demonstrates the convergence of velocity, temperature and concentration equa-
tions. It is noted that 12th and 15th order of approximations are enough for the convergence of
θ0(0) and g0(0).

Results and Discussion
In this section Figs (2–14) and Table 2 show the behavior of various parameters on the velocity,
temperature, concentration and skin friction coefficient.

5.1. Dimensionless Velocity Profiles
Figs 2 and 3 illustrate the dimensionless velocity profile f0(η) for several values of ratio of relax-
ation to retardation times α and Deborah number β. It is noted that momentum boundary
layer decreases via larger α. Since α is inversely proportional to the retardation time of the non-
Newtonian fluid so by increasing α there is reduction in retardation time and consequently the
fluid flow reduces (Fig 2). Fig 3 represents the impact of various values of Deborah number β
on dimensionless velocity f0(η) when α = 0.2. Here larger Deborah number leads to an increase
in momentum boundary layer. It is due to the fact that β and stretching rate of sheet are pro-
portional to each other (i.e. β = λ1c).

Table 1. Convergence of solutions when β = 0.1, α = 0.2, γ = Pr = 0.7 = k1 = k2 and Sc = 1.

Order of approximation −θ0(0) g0(0)

1 0.45238 0.28048

4 0.49606 0.26213

10 0.49112 0.26099

12 0.49114 0.26103

15 0.49114 0.26104

20 0.49114 0.26104

25 0.49114 0.26104

30 0.49114 0.26104

35 0.49114 0.26104

40 0.49114 0.26104

doi:10.1371/journal.pone.0148662.t001

Fig 2. Impact of α on f0(η).

doi:10.1371/journal.pone.0148662.g002
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Fig 3. Impact of β on f0(η).

doi:10.1371/journal.pone.0148662.g003

Fig 4. Impact of Pr on θ(η).

doi:10.1371/journal.pone.0148662.g004

Fig 5. Impact of γ on θ(η).

doi:10.1371/journal.pone.0148662.g005
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5.2. Dimensionless Temperature Profiles
Figs 4–7 show the impact of increasing values of Prandtl number Pr, thermal relaxation time γ,
ratio of relaxation to retardation times α and Deborah number β on dimensionless temperature
θ(η). Fig 4 shows the influence of various values of Pr on fluid temperature. We observed that
temperature is decreasing function of Prandtl number Pr. Thermal diffusivity of the fluid layer
reduces for larger Pr. Both temperature and thermal boundary layer decrease. Temperature
profile for increasing value of γ is shown in Fig 5. Here by increasing thermal relaxation time
the temperature and thermal boundary layer thickness decrease. It is due to fact that as we
increase the thermal relaxation time parameter, particles of the material require more time to
transfer heat to its neighboring particles. In other words we can say that for higher values of
thermal relaxation parameter the material shows a non-conducting behavior which is

Fig 7. Impact of β on θ(η).

doi:10.1371/journal.pone.0148662.g007

Fig 6. Impact of α on θ(η).

doi:10.1371/journal.pone.0148662.g006
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responsible in reduction of temperature distribution. We observed from Fig 6 that temperature
increases for higher values of α. By increasing α we noted that there is increase in relaxation
time and decrease in retardation time. Temperature enhances since increase in relaxation time
is more than the retardation time. Temperature decreases for larger value of Deborah number
(Fig 7). Here β = λ1c indicates that retardation time enhances with an increase in Deborah
number. Such increase in retardation time corresponds to the decrease in the temperature and
thermal boundary layer thickness.

Fig 8. Impact of k1 on g(η).

doi:10.1371/journal.pone.0148662.g008

Fig 9. Impact of k2 on g(η).

doi:10.1371/journal.pone.0148662.g009
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5.3. Dimensionless Concentration Profiles
Figs 8–12 show the effect of measure of strength of homogeneous reaction k1, measure of
strength of the heterogeneous reaction k2, Schmidt number Sc, ratio of relaxation to retardation
times α and Deborah number β on dimensionless concentration profile g(η). Effect of k1 on
concentration profile is shown in Fig 8. It shows that by increasing k1 there is a decrease in con-
centration profile (because the reactants are consumed during chemical reaction). Fig 9 shows
the impact of k2 on concentration profile g. For increasing value of k2 the diffusion coefficient
reduces and less diffused particles enhance the concentration. Effect of Schmidt number Sc
on g(η) is shown in Fig 10. Increasing behavior of concentration profile is noted for larger Sc.
In fact Schmidt number is the ratio of momentum diffusivity to mass diffusivity. Therefore
higher value of Schmidt number correspond to higher momentum diffusivity which in turn
enhances the concentration profile. Behavior of ratio of relaxation to retardation times α on

Fig 10. Impact of Sc on g(η).

doi:10.1371/journal.pone.0148662.g010

Fig 11. Impact of α on g(η).

doi:10.1371/journal.pone.0148662.g011
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concentration distribution is analyzed in Fig 11. It is noted that for increasing value of α there
is decrease in g. Fig 12 depicts that concentration profile enhances with an increase in β.

5.4. Surface Concentration
Fig 13 depicts the influence of strength of homogeneous reaction parameter k1 on surface con-
centration g(0). One can see from the Fig that by increasing k1 there is a decrease in g(0). Varia-
tion of dimensionless wall concentration g(0) for different values of Schmidt number Sc is
shown in Fig 14. It shows that Sc is increasing function of g(0).

5.5. Skin Friction Coefficient

Table 2 depicts the numerical values of Cfx Re
0:5
x =2 for increasing values of the different

involved parameters. It is noted that for increasing α the skin friction coefficient decreases

Fig 12. Impact of β on g(η).

doi:10.1371/journal.pone.0148662.g012

Fig 13. Impact of k1 on g(0).

doi:10.1371/journal.pone.0148662.g013
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while there is increase in skin friction coefficient via larger β. The values of shear stress at the
surface are compared with previous published results in Table 3. Here it is seen that the
obtained solutions agree well with results of Abbasi et al. [7].

Conclusions
Cattaneo-Christov heat flux model is used to study the flow of Jeffrey fluid over a stretching
sheet. Effects of homogeneous-heterogeneous are taken into account. Key points are as follows:

• Velocity profile is increasing function of Deborah number and decreasing function of ratio of
relaxation to retardation times.

Fig 14. Impact of Sc on g(0).

doi:10.1371/journal.pone.0148662.g014

Table 2. Numerical values of Cfx Re
0:5

x =2 for various values of the physical parameters.

β α �Cfx Re
0:5

x =2

0.1 0.2 0.95743

0.3 0.91987

0.4 0.88641

0.5 0.85635

0.2 0.2 1.00000

0.3 0.96077

0.4 0.92582

0.5 0.89442

0.3 0.2 1.0408

0.3 1.0000

0.4 0.96362

0.5 0.93095

0.4 0.2 1.0801

0.3 1.0378

0.4 1.0000

0.5 0.96608

doi:10.1371/journal.pone.0148662.t002
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• Temperature decreases when Prandtl number and thermal relaxation time are increased.

• Effects of strength of homogeneous and heterogeneous reactions are opposite for concentra-
tion distribution.

• Concentration is more via larger Schmidt number.

• Surface drag force reduces when ratio of relaxation to retardation times is increased.

• Present results of surface shear stress agree well with previous published work.
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