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Background. Staphylococcus aureus can cause life-threatening infections. Human susceptibility to S. aureus infection may be
influenced by host genetic variation.

Methods. A genome-wide association study (GWAS) in a large health plan–based cohort included biologic specimens from 4701
culture-confirmed S. aureus cases and 45 344 matched controls; 584 535 single-nucleotide polymorphisms (SNPs) were genotyped
on an array specific to individuals of European ancestry. Coverage was increased by imputation of >25 million common SNPs, using
the 1000 Genomes Reference panel. In addition, human leukocyte antigen (HLA) serotypes were also imputed.

Results. Logistic regression analysis, performed under the assumption of an additive genetic model, revealed several imputed
SNPs (eg, rs115231074: odds ratio [OR], 1.22 [P = 1.3 × 10−10]; rs35079132: OR, 1.24 [P = 3.8 × 10−8]) achieving genome-wide sig-
nificance on chromosome 6 in the HLA class II region. One adjacent genotyped SNP was nearly genome-wide significant
(rs4321864: OR, 1.13; P = 8.8 × 10−8). These polymorphisms are located near the genes encoding HLA-DRA and HLA-DRB1. Re-
sults of further logistic regression analysis, in which the most significant GWAS SNPs were conditioned on HLA-DRB1*04 serotype,
showed additional support for the strength of association between HLA class II genetic variants and S. aureus infection.

Conclusions. Our study results are the first reported evidence of human genetic susceptibility to S. aureus infection.
Keywords. Staphylococcus aureus; host genetics; HLA.

Staphylococcus aureus is both a harmless colonizer and a lead-
ing cause of life-threatening infections. A number of observa-
tions suggest a genetic basis for human susceptibility to S.
aureus, including variable genetic susceptibility to S. aureus in-
fection in inbred mice [1, 2], cattle [3], and sheep [4]; familial
clusters of S. aureus infection [5]; and genetic conditions con-
ferring susceptibility to S. aureus (eg, Job syndrome and Che-
diak-Higashi syndrome) [6, 7]. Two previous investigations
have used genome-wide association studies (GWAS) to evaluate
human genetic susceptibility to S. aureus infection [8, 9]. Both
were likely underpowered to detect effects at genome-wide sig-
nificance. As a result, the impact of host genetic variation on the
susceptibility to S. aureus infection is largely unknown.

Our goal for the current study was to determine which host
genetic polymorphisms were associated with (1) all S. aureus in-
fections and (2) a subset of community-acquired skin and soft

tissue S. aureus infections (SSTIs), using genomic data from
>50 000 white individuals. We hypothesized that genetic vari-
ants that encode proteins with immune functions would be as-
sociated with an increased (or decreased) risk of S. aureus
infection. A second objective was to determine whether includ-
ing imputed genetic variants [10] would reveal additional
gene–S. aureus infection associations. A third objective was to
evaluate the strength of potential significant associations from
the HLA regions of chromosome 6 by conditioning on imputed
HLA serotypes [11].

MATERIALS AND METHODS

Study Sample
The study population consists of participants in the Research
Program on Genes, Environment, and Health (RPGEH). This
cohort was recruited from 3.3 million patients in the Kaiser Per-
manente Northern California (KPNC) health plan. The
RPGEH includes a cohort with baseline survey data obtained
in 2007–2008 from 400 000 adult patients in KPNC who had
≥2 years membership prior to the survey (average time, 23.5
years). More than 200 000 patients who had completed surveys
were selected to receive Oragene saliva collection kits. Genotyp-
ing was conducted using returned saliva specimens from
110 266 RPGEH subjects (of whom 89 341 self-identified as
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white). The RPGEH imputed >25 million SNPs not covered in
the original genotyping arrays, as well as HLA major histocom-
patibility complex (MHC) serotypes. Informed consent was ob-
tained from all RPGEH subjects. Questionnaire data included
demographic characteristics (eg, age and sex), as well as self-
reports of disease history (eg, diabetes). The RPGEH study
and the current study were approved by the KPNC institutional
review board.

KPNC maintains electronic databases that include data on
hospitalizations, clinic visits, laboratory testing results, and
pharmacy dispensing records. These databases were used to cre-
ate the case-control sample in the present study.

Identification of Cases
The study’s phenotypes included culture-confirmed diagnoses of
S. aureus infections identified using standard methods in the
clinical microbiology laboratory of KPNC [12]. For repeated test-
ing, we adapted the Clinical and Laboratory Standards Institute
guideline and recommendations in the literature, including only
the first isolate per person in a 365-day period [13, 14]. To iden-
tify isolates likely to be related to clinically relevant infections, we
restricted our analyses to blood, bone, cerebrospinal fluid, body
fluid, urine, tissue, respiratory, and miscellaneous bacterial spec-
imens (eg, abscesses). Screening tests (nares) and cultures of gen-
ital specimens, feces/stool specimens, catheter tips, and throat
specimens were excluded. The primary study phenotype included
all S. aureus infections diagnosed in white subjects of the RPGEH
cohort between 1995 and 2011. The secondary phenotype was
the subset of community-acquired SSTIs diagnosed during the
same interval. SSTIs were ascertained via linking to diagnostic
data in the electronic databases (International Classification of
Diseases, Ninth Revision, Clinical Modification [ICD-9]). SSTI
diagnostic codes included erysipelas (035), cellulitis and abscess
(566, 67510–67514, 6810–6829, 6850), mastitis (67520–67524),
carbuncle and furuncle (6800–6809), acute lymphadenitis
(683), impetigo (684), other skin infections (6860–6861, 6868–
6869), folliculitis (7048), and hidradenitis (70583). An infection
that was diagnosed ≥48 hours after admission to the hospital was
classified as a hospital-onset case; all other infections were clas-
sified as community acquired.

Study controls included RPGEH subjects with no evidence of
culture-confirmed S. aureus infection. Controls lacking a posi-
tive isolate but having records of an ICD-9 code for S. aureus
infection and subsequent treatment with antibiotics were ex-
cluded. Our study used a frequencymatched case-control design.
Cases were matched on age (5-year age groups) at the time of
specimen collection and sex to approximately 10 controls.

DNA Isolation, Genotyping, and Quality Control
DNA was extracted from saliva specimens, using an Agencourt
AMPure XP kit (Beckman Coulter) in a high-throughput pro-
cess. Genotyping was accomplished using the Affymetrix Axiom
Genotyping Solution (available at: http://media.affymetrix.com/

support/technical/datasheets/axiom_genotypingsolution_data
sheet.pdf). The Axiom genotyping platform is a 2-color, ligation-
based assay that uses 30-mer oligonucleotide probes synthesized
in situ on a microarray substrate, with 96 samples per plate.
A maximum of approximately 690 000 SNPs may be accom-
modated by this format. Performance of the array was assessed
by assaying the white and Yoruban HapMap2 [15] populations.
Call rates, sample concordance, reproducibility, and Mendelian
consistency were extremely high. A large majority of SNPs
have overall call rates of ≥97%. Genotyping of 89 341 saliva
samples from the European (EUR) ancestry study subjects was
completed using 3 Affymetrix Gene Titan systems and 3
Beckman Biomek Systems. The Affymetrix Powertools Package,
version 1.12.0 (available at: http://www.affymetrix.com/partners_
programs/programs/developer/tools/powertools.affx?hightlight=
true&rootCategoryId=34002#13), was used to make genotype
calls. The Affymetrix Axiom EUR array included 674 112
SNPs: 116 were mitochondrial, 289 were on the Y chromosome,
388 were in pseudo-autosomal regions of the X and Y chromo-
somes, and the remaining 660 989 SNPs were autosomal.

Examination of graphics from principal components (PC)
analysis [16] (see the “GWAS Data Analysis” section, below)
led to the identification of some individuals whose genetic an-
cestry appeared to be discordant from their self-report on the
RPGEH survey (available at: https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/GetPdf.cgi?id=phd004309). Some individ-
uals with data on the African (AFR) array were estimated to
have 100% European ancestry. Investigation of so-called dis-
cordant individuals revealed a discrepancy between the survey
form and the computerized records from optical scanning.
About 2% of surveys had been mis-scanned for race/ethnicity/
nationality. This led to the systematic reassignment of these in-
dividuals to their original survey responses, supplemented by
race/ethnicity information in the KPNC databases.

Our quality control (QC) filtering excluded SNPs with geno-
typing call rates of <95%, a minor allele frequency (MAF) of
<0.4% (primary analysis) and <0.9% (secondary analysis), or a
statistically significant (P < 10−3) departure from Hardy–
Weinberg equilibrium (HWE) in the controls. Subjects with
missing genotype rates of >5% ormismatch between reported and
genetically determined sex were excluded. Samples were evaluated
for cryptic relatedness through estimation of kinship coefficient,
using KING [17] software. One sample was randomly excluded
from sample pairs exhibiting a kinship coefficient of ≥0.0625.

Genotype Imputation Method
To increase coverage of common variants in the genotyped plat-
form, particularly in the region where our most significant gen-
otyped SNP GWAS results were found, imputation was done on
the EUR array (for a comparison of SNP imputation vs other
multiple imputation techniques, see Supplementary 1). This ap-
proach is now a well-established method to increase marker
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density in GWAS [18] and takes advantage of known multi-SNP
haplotype structures that have been determined by sequencing
large diversity panels, such as the 1000 Genomes Project [19].
Therefore, untyped SNPs can be inferred from the genotyped
markers included on a genome-wide array with high degrees
of confidence and used in association analysis. The data were
prephased (inferring haplotypes) with SHAPE-IT v2.r644
[20], using the family structure of first-degree cryptic related in-
dividuals as available. With 1000 Genomes (phase I; March
2012) as a reference panel, SNP data were imputed using IM-
PUTE2 v2.2.2 [10, 21].

HLA Serotype Imputation Method
The HLA serotype imputation method used in our study was
originally developed and described in detail by Jia et al [11].
Briefly, the complex genetic structure of MHC makes it difficult
to collect high-resolution haplotype data in large cohorts. Long-
range linkage disequilibrium (LD) between HLA loci and SNPs
across the MHC region offers an alternative approach through
imputation to interrogate HLA. We used the SNP2HLA pro-
gram to impute individual amino acid–changing polymor-
phisms and classical 4-digit haplotypes at class I and II loci.
SNP2HLA was developed using the following reference panels:
(1) HapMap-CEPH (individuals of European ancestry) [22] and
(2) Type 1 Diabetes Genetics Consortium reference panel (5225
unrelated individuals) [23]. Beagle software [18] was used to
phase genotype data into individual haplotypes, taking into ac-
count familial relationships. Genotyped SNPs were extracted
from within the MHC region (chromosome 6: 29–34 Mb on
build 36/hg18); SNPs with a MAF of <2.5% were removed. Bea-
gle imputed all missing SNPs, classical HLA alleles, and amino
acid polymorphisms. Output included posterior probabilities,
allelic dosages, and phased haplotypes for each individual.

Statistical Power
The original statistical power calculations showed that, under an
additive logistic model with a 2-sided test, an α of 5 × 10−8, and
a MAF of > 0.10, there was sufficient power to detect odds ratios
(ORs) of ≥1.20, given a (pre-QC filtering) sample size of 56 100
subjects (5100 cases and 51 000 controls).

GWAS Data Analysis
Our study conducted case-control analyses for each S. aureus
phenotype, using an additive genetic model of inheritance.
Unconditional logistic regression was used for both primary
outcome (all S. aureus infections) and secondary outcome
(community-acquired SSTIs), testing the association with
each genotyped and each imputed SNP separately. Logistic re-
gression was also used in association testing of the imputed
HLA serotype data in relation to the primary phenotype, as
well as in further analysis, in which the 3 most significant
SNPs were conditioned on an imputed HLA serotype variant.
To account for population stratification and admixture, our re-
gression models included adjustment for the first 10 eigen-

vectors from a PC analysis [24], using Eigensoft 4.2. To reflect
the study sampling scheme, our regression models included age
(5-year intervals) at time of specimen collection and sex covar-
iates. PLINK software [25] was used in the association testing
analyses of the genotyped data for both phenotypes [25].
PLINK and R software were used to analyze the imputed SNP
and imputed HLA serotype data.

RESULTS

The initial study sample for the primary phenotype analysis (ie,
all culture-confirmed S. aureus infections as outcome) included
53 322 subjects (4997 S. aureus cases and 48 325 controls). Dur-
ing QC filtering, 16 513 SNPs with genotyping call rates of
<95%, 6958 with a MAF of <0.4%, and 66 106 showing signifi-
cant departure from HWE in controls were excluded, leaving

Table 1. Distribution of Study Characteristics for 50 045 Subjects With
(Cases) or Without (Controls) Staphylococcus aureus Infection in the
Primary Phenotype Analysis Data Set

Characteristic Cases, No. (%) Controls, No. (%)

Sex

Female 2315 (49) 23 322 (51)

Male 2386 (51) 22 022 (49)

Age at specimen collection date, y

20–24 16 (<1) 171 (<1)

25–29 19 (<1) 214 (<1)

30–34 44 (1) 446 (1)

35–39 82 (2) 822 (2)

40–44 112 (2) 1067 (2)

45–49 194 (4) 1892 (4)

50–54 308 (7) 3069 (7)

55–59 461 (10) 4625 (10)

60–64 715 (15) 7079 (16)

65–69 666 (14) 6654 (15)

70–74 607 (13) 6134 (14)

75–79 629 (13) 6133 (14)

≥80 848 (18) 7038 (15)

History of diabetes

Yes 705 (15) 5895 (13)

No 3996 (85) 39 449 (87)

History of cancer

Yes 799 (17) 7255 (16)

No 3902 (83) 38 089 (84)

HIV infected

Yes 66 (1.4) 136 (0.3)

No 4635 (98.6) 45 208 (99.7)

Source of S. aureus

Blood culture 141 (3) . . .

Cerebrospinal fluid or other fluid 141 (3) . . .

Urine culture 282 (6) . . .

Respiratory culture 329 (7) . . .

Tissue/biopsy culture 940 (20) . . .

Miscellaneous bacterial culture 2868 (61) . . .

Overall 4701 (100) 45 344 (100)

Abbreviation: HIV, human immunodeficiency virus.
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584 535 SNPs for data analysis. Removal from the data set prior
to analysis occurred for 9 subjects whose monozygotic twin was
also in the study sample, 3178 subjects whose sample pair had a
kinship coefficient of ≥0.0625, 54 controls with ICD-9 diagnos-
tic coding for S. aureus infection followed by coding for appro-
priate treatment, 24 subjects who had a mismatch between their
reported and genetically determined sex, and 12 subjects (of
South Asian ancestry) who did not have estimates for European
PC. Thus, our final sample for the primary phenotype analysis
consisted of 50 045 unique subjects (4701 S. aureus cases and
45 344 controls).

Table 1 shows the distribution of study characteristics among
50 045 subjects. Approximately 51% of cases and 49% of con-
trols were male; 73% of cases and 74% of controls were ≥60
years of age at the time of specimen collection. Fifteen percent
of cases and 13% of controls had a history of diabetes. Of the
4701 S. aureus cases, 28% were methicillin-resistant S. aureus
(MRSA) infections, 50% were SSTIs, and 96% were communi-
ty-acquired infections. Laboratory order codes for isolates from
the 4701 confirmed cases included blood culture for 3%, cere-
bral spinal fluid/other body fluid for 3%, and miscellaneous
bacterial culture for 61%.

Prior to QC filtering, 50 576 subjects (2251 cases and 48 325
controls) were available for analysis of the secondary pheno-
type, community-acquired SSTI; 16 499 SNPs with call rates

of <95%, 13 752 with a MAF of <0.9%, and 46 730 showing de-
parture from HWE in controls were excluded, leaving 597 131
SNPs for data analysis. Eight subjects whose monozygotic twin
was also in the study sample, 2915 subjects whose sample pair
had a kinship coefficient of ≥0.0625, 54 controls with an ICD-9
code for S. aureus infection, 23 subjects who had a mismatch
between self-reported and genetically determined sex, and 12
subjects who did not have estimates for European PC were re-
moved. Our final analysis sample for the secondary phenotype
consisted of 47 564 subjects (2130 cases and 45 434 controls).

A Q-Q plot of the expected distribution of association test
statistics across all genotyped SNPs in the primary phenotype
analysis in comparison to observed P values is presented in Sup-
plementary Figure 1; the genomic inflation factor was estimated
to be 1.01, indicating adequate control of population stratifica-
tion. Table 2 presents results of logistic regression analysis for
both genotyped and imputed SNPs in relation to the primary
and the secondary phenotype outcomes. The primary phenotype
model revealed 1 genotyped SNP, rs4321864, that approached ge-
nome-wide significance (OR, 1.13; P = 8.85 × 10−8; Supplementary
Figure 2). This variant is located in the HLA class II region of
chromosome 6 (position: 32 399 187-32 399 187; band: 6p21.32).
SNP rs4321864 appears to be at the 5′ terminus of the HLA-
DRA gene. Given that rs4321864 approached the threshold
(P ≤ 5.0 × 10−8) of genome-wide significance, we conducted

Table 2. Final Results of Logistic Regression Analysis of Primary and Secondary Phenotypes Versus Genotyped and Imputed Single-Nucleotide
Polymorphisms (SNPs), and Primary Phenotype vs Imputed HLA Serotype

Model, SNP Chromosome Gene Location A1 A2 OR P Valuea

Primary phenotype (all S. aureus infections) SNP association model

Genotyped

rs4321864 6 HLA-DRA 5′ end of gene A C 1.13 8.8 × 10−8

Imputed

rs115231074 6 HLA-DRB1 Intergenic: 3′ downstream of –DRB1 T C 1.22 1.3 × 10−10

rs35079132 6 HLA-DRB1 Intergenic C T 1.24 3.8 × 10−8

rs189516143 6 HLA-DRB1 Intergenic A T 1.21 9.2 × 10−8

rs190073676 6 HLA-DRB1 Intergenic T A 1.18 1.6 × 10−7

rs184932624 6 HLA-DRB1 Intergenic T C 1.23 2.5 × 10−7

rs17210959 6 HLA-DRB1 Within locus A G 1.23 3.5 × 10−7

Secondary phenotype (community-acquired SSTc S. aureus infections) SNP association model

Genotyped

rs4321864 6 HLA-DRA 5′ end of gene A C 1.14 8.1 × 10−5

Imputed

rs115231074 6 HLA-DRB1 Intergenic: 3′ downstream of –DRB1 T C 1.28 5.2 × 10−8

rs12526396 6 . . . Intergenic G A 0.80 4.3 × 10−7

Primary phenotype (all S. aureus infections) imputed HLA serotype association model

Imputed HLA serotype . . . . . . . . . . . .

HLA_DRB1_04 . . . . . . . . . Present . . . 1.08 .01

HLA_DRB1_0401 . . . . . . . . . Present . . . 1.08 .04

HLA_DRB1_0402 . . . . . . . . . Present . . . 1.36 .002

Analyses were adjusted for age, sex, and the first 10 eigenvectors from a principal components analysis.

Abbreviations: A1, minor allele; A2, major allele; OR, odds ratio; S. aureus, Staphylococcus aureus; SST, skin and soft tissue.
a Threshold for genome-wide significance: P≤ 5 × 10−8.
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additional regression analyses examining imputed SNPs on
chromosome 6. Two imputed HLA class II variants were signifi-
cantly associated with the primary phenotype (Table 2): imputed
SNP rs115231074 (OR, 1.22; P = 1.3 × 10−10) and rs35079132
(OR, 1.24; P = 3.8 × 10−8); imputed SNP rs189516143 (OR,
1.21; P = 9.2 × 10−8) approached genome-wide significance.
All 3 SNPs are intergenic near the HLA-DRB1 gene locus.
Another imputed SNP, rs17210959 (OR, 1.23; P = 3.5 × 10−7),
is located within the HLA-DRB1 gene. A focused view of the
region in chromosome 6 where these SNPs are located is
shown in Figure 1. All of these SNPs had a MAF of >0.10. A sub-
analysis in which MRSA infection was the outcome did not show
any SNPs with P values that approached genome-wide signifi-
cance (not shown). Also, analyses stratified by 3 large age groups
did not show differences in SNP effect estimates across the age
strata.

Secondary Analysis: Community-acquired SSTI
Results from the secondary phenotype analyses (community-
acquired SSTIs) demonstrated that genotyped SNP rs4321864
did not approach genome-wide significance (P = 8.1 × 10−5).
However, imputed SNP rs115231074 closely approached
genome-wide significance (OR, 1.28; P = 5.2 × 10−8). No
other genotyped or imputed SNPs approached genome-wide
significance.

Sensitivity analysis was conducted for both the primary and
secondary phenotypes by excluding subjects who had a history

of diabetes diagnosis. Results were essentially the same as those
for the analyses that included patients with diabetes.

HLA Serotype Association and Conditional Association Analysis
Table 2 also presents selected significant results from associa-
tion testing for the imputed HLA serotypes. Given the signifi-
cant association from the genotyped and imputed SNP data
analysis in the HLA class II region, we examined the association
of imputed HLA-DR serotype variants to primary phenotype to
determine whether the imputed SNP association results could
be attributed to the effect of 1 or more classical HLA haplotypes.
Among several HLA-DRB1 serotypes significantly associated
with the primary phenotype, HLA-DRB1*04 variants showed
the largest effect estimates (eg, HLA-DRB1*0402: OR, 1.36
[P = .002]). We then conducted a conditional association anal-
ysis by fitting separate logistic regression models based on the
most significant results from the genotyped and imputed SNP
GWAS analyses conditioning on imputed HLA-DRB1*04 sero-
type variant (eg, logit [primary phenotype] = β1 rs4321864 + β2
HLA-DRB1*04 + β3 age-sex group + β4 PC1+ . . . + β14 PC10;
Table 3). Results showed that, while the P value for genotyped
SNP rs4321864 had increased, it still remained significant even
after conditioning on imputed HLA-DRB1*04 serotype; the ef-
fect estimate was unchanged (OR, 1.14; 95% confidence inter-
val, 1.07–1.20). Moreover, the P value and effect estimate for
imputed SNP rs115231074 were virtually unchanged after ad-
justment for HLA-DRB1*04. These results indicate that the

Figure 1. Primary (all Staphylococcus aureus infections) phenotype: focused view of the locus of genotyped and imputed single-nucleotide polymorphisms (SNPs) between
32.3 and 32.5 Mb on chromosome 6. The plot also shows the SNP location in relation to known genes in that locus. Linkage disequilibrium of index SNP rs115231074 with other
plotted SNPs is shown as a range of r2 values, in which red = 0.81–1.0, orange = 0.61–0.80, green = 0.41–0.60, light blue = 0.21–0.40, and dark blue = 0.01–0.20.
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individual SNP associations are not due to LD with HLA class II
haplotypes and provide further support for the association be-
tween both SNPs and the primary phenotype.

DISCUSSION

In the current study, we used a sample of >50 000 unique white
subjects to identify 2 imputed SNPs (rs115231074 and
rs35079132) located in the HLA class II region of chromosome
6 that achieved genome-wide significance in the primary phe-
notype GWAS analysis. These results strengthened our finding
of genotyped SNP rs4321864, located on chromosome 6 near
the 5′ terminus of the HLA-DRA gene, in the primary pheno-
type association testing. The secondary phenotype analysis also
revealed a significant finding for imputed SNP rs115231074.

HLA-DRA encodes the sole α chain for the β chains encoded
by HLA-DRB-1 and HLA-DRB-3, HLA-DRB-4, and HLA-
DRB-5. Together, the proteins encoded by HLA-DRA and
HLA-DRB genes form an antigen binding heterodimer that pre-
sents foreign peptides to trigger the immune response. A signif-
icant body of evidence supports the possibility that HLA class II
haplotypes may influence human susceptibility to S. aureus in-
fection. First, specific HLA haplotypes (HLAII DR14/DQ5) are
associated with susceptibility to invasive Streptococcus pyogenes
infection in patients [26] and determine the severity of response
to bacterial superantigens from both S. pyogenes [27] and S. au-
reus [28]. Second, S. aureus superantigens, including toxic shock
syndrome toxin (TSST-1), bind to the HLA II DR1 molecule
[29, 30] and are critical in the development of S. aureus bacter-
emia and endocarditis [31, 32].Third, nasal carriage of S. aureus
is associated with the HLA-DR3 and HLA-DR7 class II sero-
types [33]. Finally, polymorphisms in HLA-DRB1 are strongly
associated with rheumatoid arthritis, an inflammatory disease
characterized by a high risk of S. aureus infection [34–36].
The HLA-DR α chain is a relatively nonpolymorphic gene con-
taining 5 exons and spanning approximately 33–35 kDa. Be-
cause of its relative stability, the positions in the HLA-DR β

chain (HLA-DRB) appear to play a major role in binding to
and presenting different antigens for recognition by T cells.
Recognition of staphylococcal toxins and the subsequent im-
munologic response may be critical elements in determining

infection. The intergenic location of the most significant imput-
ed SNPs (rs115231074 and rs35079132) suggests that functional
elements (eg, regulatory element) may exist in the region. Such
variants might change the quantity of a specific variable chain
produced, rather than its sequence. Alternatively these SNPs
could be in LD with multiple variants that collectively constitute
a functional haplotype. Finally, it is also possible that there is LD
with genic variation that was not genotyped or imputed. Fur-
ther study is therefore warranted.

Refining our primary end point to include only community-
acquired SSTI did not result in more-significant findings. This
may be due in part to the emergence of the highly virulent S.
aureus USA300 clone [37] during the case ascertainment peri-
od. Unfortunately, bacterial genotyping was not available in this
study.

Both our primary and secondary phenotype sample sizes
were adequate to power GWAS testing that could detect relative-
ly small risk-ratio estimates for common variants (MAF, >1%)
at genome-wide significance. Because a GWAS relies on LD be-
tween common genotyped markers and relatively common
causative variants, it generally has inadequate power to detect
significant associations with rare causative variants. Much of
the genetic component to common infectious disease may be
attributable to the cumulative effects of many rare mutations
with limited penetrance [38]. While rare mutations could ac-
count for much of the genetic component, our imputed SNP
results support a consensus that common variants are a part
of the genetic component for which there is evidence in other
diseases/conditions [39–41].

Previously, we reported a case-control study of 361 white indi-
viduals with a diagnosis of S. aureus bacteremia whowere matched
to 699 controls [8].That study did not find any genetic associations
that reached genome-wide significance (P≤ 5 × 10−8). Ye et al
conducted a case-control design in which the outcome included
all S. aureus infections (309 cases and 2925 controls) from a cohort
of approximately 20 000 individuals of northern European an-
cestry [9]. That study also failed to identify any SNPs reaching
genome-wide significance. More-targeted approaches, includ-
ing murine sepsis models, have identified candidate genes asso-
ciated with susceptibility to S. aureus infection in murine

Table 3. Results of Logistic Regression Analysis of Primary Phenotype vs Genotyped and Imputed Single-Nucleotide Polymorphisms (SNP) Conditioned on
Imputed HLA-DRB1*04 Serotype

HLA SNP Chromosome Gene Location OR P

Genotyped

rs4321864 6 HLA-DRA 5′ end of gene 1.14 1.38 × 10−5

Imputed

rs115231074 6 HLA-DRB1 Intergenic: 3′ downstream of –DRB1 1.22 5.45 × 10−9

rs35079132 6 HLA-DRB1 Intergenic 1.24 1.72 × 10−6

Analyses were adjusted for imputed serotype HLA-DRB1*04, age, sex, and the first 10 eigenvectors from a principal components analysis.

Abbreviation: OR, odds ratio.
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chromosomes [1, 2, 42]. Thus, the current study is the first to
identify candidate polymorphisms associated with susceptibility
to S. aureus infection at a genome-wide significant level.

Our study had limitations. First, the genotype of the infecting
S. aureus isolates is not known. Specific S. aureus clones possess
different combinations of virulence genes ( fnbpA and fnbpB [43]
and sasX [44]), human immune evasion clusters (scn and chp)
[45], and enterotoxins that influence their ability to cause and
continue infection in humans. In addition, specific nonsynony-
mous SNPs in key virulence genes have been shown to enhance
[46] and reduce [47] bacterial virulence. Second, we were unable
to control for certain environmental factors (eg, nutrition) that
may influence how S. aureus interacts with host gene variants.
Third, it is possible that some of the S. aureus respiratory isolates
may have reflected colonization instead of active infection. How-
ever, this possibility would have led to a reduction in the differ-
ence between cases and controls. Fourth, our study population
was limited to white subjects (see Supplementary 2 for further
discussion of this topic). Thus, our findings cannot be general-
ized to other racial groups. Finally, we were unable to perform
additional subgroup analyses in potentially important popula-
tions, such as patients with recurrent S. aureus infections.

Despite these limitations, our fully powered GWAS identified
both genotyped and imputed genetic variants in the HLA class
II region that are associated with susceptibility to S. aureus
infection. These findings are independent of classical haplotype
associations. Future studies using whole-genome sequencing
experiments in patients with complicated and uncomplicated
S. aureus bacteremia and admixture mapping studies to evaluate
susceptibility to S. aureus in African American patients are cur-
rently underway. Further knowledge of host genetic response to
S. aureus infection will contribute to our understanding and
eventually inform our management of this serious, common
infection.
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