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Abstract
Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations.

Consequently, parameters of models of intracellular processes, usually fitted to population-

averaged data, should rather be fitted to individual cells to obtain a population of models of

similar but non-identical individuals. Here, we propose a quantitative modeling framework

that attributes specific parameter values to single cells for a standard model of gene expres-

sion. We combine high quality single-cell measurements of the response of yeast cells to

repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for

mixed-effects models to infer multidimensional parameter distributions describing the popu-

lation, and then derive specific parameters for individual cells. The analysis of single-cell

parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth

rate, mother-daughter relationships) is, at least partially, captured by the parameter values

of gene expression models (e.g. rates of transcription, translation and degradation). Our

approach shows how to use the rich information contained into longitudinal single-cell data

to infer parameters that can faithfully represent single-cell identity.

Author Summary

Because of non-genetic variability, cells in an isogenic population respond differently to a
same stimulation. Therefore, the mean behavior of a cell population does not generally
correspond to the behavior of the mean cell, and more generally, neglecting cell-to-cell dif-
ferences biases our quantitative representation and understanding of the functioning of
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cellular systems. Here we introduce a statistical inference approach allowing for the cali-
bration of (a population of) single cell models, differing by their parameter values. It
enables to view time-lapse microscopy data as many experiments performed on one cell
rather than one experiment performed on many cells. By harnessing existing cell-to-cell
differences, one can then learn how environmental cues affect (non-observed) intracellular
processes. Our approach is generic and enables to exploit in unprecedented manner the
high informative content of single-cell longitudinal data.

Introduction
It is well-recognized that cellular heterogeneities exist in a population of isogenic cells [1–3].
Indeed, cellular processes are noisy and generate cell-to-cell differences. Microfluidics and
time-lapse fluorescence microscopy combined with cell-tracking algorithms make it possible to
follow the behavior of populations of cells at the single-cell level over long time and to apply
stimulations homogeneously [4,5]. Therefore, cell-cell variability in the expression of a gene of
interest can be observed over extended time scales. The origins of the variability of biological
processes and phenotypes are multifarious. Indeed, the observed heterogeneity of cell responses
to a common stimulus is believed to originate partly from differences in cell phenotypes (age,
cell size, ribosome and transcription factor concentrations, etc. . .), from spatio-temporal varia-
tions of the cell environments and from the intrinsic randomness of biochemical reactions. A
proper assessment and modeling of such heterogeneity is therefore a challenging task since not
only it has several sources but also those sources are inter-dependent and act with different
strengths and on different time-scales [6].

Regarding dynamical models of gene expression, the most widely-accepted approach to take
into account cell-cell variability so far relies on modeling transcription as a stochastic process
[7]. Yet, these approaches only give a partial representation of cellular heterogeneity as they
assume that all the measured variability originates only from the noisy expression of the mod-
eled genes. The level of expression of other genes and their products, along with the cell’s pheno-
type that emerges from it, are considered as fixed in time and equal for all cells. That is, the
standard modeling approach considers all gene expression noise to be intrinsic. Yet, it is known
from seminal works on noise in gene expression that the overall noise breaks down into intrinsic
and extrinsic components [8,9]. Although both are always present, intrinsic noise contribution
is generally dominant only on short time scales and for unstable or weakly expressed proteins.

Therefore, a purely stochastic representation of cellular heterogeneity is not appropriate for
a large proportion of genes and biological processes. Witnessing that validating a model
encompassing both types of variability against data is still very difficult given current experi-
mental possibilities [10], we propose to explore a different approach in which variability is rep-
resented only as stable differences among cells. This simplifying assumption is a necessary first
step towards a congruent representation of the total variability in gene expression, and can be
readily applied to other biological processes in which extrinsic variability dominates or when
the focus lies on cellular identity.

Here we analyzed the temporal evolution of the level of expression of an inducible fluores-
cent reporter in a population of yeast cells growing in a microfluidic device. By selecting a
strong inducible promoter and using a stable reporter, we placed ourselves in experimental
conditions where extrinsic variability is dominant over the neglected intrinsic component. In
addition we assess directly how the inferred individuality in gene expression can be related to
measurable features of cell’s phenotype and physiology and therefore related to typical
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biological measures of cellular identity. We use a modeling approach in which, for a standard
model of gene expression in yeast, each single cell is given specific parameter values while the
cell population is described by a multidimensional parameter distribution (Fig 1). This leads to
a challenging inference task compared to a classic situation where all cells are described by the
same “mean-cell”model and parameters. Indeed the problem is shifted from obtaining a single
value per parameter to obtaining parameter values for each observed cell, as well as a multidi-
mensional distribution representing parameter values in large cell populations. This problem
not only involves determining the distribution within a population for each parameter but also
their mutual relationships, or more formally, their joint distribution. In order to do so, we used
state-of-the-art statistical methods [11,12] that allow inferring parameters distribution across
the population that are congruent with parameters attributed to each single cell. We motivate
the use of such demanding statistical tools by showing why a simpler and more straightforward
method is inappropriate for our current objective of representing populations by a distribution
of parameters.

Fig 1. Experimental setup and principle of single-cell parameter estimation. A. Microfluidic device enabling the growth and imaging of yeast cells over
extended durations while applying repeated hyperosmotic shocks by rapidly switching their environment between normal and hyperosmotic media. Using a
reporter gene that drives the transcription of the yellow fluorescent protein yECitrine under control of the osmoresponsive promoter pSTL1, one can track the
transcriptional response of cells to repeated osmotic shocks.B. Thanks to segmentation and tracking algorithms, the response of single-cells can be
measured over several generations. C. As a result we obtain single-cell trajectories (thin blue lines) that show the variability in cells response to hyperosmotic
stress. The thick blue line represents the median behavior. Black bars on the x-axis represent the hyperosmotic shocks applied to cells.D. From these
trajectories, our goal is to extract the parameters of a standard model of gene expression (see text) for each cell, and therefore a multidimensional distribution
describing the cell-to-cell variability. As an illustration, the right inset shows that different cells will be modeled with different parameter values to account for
their own specific behavior.

doi:10.1371/journal.pcbi.1004706.g001
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We propose several validations of the inference results and we analyze the obtained parame-
ter distributions representing cell populations. Then we focus on single cells and analyze the
correlation across parameters or between parameters and other single-cell features related to
phenotypic and physiological variability. At last, the inheritability of the parameters of gene
expression is assessed. Taken together, our results demonstrate that using the proposed frame-
work, biologically-relevant model parameters can be attributed to individual cells and related
to single-cell features, while the population of cells is represented in a concise manner. As such,
this work is an important step towards identifying the major determinants of extrinsic cell-cell
variability, as well as introducing quantitatively the concept of single-cell identity.

Results

Gene expression in response to repeated osmotic stress shows a high
level of variability between cells
Using microfluidics and time-lapse microscopy we acquired longitudinal data of the response
of individual yeast cells subjected to repeated hyperosmotic shocks (see Material and Methods)
[13,14]. Cells were bearing a stable fluorescent reporter driven by the STL1 promoter which is
strongly activated by hyperosmotic stress [15,16]. We extracted fluorescence values for large
numbers of single yeast cells (typically 300) over a long period of time (typically 8–10 hours).
Markedly-different behaviors were observed between individual cells (Figs 1 and S1). As extrin-
sic variability is arguably the dominant component of phenotypic heterogeneity in gene expres-
sion in eukaryotic cells [17,18], these differences are expected to depend at least in part on
variations in the rates of transcription, translation and degradation/dilution from one cell to
another. Parameters of a model of our reporter gene expression should therefore be different
from one cell to another to account for extrinsic variability. By using short but pronounced
and repeated inductions of gene expression with a stable reporter protein, we limited both the
impact of intrinsic noise in our experiments and the deleterious effects of hyperosmotic shocks
(see Experimental Design in S1 Text).

Mixed-effects model is an ideal framework for representing extrinsic
variability
Mixed-effects (ME) models are a class of statistical models introduced to describe the response
of different individuals within a population to known stimuli. Here, we used a ME model
where the response of individual cells was described in terms of a simple dynamical model of
gene expression. Denoting withm and p the cellular level of mRNA and fluorescent protein,
respectively, we have

_mðtÞ ¼ kmuðtÞ � gmmðtÞ
_pðtÞ ¼ kpmðtÞ � gppðtÞ

(

where u(t) represents the activity of transcription factors—in our case, the phosphorylation
and nuclear import of the kinase Hog1p –and is a function of the osmolarity of the cell envi-
ronment (see Material and Methods and S1 Text). The production and decay rates are denoted
km and gm for the mRNA, and kp and gp for the protein, respectively. To relate fluorescence
measurements to actual protein concentrations, we accounted for protein folding time using a
delay τ. We also assumed the presence of multiplicative and additive white Gaussian measure-
ment noise whose strength is the same for all cells (see S1 Text and S1 Table for details). Impor-
tantly, in the ME framework, it is considered that km, gm, kp, and gp vary within the population.
Differences in parameter values may typically originate from differences in the level of key
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components of the gene expression machinery (e.g. RNA polymerase and ribosomes) or in
environmental or physiological parameters (e.g. cell growth rate). We assumed that these
parameters were log-normally distributed across the population: θ = (km, gm, kp, gp) with
lnðyÞ � N ðm;SÞ, where μ and S correspond to a vector of means and a covariance matrix,
respectively. This assumption ensures the population is represented in a much more concise
and general manner than what would be possible by only representing a population by the
dynamics of every cell observed in an experiment.

Here, we are looking for a multidimensional distribution defined by its center of mass (i.e. a
vector of mean values) and its spread (i.e., a covariance matrix) across the population. A simple,
intuitive manner to tackle this problem is to search for the different parameter values that best
describe each individual cell, and then compute the statistics (mean and covariance) of the
underlying distribution from the set of parameter estimates. We refer to this method as the
‘naive approach’ since it is the natural starting point, bearing limitations that are not apparent
until a proper analysis is performed. The proposed alternative is to use state-of-the-art
approaches for the identification of MEmodels, such as Stochastic Approximation Expectation
Maximization (SAEM). SAEM is a stochastic approximation version of the well-known Expec-
tation–Maximization algorithm and has been developed for the inference of population models
in presence of limited available information [11,19]. Notably SAEM is the reference approach in
pharmacokinetics/pharmacodynamics studies [12,20]. However, it has not yet been applied to
time-lapse single-cell data. The SAEM algorithm directly searches for multivariate distributions
by alternating (i) an estimation of (an approximation of) the likelihood of the population
parameters and individual observations given the current best estimate of the parameter distri-
bution in the population and (ii) an update of the current estimate of the parameter distribution.
In a second step, a posteriori estimates of the individual cell parameters are obtained from the
inferred parameter distribution and individual data (maximum a posteriori estimate, MAP).
This way, the fact that all parameters share (hidden) traits of the common population is explic-
itly taken into account. The naive and SAEM approaches are graphically represented in S2 Fig.

The SAEM approach provides relevant and robust single-cell parameter
distributions
Both the naive approach and the SAEM estimation method were applied to an experimental
data set comprising more than 300 cells observed during several hours. Despite the significant
diversity in the behavior of individual cells (Fig 2A), both the naive approach and the SAEM
estimation method were able to find single-cell parameters that fitted well the set of observed
single-cell behaviors (Fig 2B and 2C). For the naïve approach, one can observe that the enve-
lope of the fitted trajectories is slightly larger than the data at the early time points (Fig 2C).
This simply results from the absence of data to constrain the fits at the early times for cells
born during the experiment. Indeed, the average relative absolute difference between single-
cell predictions and data are nearly identical in the two approaches (naïve approach: 8.7%;
SAEM approach: 8.3%).

We then evaluated the capability of the obtained parameter distributions to actually describe
the behavior of the cell population (mean and spread). To do so, the parameter distributions
obtained using the naive and the SAEM approaches were randomly sampled, thus creating two
different virtual ‘cell populations’, and the two corresponding sets of behaviors were computed
from our model of gene expression. The SAEM-inferred parameter distribution accurately
reproduced the observed behavior of the real cell population (Fig 2D), whereas the naive
approach failed to do so (Fig 2E). Therefore, although both approaches were able to identify a
set of single-cell parameters that reproduce well the behaviors of the set of observed cells, only
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SAEM was able to infer a parameter distribution at the population level consistent with the
observed heterogeneity in gene expression.

To investigate the causes of the marked differences between the predictive power of the ME
models inferred using either the naive approach or the SAEM algorithm, we compared the cor-
responding parameter distributions. In both cases, the mean values of the parameters were
comparable and within the expected ranges (see S1 Table for parameter values and S1 Text for
literature values). However, the distribution obtained with the SAEM algorithm was signifi-
cantly more compact (i.e. it had a smaller volume in the parameter space) and was more

Fig 2. The SAEM approach provides parameter distributions that capture the population behavior because of cross-correlations between
parameters. A. Representation of the experimental dataset. B. Simulated behavior obtained when using the parameters of each observed cell in the dataset
(325 cells) inferred with the SAEM approach. C. Simulated behavior obtained when using the parameters of each observed cell in the dataset (325 cells)
inferred with the naive approach. D. Simulated behavior of 10000 cells when resampling the population joint distribution inferred with SAEM, (pink). E.
Simulated behavior of 10000 cells when resampling the population joint distribution inferred with the naive approach. F. As an illustration we show the
simulated behavior of 10000 cells when resampling the population parameter distribution as in D but without preserving the covariance between parameters
(i.e., using marginal distributions). For E and F, note that the y-axis has been scaled differently. Shaded areas represent the fluorescence values of 95% of
the population and the dashed lines represent the median. Experimental data is represented in blue. Black bars indicate the presence of osmotic shocks.
Note that unlike actual cells, all simulated cells are represented during the whole experiment (ie from 0 to 10hrs).

doi:10.1371/journal.pcbi.1004706.g002
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structured (i.e. it had higher cross-correlations on average; S3 Fig). This strongly suggested that
capturing the structure of the parameter distribution is essential in order to explain the popula-
tion behavior. Both the individual statistics of each parameter, and their covariance, describing
mutual relationships, contain essential information to properly account for the cell-cell vari-
ability observed in the dataset. And indeed, when using a parameter distribution with the same
individual parameter statistics (mean and variance) as the distribution inferred using SAEM
but with null cross-correlations (i.e. using the marginal distributions), the model lost its capa-
bility to predict the behavior of the population (compare Fig 2D and 2F). Our understanding is
that in the naive approach, all cells are fitted individually and are subsequently casted into a
multidimensional distribution. In contrast, SAEM allows finding equally good single-cell
parameters while favoring a concise multidimensional representation of the overall population.
The difference in performance between these two approaches is rooted in the fact that even
with a simple model of gene expression the information contained in a single trajectory is too
small to constrain the inferred parameter values in a satisfactory way. Using SAEM, we actually
allow each single-cell fit to use information about the overall population, which ensures coher-
ence between the representation of the population by distributions and of the single cells by
specific parameter values. Having demonstrated that the SAEM-based identification approach
captures the behavior of the cell population, from here on we focus only on the results obtained
using this method.

We then tested the robustness of the inference approach which is an essential property for
learning algorithms. Interestingly, the performance of the SAEM inference method degraded
gracefully as the number of available single-cell trajectories for identification was decreased to
as few as 32 cells (Fig 3A and S2 Text), and also as the experimental time period used for learn-
ing was reduced (Fig 3B and S2 Text). Lastly, ME models with SAEM-inferred parameter dis-
tributions were still able to give good predictions when tested on a different data set (Fig 3C,
see also S3 Text).

Parameters of the gene expression model only make sense at the
single-cell level
At this point, we have showed how to efficiently and robustly extract the distributions of
parameters of a standard model of gene expression from a collection of longitudinal single-cell

Fig 3. Robustness of the SAEM approach and validation of model predictive power. A Predictions obtained for a MEmodel having parameter
distributions estimated on only 32 randomly-chosen cell trajectories (see also S2 Text). B Predictions obtained for an MEmodel having parameter
distributions estimated using only the first 7 h of the experimental data (see also S2 Text). C Prediction obtained for the validation dataset for a MEmodel with
parameter distributions estimated using the identification data set. Different temporal patterns of osmotic shocks were applied.

doi:10.1371/journal.pcbi.1004706.g003
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data, and a set of parameters for each cell in the population. While we are here mostly inter-
ested in the details of the parameter distribution, we can also extract the average value for each
parameter of the model. Importantly, they are different from the parameters that are obtained
by fitting directly our model of gene expression to the population-averaged behavior. This is
illustrated on Fig 4 where the ‘average cell’ trajectory (whose parameters are the average of sin-
gle-cell parameters) is different from the average trajectory (obtained by directly averaging the
single-cell trajectories). As mentioned in the introduction, this expected result reminds us that
parameters of a model of a biological process estimated from average behaviors, as done in the
vast majority of quantitative studies, may poorly represent the actual process.

Analysis of parameter correlations may reveal non-identifiability
relations
Non-identifiability arises when the information contained in data along with a model structure
does not allow for the proper estimation of parameter values: several parameter values (or
more usually combinations of parameter values) yield equally-good results given the available
data. In our framework, very high correlations between parameter values may indicate the exis-
tence of non-identifiability relations among parameters. The first application of the SAEM
algorithm showed that km and kp were highly correlated, and, indeed, checking single-cell val-
ues suggested that the rates of transcription and translation could hardly, if at all, be quantified
independently. A detailed identifiability analysis showed that, at the level of individual cells,
these two parameters are structurally non-identifiable; only their product can be quantified (S4
Text). However, in population approaches, partial information about the second-order statis-
tics of individual parameters can be inferred from the population statistics even if these param-
eters are non-identifiable at the single-cell level (S5 Text). Consequently, to address
identifiability issues while preserving maximal information, we fixed the mean value for kp
when inferring parameter distributions using SAEM, and introduced the protein production
rate kmp, defined as the product of km and kp, for the single-cell models. With these changes,
shrinkage was then found to be negligible (S4 Text).

Fig 4. Parameters only make sense at the single-cell level. A-B. Starting from an experimental dataset (A), one can either extract the parameters that
describe the average behavior (in blue), or use our framework to extract the entire collection of single-cell parameters (black dots in B) and compute the
average parameters (in yellow). B-C. The average parameters do not match the parameters that best describes the average behavior. C. Visualization of
1000 simulated single-cell behaviors (blue thin lines) based on the parameters distributions shown (partially) in B. The solid blue line is a (good) simulation of
the average behavior (also shown in blue in panel A). The yellow solid line is the behavior corresponding to the “average cell”, which has for parameters, the
average parameters of the parameters distributions. The “average cell” behavior is clearly different from the averaged behavior.

doi:10.1371/journal.pcbi.1004706.g004
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Single-cell parameters correlate with the intensity of shocks perceived
by single cells
Having identified single-cell parameter values, one may wonder whether they can be used to
retrieve known facts or discover new ones on the physiology of the cell response to hyperosmo-
tic shocks. In our model, hyperosmotic shocks affect all cells identically. However, in the
microfluidic device, the intensity of the shock perceived by different cells varied, as evidenced
by differences in the reduction of cellular volume following shocks. Therefore, one should find
that protein production parameters inferred for the most severely impacted cells are statisti-
cally higher than average. We thus estimated the perceived shock intensities as the time-aver-
aged reduction of cellular volume following shocks, and compared for all the cells the inferred

Fig 5. Effects of hyperosmotic shocks on intracellular processes involved in gene expression. A. Correlations between the perceived intensity of
hyperosmotic shocks and single-cell parameter estimates are provided with their corresponding p-values (S1 Text). B. Estimated values for protein synthesis
rates kmp and mRNA degradation rates gm for each individual cell. Their strong correlation (Spearman coefficient: 0.88; p-value<10−15) together with their
mutual increase with perceived shocks intensity indicates that these two processes are jointly regulated in response to hyperosmotic shocks. Insert plot and
colored background represent perceived shock intensity for 9 groups of 35 cells along the regression line.

doi:10.1371/journal.pcbi.1004706.g005

Fig 6. Harnessing cell-to-cell variability reveals correlations between parameter values and independently-measured cellular features. Local
cellular density, division rate, size and age were quantified with single-cell resolution (S1 Text). Correlations between these single-cell features and the
single-cell parameter estimates and their principal components are provided with their corresponding p-values. Note the expected correlation between
protein degradation/dilution rate gp and the cell division rate. The proportion of variance accounted for by each principal component is indicated in
parenthesis.

doi:10.1371/journal.pcbi.1004706.g006
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parameter values and the perceived shock intensities. We found a strong correlation between
protein production rates and shock intensities in agreement with our hypothesis. Moreover an
equally-strong correlation was also found with mRNA degradation rates (Fig 5A). This second
feature, obtained by our framework without any additional measurements or hypothesis, is
consistent with the known global destabilization of mRNAs observed after hyperosmotic
shocks [21]. Lastly, the simultaneous increase of protein production rates and mRNA degrada-
tion rates strongly correlates with the increase of the perceived shock (Fig 5B) indicating that
these two processes are jointly regulated in response to hyperosmotic shocks. Note that the
direct experimental identification of such co-variations would be very challenging. This shows
the interest of extracting and analyzing distributions of model parameters for the identification
of joint regulations.

Single-cell parameters correlate with single-cell physiological features
In addition to hyperosmotic shocks, several features related to the cell physiology or local envi-
ronment are also expected to relate to gene expression [22]. Such features notably include cell
division rate, cell size, cell age, and local cell density. Since these features can be measured or
estimated for each single-cell based on bright-field time-lapse imaging, one can again harness
cell-to-cell variability and search for relations between these features and the parameters that
describe intracellular processes involved in gene expression. Firstly, we searched for a correla-
tion between the protein decay parameter, gp, and the cell division rate. Indeed, as the fluores-
cent reporter we used has a long half-life and photobleaching is negligible (see Initial
parameters values S1 Text), one should expect that its observed decay comes mostly from dilu-
tion due to cellular growth. Therefore, we quantified for each cell its division rate, averaged
over the observation period (S1 Text) and, as expected, found a significant positive correlation
between the measured average single-cell division rate and the protein decay parameter gp (Fig
6). Stated differently, using exclusively the fluorescence profile of individual cells and the
inferred parameter distribution for the cell population as an a priori, the inference approach
attributed statistically higher dilution rates to cells that grow faster. Several other highly signifi-
cant correlations between single-cell parameters and the above-mentioned single-cell measured
features were observed (Fig 6). Note that all measured features were averaged across time to
allow the comparison with the time-invariant model parameters (S1 Text). Although it is diffi-
cult to attribute in a systematic manner a direct and unambiguous biological interpretation of
the observed correlations between coarse-grained model parameters and cell features, one can
nevertheless observe (i) that cell density appears to have a pronounced influence on the protein
production rate, suggesting that—even in microfluidic growth chambers—the environment of
the cells should not be assumed to be perfectly homogeneous, and (ii) that the correlations of
the protein production rates and mRNA degradation rates with every measured feature always
have the same sign, corroborating the presence of mechanisms for the joint regulation of these
processes in our system.

More generally, one wonders how the different measured cell features relate to the overall
(multivariate) parameter variability. We conducted a principal component analysis (PCA) of
the set of inferred single-cell parameter values. This yielded a new parameterization of the
model (new parameters being called principal components PC1, PC2 and PC3) that is particu-
larly relevant to investigate variability as, unlike natural parameters, each principal component
is uncorrelated to the others. The analysis showed that the first two components PC1 and PC2
represented 87% and 12%, respectively, of the overall variance in single-cell parameter values,
and that these principal components correlated very significantly with measured cell features.
We then ranked the various features based on their correlation with the variability captured by
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the inferred ME model. For a given feature, this is defined as the weighted average correlation
with the different PCs, with weights equal to the importance (i.e., variance) of every PC. It
appeared that local cell density was the most important factor (average correlation: 0.23), fol-
lowed by cell size (0.21) and the division rate (0.2). To our knowledge, there is no established
direct connection between local cell density and gene expression in yeast. It would be interest-
ing to investigate this connection at the molecular level. Quite surprisingly, from our data, age
was not associated with a significant variability in parameter values. Taken together, our results
show that, for quantitative studies, features other than colony growth rate should be taken into
account. A natural extension of this study would be to investigate how the inclusion of these
features in the model, seen as covariates, could improve single-cell predictions.

Single-cell parameters are partly inherited from mother to daughter
Finally, we investigated inheritance of single-cell parameters. Statistical tests showed that the
parameters of mother and daughter cells were significantly closer to each other than the
parameters of random cell pairs (S1 Text and S4 Fig). However, this comparison does not
exclusively test the effect of lineage. The fact that mother and daughter cells share a similar
environment may also explain this result. To study the specific influence of lineage, we com-
pared the parameter values between pairs of cells that either were mother and daughter (related
mother/daughter pairs) or were a mother and the unrelated daughter of another mother cell
(non-related mother/daughter pairs), with all cells growing in the same microfluidic chamber
so as to limit environmental bias. As shown in Fig 7, the parameter values of individual cells
were statistically closer to the parameters of their own mother cell than to the parameters of
another mother cell. It appears that parameter values are 16% (resp. 14%, 10%) closer in genu-
ine mother/daughter pairs for gp (resp. gm, kmp). Although mild in absolute terms, bootstrap-
ping testing showed the presence of a statistically strong inheritance effect (p-values< 10−15

for all parameters, S1 Text). Importantly, we verified using a more restrictive notion of nMD

Fig 7. Parameter values of individual cells are statistically closer to the parameters of their own
mother than to the parameters of another mother cell. (A) The distance between parameters of related
mother and daughter cells (MD) and non-related mother and daughter cells (nMD) were compared. (B-D)
Distribution for each parameter of the average distance between 40 pairs of MD (red) and nMD (blue) for
50000 combinations obtained by bootstrapping (S1 Text). All parameters are closer between mothers and
daughters than on average (*** p-values < 10−15).

doi:10.1371/journal.pcbi.1004706.g007
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pairs that the observed inheritance effect was not due to the fact that mother and daughter cells
have more similar mean densities on average than nMD cells since the former share the same
environment. Interestingly, we also found that daughter cells are on average 14% more sensi-
tive than their mothers and that the intensity of the perceived shocks is anti-inherited: the
most resistant mothers have the most sensitive daughters, and conversely.

Discussion
In this work, we proposed an approach for capturing the biological variability observed in sin-
gle-cell time-lapse microscopy experiments by distributions of parameters. By doing so, we
address a fundamental issue encountered in the vast majority of quantitative studies where
parameters of deterministic or stochastic models of intracellular processes make sense at the
single-cell level but are estimated for a virtual ‘mean cell’. The analysis was based on the
mixed-effects (ME) modeling framework and two inference approaches were evaluated. The
relevance of the ME framework for modeling biological processes has been recently recognized
[23,24]. The use of advanced statistical methods, like SAEM, was essential to properly capture
the variability of the biological parameters across the population in a simple manner, including
most notably the correlation among them. In addition, we showed that the SAEMmethod
scales to real-life problems and provides robust results. With this approach, the information on
each and every cell is jointly used to calibrate the model parameter distribution, alleviating the
problem of limited observability and noisy observations encountered at the individual-cell
level. We then demonstrated the biological relevance of the inferred cell-specific parameters, as
they were partly inherited from mother to daughter cells and correlated with independently-
measured single-cell features.

Our approach is adapted to calibrate models explicitly accounting for extrinsic variability.
From a mechanistic viewpoint, two components of biological variability, termed intrinsic and
extrinsic noise, have been proposed. For a given cellular process, intrinsic variability is mostly
related to fast fluctuations coming from stochasticity in molecular reactions while extrinsic var-
iability includes more stable cell-to-cell differences in intracellular and extracellular environ-
ments [8,17,25]. Thanks to recent methodological developments, such as finite state truncation
methods, significant progress have been made in the identification of intrinsic noise models, in
particular for the study of gene expression [26]. Such models assume that the different observa-
tions arise from different realizations of the same stochastic process and, therefore, are still
based on the notion of a virtual mean—although noisy—cell. In comparison, and despite recent
methodological developments [27,28], few attempts have been made to infer extrinsic noise
models from data, see [4,10,23,29,30] and our previous work [31]. We refer the reader to Karls-
son et al. [24] for a detailed discussion of these works. This is surprising, given the fact that
extrinsic noise has been shown to be the dominating component in many biological systems
[17,18,32] and that application of cell population models has proven extremely useful, notably
to explain cell decision processes [3]. Moreover, with the notable exceptions of Zechner et al
[10] and Gonzalez et al [31], no method that exploits single-cell time-lapse data for the identifi-
cation of cell population models has been able to predict population behaviors. Interestingly,
Zechner et al [10] proposed a very general framework capturing intrinsic and extrinsic variabil-
ity by using a stochastic model based on the chemical master equation with parameter distribu-
tions. They investigated whether this modeling framework was able to capture both noise
components appropriately, all of the extrinsic variability being aggregated into a unique cell-
dependent parameter. Here, we pursued a different objective. We focused on extrinsic noise
and investigated whether multidimensional parameter distributions provide an accurate
description thereof and can be inferred from the available experimental data, whether the
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inferred single-cell parameter values are biologically-relevant, and how extrinsic noise is dis-
tributed across different cellular processes. Given the identifiability issues encountered already
on relatively simple ME models, one might wonder whether more complex models combining
the use of a stochastic interpretation of the reactions and of distributions for all (or most of)
the parameters can be accurately identified based on available experimental data. Another
attractive possible extension of the mixed-effect framework is to replace the purely static
description of cell-to-cell differences obtained by using different, time-invariant parameter val-
ues by a more dynamical representation using reaction parameters that slowly fluctuate in
time. This can typically be done by accounting for the stochastic turnover of the proteins
underlying the various reactions involved in the processes of interest [33].

The possibility of identifying single-cell models opens new perspectives. Indeed, our results
support the approach advocated by Pelkmans and coworkers (18) in which "studying cell-to-cell
variability [. . .] will increase our understanding of how cellular activities are embedded in the
physiology of a cell." Following what we have shown here, one could dissect the variability of
the different cellular processes involved in a particular phenotypic response and search for cor-
relations with different cellular processes and with environmental factors. Such rich informa-
tion on the integrated functioning of cells is otherwise barely accessible. More fundamentally,
single-cell modeling provides a quantitative tool to study the notion of cell identity, as it offers
a quantitative description of cell-to-cell differences. Lastly, to which extent this increased
knowledge can be used to improve our ability to predict and ultimately control single-cell
behavior is a question of interest for both the systems and synthetic biology communities
[14,34–36].

Materials and Methods

Yeast strain and microscopy
All experiments were performed using a STL1::yECitrine-HIS5, Hog1-mCherry-hph yeast
strain derived from the S288C background [14]. Cells were cultured overnight in synthetic
complete (SC) medium at 30°C, in a shaking incubator at 250 rpm, and then the cultures were
diluted in SC so as to reach an optical density of ~0.2 in 4h. Exponentially-growing cells were
injected into a home-made microfluidic device [14]. Liquid medium was flowed using a peri-
staltic pump (IPC-N, Ismatec) placed after the microfluidic device (flow rate: 120μL/min). A
computer-controlled three-way valve (LFA series; The Lee Company) was used to select
between normal medium (SC) or the same medium supplemented with 1M sorbitol. The
microfluidic chip was made by casting polydimethylsiloxane (PDMS; Sylgard 184 kit; Dow
Corning) on a master wafer (made by soft lithography), curing it at 65°C overnight, pealing it
off, and bonding it to a glass coverslip after plasma activation. The device has 5 chambers of
200x400x3.6 μmwhere cells are imaged. These chambers are connected to larger channels
where medium flows such that the environment of the imaging chamber is changed by diffu-
sion only (see [14]). After having loaded cells in the device, we leave them to rest with SC flow-
ing for 30 min before starting the experiment. A switch of the valve state did not lead to an
instantaneous change of the cells’ environment inside the microfluidic device: ~2 min were
needed for the fluid to pass from the valve to the channels and the imaging chamber.

The cells were imaged using an automated inverted microscope (IX81; Olympus) equipped
with an X-Cite 120PC fluorescent illumination system (EXFO) and a QuantEM 512 SC camera
(Roper Scientific). The temperature of the microscope chamber, which also contains the media
reservoirs, was constantly held at 30°C by a temperature control system (Life Imaging Services).
All of these components were driven by the open-source software μManager which was inter-
faced with Matlab. Images were taken using a 100× oil immersion objective (PlanApo 1.4 NA;
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Olympus). The fluorescence exposure time was 200 ms, with fluorescence illumination inten-
sity set to 50% of maximal power. The fluorescence exposure time was chosen such that the
fluorescent illumination did not cause noticeable effects on cellular growth over extended peri-
ods of time. Importantly, illumination, exposure time, and camera gain were not changed
between experiments, and besides background and auto-fluorescence subtraction (defined as
the minimum intensity in the first frame), no data renormalization or processing was done.
Imaging was performed at a frequency of one frame every 3 min for bright-field and one frame
every 6 min for fluorescence measurements. The duration of the experiments was 10 hours.

Measurements of gene expression and physiological features at the
single-cell level
Single-cell gene expression profiles were obtained in two experiments: one for identification
(DI ; 325 single-cell trajectories) and one for validation (DV ; 166 single-cell trajectories). The
randomly-generated profiles of hyperosmotic stresses differed in each experiment. Image anal-
ysis was performed using a home-made segmentation and tracking tool, CellStar. After observ-
ing that newly-detected cells usually corresponded to buds still attached to their mother for a
long period of time after detection and might present fluorescence quantification artifacts (due
to their small size and variable focus), we discarded the information obtained during the first
two hours for new cells. Only cells imaged for more than 5 h were selected for identification
and validation. The average size of a cell corresponds to its size measured at each time point in
bright-field images and averaged over all time points. Average cell age and density were defined
analogously. The density of the environment of a single cell was defined as the area occupied
by neighbor cells relative to the area of the neighborhood of the cell. The neighborhood was
defined as a disk with a radius corresponding to five times the radius of a typical cell. The rela-
tive changes in the size of the cells caused by budding events were used to estimate single-cell
division times from bright-field images and compute the average cell specific division rate.
After automated segmentation and tracking, lineage was manually extracted from the micros-
copy images. More details are provided in S1 Text.

Single-cell models and ME population models
We assumed that the transcription factor activity, u(t), depends on the osmolarity effectively
sensed by the cells inside the microfluidic chambers, uc(t), which itself depends on the valve
status, uv(t) (S1 Text). To relate fluorescence measurements to actual protein concentrations,
we accounted for protein maturation time using a delay τ and assumed the presence of multi-
plicative and additive measurement noises that are white and Gaussian (S1 Text). A mixed-
effects population model is then obtained from single-cell models by assuming that the param-
eters of the population of cells follow log-normal distributions. More details on the modeling
assumptions are provided in S1 Text.

Inference of single-cell and ME population models
Two methods were proposed to infer ME population models: a naive approach and SAEM.
The naive approach used the local optimization algorithm fminsearch fromMatlab to maxi-
mize the (log-)likelihood of the parameters tested, given the observed data for the considered
cell. The parameter distribution for the ME model is then defined based on the set of single-cell
parameters. The SAEM approach aims directly at maximizing the likelihood of the population
(high-level) parameters describing the distributions of the model parameters, given all the sin-
gle-cell data. We used the SAEM implementation of Monolix software. Lastly, having inferred
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a distribution for the model parameters of a population of cells, one could estimate the most
likely parameter values for each single cell (ME single-cell models). We used the local optimiza-
tion tool fminsearch fromMatlab to implement a maximum a posteriori approach. For more
details on the parameter inference approach see S1 Text.

Relating the specific intracellular processes involved in gene expression
with other, non-modeled cellular properties
The analysis of the correlations between the perceived shocks or the single-cell measured fea-
tures and the estimated parameters was performed using the Spearman coefficient of correla-
tion. The significance of the correlations (p-values) was assessed using the standard two-tailed
test implemented in the Matlab statistics toolbox. To test whether parameters of mother and
daughter cells were statistically closer than on average, we constructed pairs of cells that dif-
fered solely by whether they were direct relatives (mother/daughter pairs, MD pairs) or not
(non-related mother/daughter pairs, nMD pairs). The comparison of the mean distance
between MD pairs and nMD pairs was performed by bootstrapping (S1 Text).

Supporting Information
S1 Text. Supplementary Materials and Methods. Additional information on experimental
design, data analysis, estimation of single cell quantitative features, cell lineage reconstruction,
modeling of the osmostress-induced gene expression, parameter inference, simulation of popu-
lation behavior, correlation with quantitative single-cell measurements, and heritability analy-
sis.
(PDF)

S2 Text. Robustness of population predictions. Influence of the cell number and of the learn-
ing time horizon.
(PDF)

S3 Text. Validation of population predictions. Predicting population behavior on two valida-
tion data sets.
(PDF)

S4 Text. Identifiability analysis. Parameters km and kp cannot be assigned values unambigu-
ously no matter the quality and quantity of fluorescence measurements.
(PDF)

S5 Text. On learning the statistics of non-identifiable parameters. Statistical properties of
parameters that are not distinguishable at the single-cell level can nevertheless be constrained
in a population approach.
(PDF)

S1 Fig. pSTL1 expression in response to repeated osmotic stresses shows a high level of vari-
ability between cells. A. Minimum, maximum and average cellular fluorescence levels in the

identification datasetDI. Back bars represent input shocks. B. Set of single cell trajectories pres-

ent in the identification datasetDI (solid lines). Samples that did not pass all quality tests
described in S1 Text appear as light blue dots. C. Set of single cell trajectories present in the val-

idation datasetDV .
(PDF)

S2 Fig. Statistical inference methods for single-cell and population parameter estimation.
In the naive approach, optimization is used to seek -for each cell- parameter values fitting the
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individual behavior of the cell via residual minimization (top, step 1). The distribution describ-
ing all of the estimated parameter values is then deduced (top, step 2). In the proposed method,
the SAEM tool is used to infer a distribution that explains the set of individual behaviors at the
distribution level (bottom, step 1). Parameter values for single cells are then estimated based on
the particular behavior of the cell and the inferred distribution for the population, using maxi-
mum a posteriori estimation (bottom, step 2).
(PDF)

S3 Fig. The distribution that better describes the entire population is more compact and
more structured. A. 2D plot describing the distribution of the (logarithm of) single-cell param-
eters for two parameters (insert: same data shown in natural scale). The ellipses represent the
region in which 50% of the parameters are distributed. B. Two metrics were computed to quan-
tify the difference in the structure of the parameter distributions at a more global level. The
first metric was the average of the coefficients of the variation matrix (i.e. of the off-diagonal
terms covij/(μiμj) between the parameters of the model; this represents the amount of structure
in the parameter distribution and shows that SAEM yielded a more structured parameter dis-
tribution. The second metric was the volume in the parameter space of the 95%-confidence
ellipsoid associated with the covariance matrix. This yields a measure of the typical volume of
parameter space occupied by the parameter distribution, and therefore, quantifies the spread of
the parameter distributions. This showed that the SAEM approach described the population
with a smaller distribution.
(PDF)

S4 Fig. Average parameter distance of Mother-Daughter pairs against random pairs from
the same experiment. The blue bar represent the average distance in parameters between 55

mother-daughter pairs from experimentDI. The red distribution is obtained by bootstrapping
20000 sets of 55 random pairs of cells (from the same experiment). We see that the distance is
very significantly smaller for mother-daughter pairs.
(PDF)

S1 Table. Parameter estimates for the mixed-effects model using the naive inference

approach (A), using SAEM on the identification datasetDI (B) and using SAEM on the val-

idation datasetDV (C). (A) Initial values for the search have been obtained by global optimiza-
tion (CMAES) on the mean behavior starting from literature-based parameters. The value of
the delay τ has been fixed for all cells to its mean-cell. Therefore, statistics on its variability

have been shaded. The dataset used is the identification setDI (B and C) The parameter search
is initialized with parameter means extracted from the literature and a diagonal covariance
matrix. The parameter search has been adapted to account for the structural non-identifiability
relation of km and kp (only their product is relevant in single-cell models): the mean of kp is
kept at a constant value during the search. No constraints are placed on its variance though.
The value of the delay τ is estimated but is set identical for all cells. The dataset used for identi-

fication isDI (B) andDV (C). The relative standard errors of the estimated moments are typi-
cally less than 2%, with the exception of the estimate of SD[km] where it was 8%.
(PDF)

S1 Data. Data files containing raw fluorescence values for all individual cells tracked in the

DI andDV experiments.
(ZIP)
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